
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

GMSim: A TOOL FOR COMPOSITIONAL GSMP MODELING

Frode B. Nilsen

Telenor RD
P.O. Box 83

N-2007 Kjeller, NORWAY

l
ov
P

n
n
g
g
t-

-
is
e
le
-
o

m
y
e
l
P

a
e

d

o
t

nt
i

r
s,

t
,
s
e
h

l
of
s

er
t

e
e

ABSTRACT

The development of a discrete-event simulation too
called GMSim, based on the generalized semi-Mark
process (GSMP) formalism is described. The GSM
representation comprises both analysis and simulation i
unified framework. This paper focuses on the simulatio
aspect and how to deal with a combinatorially explodin
state space. A compositional GSMP modeling methodolo
is proposed, which in turn is combined with an objec
oriented programming approach.

A key feature of the resulting tool is the close resem
blance with the underlying mathematical structure. Th
facilitates coherent modeling and also an efficient impl
mentation. The tool is completely generic and extendib
by Tcl script programming. Application specific compo
nents are developed by C++ programming in combinati
with M4 macro processing.

1 INTRODUCTION

The generalized semi-Markov process (GSMP) formalis
gained interest about ten years ago as a convenient wa
describe the dynamics found in stochastic discrete-ev
systems (Glynn 1989, Shedler 1993, Haas and Shed
1987, Glynn 1996). Unlike most approaches, the GSM
formulation facilitates modeling and reasoning within
commonframework. The description is at the same tim
both a precise mathematical setting for analysis and
discrete-event simulation algorithm.

The GSMP framework doesnot aim at closed-
form solutions. Quantitative results must be obtaine
by simulation but a flavor of qualitative theorycan be
established (Glynn 1989). The latter is the reason f
applying the framework in the first place. The key poin
is that theoretically sound and computationally efficie
methods for estimation and experimental design are read
555
,

a

y

-

n

to
nt
er

a

r

ly

available from the GSMP view (Glynn 1983, Glynn and
Iglehart 1988).

For simple systems GSMP modeling is straight-forward
and the implementation of a corresponding simulation
model follows almost immediately. However, as the numbe
of events and components in the state description grow
combinatorial explosion quickly arises. Intractability
follows from the fact that the state/event combinations
to consider become too numerous to handle.

The contribution of this paper is first the developmen
of a compositional GSMP modeling technique. As always
decomposition is the solution to make complex model
tractable. The second contribution is how this can b
combined with an object-oriented programming approac
for implementation of simulation models. The overall idea
is illustrated in figure 1 and the resulting simulation tool is

Basic GSMP
formalism

Object-oriented
implementation

Compositional
GSMP view

Figure 1: The Idea Behind the GMSim Development

called GMSim (Nilsen 1998). In addition to the theoretica
foundation, the paper discusses the implementation
GMSim and how the underlying mathematical structure i
exposed to the programmer.

To the knowledge of the author compositional GSMP
modeling has not previously been addressed. Neith
are we aware of any available simulation tool tha
directly reflects the GSMP view in an object-oriented
environment. We conjecture that the preciseness of th
GSMP foundation leads to a well-structured and henc
efficient implementation of GMSim itself. The tool
facilitates compositional develoment of simulation models
but preserves a coherent view.

Nilsen

l

r

e

n

I
s

d

,
he
he
ue
n
is

e
8)

e

d

A
e,

d
t

o
to

is

t

ing

ox
n
s

d.
ere

in.
Otherwise, the objectives of GMSim are execution
speed and flexibility. Speed is gained by building binary
code for the basic parts of a model. This is based on the C+
programming language (Strostrup 1991) augmented by
set of M4 macros (Seindal). The tool is completely generic
and application specific components are incorporated b
run-time linking. Flexibility is obtained by using the
Tcl/Tk script environment (Ousterhout 1994) for simulation
control. The tool can be extended in arbitrary ways by
script programming. Scheduling in GMSim is based on
two-level strategy where a pairing-heap (Fredman et a
1986) is used for the global queue.

GMSim is based on standard SW components and i
released with the source code under the GNU Genera
Public Licence terms. Hence, it is an open-ended too
suitable for research on simulation methodology. It has
successfully be used (Nilsen 1997) for studying the
performance of wormhole-switched (Ni and McKinley
1993) communication systems.

Note that only a subset of the features in GMSim are
discussed in this paper. The full documentation of the
tool is available in (Nilsen 1998).

1.1 Organization

The rest of this paper is organized as follows. A
summary of the basic GSMP formalism is given in
section 2. Section 3 describes the proposed techniqu
to accomplish compositional GSMP modeling. Together
these two sections provide the theoretical foundation fo
the GMSim development.

Section 4 gives an overview of the GMSim tool and
its features. This is followed by an illustrativeM /M /1
queuing example in section 5. An outline of the the C++
programming interface is provided in section 6. Section 7
describes the scheduling algorithm used by GMSim befor
the paper is concluded in section 8.

2 THE BASIC GSMP FORMALISM

A generalized semi-Markov process (GSMP) is based o
the notion of a state, and makes a state transition when a
event associated with the occupied state occurs. Sever
possible events compete with respect to triggering the nex
transition and each of these events has its own distributio
for determining the next state. At each transition new
events may be scheduled. For each of these events,
clock indicating the time until the event is scheduled to
occur is set according to an independent mechanism.
a scheduled event does not trigger a transition but i
associated with the next state, its clock continues to run
If such an event is not associated with the next state, i
ceases to be scheduled and its clock reading abandone
556
+
a

y

.

s
l

l

e

n
al
t
n

a

f

.
t
.

The standard definition of a GSMP (Glynn 1989
Glynn 1983, Glynn and Iglehart 1988) assumes that t
set of scheduled events is uniquely determined by t
current state. It is also assumed that there is a uniq
triggering event for each state transition. We use a
extended definition where the set of scheduled events
explicitly given and where multiple triggering events ar
allowed. The former is based on (Haas and Shedler 198
and the latter on (Shedler 1993).

Formal definition of a GSMP is in terms of an
embedded Markov chainXk that describes a continuous-
time processS(t) ∈ S at successive epochs of stat
transition. A one-dimensional illustration is provided in
figure 2. Note thatS signifies an application specific

State

Time

S(t)

Xk

Tk

Wk

Figure 2: One-dimensional Illustration of a Generalize
Semi-Markov Process.

state space which is assumed to be finite or countable.
GSMP process is multi-dimensional in the general cas
hence the vector notation.

At entrance to a new stateXk at time Tk we
associate a set of active (scheduled) eventsIk ⊆ E . Here
E = {e1, e2, . . . , em} is taken to be a set of events define
specifically for the application. For each active even
ei ∈ Ik the product of an associated clockci and running
speedri gives the time until the event is scheduled t
occur. The scheduled events compete with respect
triggering the next transition at timeTk+1. The winner(s)
are the event(s) with the minimum remaining time. This
the set of triggering events denotedD∗ ⊆ Ik. The events
ej ∈ (E − Ik) are classified as inactive. The inter-even
time Wk = Tk+1 − Tk is called the sojourn time in state
Xk.

The embedded state description arises from augment
the natural state vectorS(Tk) with event clocksCk =
(c1, . . . , cm), henceXk = (S(Tk),Ck). This approach
is related to the supplementary variable technique (C
and Miller 1965) often used to obtain Markov behavior i
stochastic models. As always, Markov behavior simplifie
analysis. A Markov-renewal condition (Cinlar 1975) is in
turn imposed on the compound chain(Xk, Wk). In addition
time-homogeneity (Cinlar 1975, Glynn 1989) is assume
The details are beyond the scope of this paper but th
are two major implications. First, a time-invariant Markov
transition kernel is associated with the embedded cha

GMSim: A Tool for Compositional GSMP Modeling

n

e
l
o

d

t

r,

l

t

a
it

e

ia
o
o
h

s

r

y

n
to

ct

ts
g

il-

e
x
is
Next, the sojourn times are conditionally independe
given the embedded chain and with the distribution o
Wk depending only onXk and Xk+1. This ensures
semi-Markov behavior of the processS(t).

Due to the inherent stochastic restrictions of th
GSMP formulation, the embedded chain is complete
characterized by a time-invariant single-step behavior. F
a departing statex = (s, c) the probabilistic transition into
the next statex′ = (s′, c′) can be expressed (Haas an
Shedler 1988) by the joint probability distribution function

P (x,A) = p(s′; s,D∗, c∗)
∏

ei∈N
F (ai; s′, ei, s,D∗)

·
∏

ei∈O
I[0, ai](c∗

i) (1)

HereA is a subspace forx′ corresponding to the case tha
natural states′ is entered and the clock reading associate
with active eventei set to a valuec′

i ∈ [0, ai].
The vectorc∗ in equation (1) refers to the updated

clock readings just prior to the transition. Furthe
N = N (s′; s,D∗, c∗) is a set of new events becoming
active due to the transition andO = O(s′; s,D∗, c∗) is
the set of old events remaining active. For each o
event ei ∈ O we set c′

i = c∗
i keeping the updated clock

reading after the transition. New clock readings ar
generated for each eventei ∈ N . A family of probability
distribution functionsF (·; s′, ei, s,D∗) is defined so that
F (ai; s′, ei, s,D∗) is the conditional probability that event
ei is scheduled with a new clock valuec′

i ∈ [0, ai].
Each remaining eventei ∈ (E − N ∪ O) is cancelled

by setting its clock and speedc′
i = ri = 0. Finally,

p(·; s,D∗, c∗) is a family of probability density functions
so thatp(s′; s,D∗, c∗) denotes the probability that the nex
state iss′.

Note the product form of equation (1) suggesting th
independence is at play. This contributes to the analytic
of a GSMP.

3 COMPOSITIONAL GSMP MODELING

The basic GSMP formulation is tractable for simpl
applications. As the number of components in the sta
description and the number of events grow, combinator
explosion quickly arises. This means that the number
state/event combinations to consider become too numer
to handle. As always, the solution is to decompose t
problem.

Our development of a compositional GSMP view i
based on establishing a particularseparability condition.
It starts with regarding the state spaceS in terms
of three components indexed bya, b and c, hence
S = Sa × Sb × Sc and we write the natural state vecto
557
t
f

y
r

d

d

e

t
y

te
l
f
us
e

as s = (sa, sb, sc). Accordingly, we partition the set
of eventsE in three disjunct subsetsE = Ea ∪ Eb ∪ Ec

and write c = (ca, cb, cc) for the clock vector. The
set of triggering events is decomposed in the same wa
D∗ = D∗

a ∪ D∗
b ∪ D∗

c whereD∗
j ⊆ Ej for j = a, b, c.

For convenience we will use double-indexing to refer to
two components simultaneously. E.g.cb,c = (cb, cc) and
Eb,c = Eb ∪ Ec.

In order to arrive at a separable process certai
independence restrictions are imposed. Our interest is
obtain independence in the sense that componentsa and
b are conditioned ona only, whereas componentc is
conditioned on bothb andc. This is illustrated in figure 3.

The underlying idea is to support an object-oriented

a b c

sending object receiving object

Figure 3: The Idea of a Compositional GSMP View.

programming approach. Componenta and c take the role
of objects. The self-point arrows suggests that each obje
have self-driving capabilities. Further, componenta acts
as a sending object whereas componentc corresponds to
a receiving object.

Componentb is used to capture one-way inter-object
communication. It corresponds to the concept of an
interface as introduced in section 4. The figure sugges
that the interface is considered to be part of the receivin
object. This explains why componentc is conditioned
on both b and c. That componentb is conditioned ona
only, reflects the fact that an interface has no self-driving
capabilities.

Formalistically, the separability condition translates
into the following requirements. The probability den-
sity functions p(·; s,D∗, c∗) are separable in the sense
that p(s′; s,D∗, c∗) = p(s′

a; sa,D∗
a, c∗

a) · p(s′
b; sa,D∗

a, c∗
a) ·

p(s′
c; sb,c,D∗

b,c, c
∗
c). Further, New events are generated

component-wise according toN = Na(s′
a; sa,D∗

a, c∗
a) ∪

Nb(s′
a; sa,D∗

a, c∗
a) ∪ Nc(s′

b,c; sb,c,D∗
b,c, c

∗
c). Likewise, the

decision about which old events to retain are made
component-wise according toO = Oa(s′

a; sa,D∗
a, c∗

a) ∪
Ob(s′

a; sa,D∗
a, c∗

a) ∪ Oc(s′
b,c; sb,c,D∗

b,c, c
∗
c). Finally, new

events are scheduled according to component-wise probab
ity distribution functionsFa(·; s′

a, ei, sa,D∗
a), Fb(·; s′

b, ei, sa,
D∗

a) and Fc(·; s′
b,c, ei, sb,c,D∗

b,c).
The decomposition strategy just described can b

applied repeatedly, of course. In sum, arbitrary comple
models can be developed in a compositional setting. Th
provides the theoretical foundation for the object-oriented
implementation of GMSim.

Nilsen

a

l

p

e

.

s

.

.
h

h

s

t

g
r
l
r
d
n

e

s

.
d

g

re
.

s

s
.

t
n

d

4 GMSim OVERVIEW

The GMSim tool is structured as shown in figure 4 and
consists of a number of packages to be loaded into

Interpreter

Tcl/Tk

GMSim core PkA PkX

Program

Figure 4: The Package Structure of GMSim

Tcl interpreter. The interpreter must exist in the realm of
a running program. Each package comprises binary cod
which is dynamically linked1 with the executing program
at load-time. One of the standard Tcl/Tk shellstclsh
or wish are normally used to host the interpreter.

The specific package namedcore must be loaded to
set up the basic simulation environment. This results in an
enriched set of commands and global variables that enab
simulation. Names added to the interpreter have the forma
sim xxx . The full set of commands is documented in
(Nilsen 1998).

The new script commands are used to build and manag
simulation models. A model comprises items instantiated
from various prototype classes. Since the class conce
in GMSim builds directly on C++ classes, the full power
of inheritance and polymorphism characteristic for object-
oriented programming is available.

An item that participate in the simulation is called an
alive object. A simulation model can also comprise other
kinds of objects like dead objects, configuration objects
and statistics (Nilsen 1998). Due to space limitations thes
features of GMSim are not discussed in this paper.

An alive object corresponds to a component in the
compositional GSMP formulation discussed in section 3
The object must be instantiated from a class which
has a piece of behavioral code written according to the
compositional GSMP view. Connections between object
are formed by links and interfaces. This is illustrated in
figure 6 for a particular example to be discussed later
Interactions takes place in terms of the connecting links
Objects possess one or more interfaces (shaded) and t
links are typed according to the interfaces they conform
to. Hence, only compatible objects can be linked.

The GMSim core providesno classes. This is left
to user-defined packages. Each package is expected
implement additional classes according to the compositiona
GSMP view. The recognized classes depend on whic

1Dynamical linking is a feature of the Tcl interpreter.
558
e

e
t

e

t

e

to
l

packages are loaded. Hence, the modeling capabilitie
of GMSim can be extended in arbitrary ways without
recompiling the core.

The operation of GMSim is illustrated in figure 5.
It alternates between the binary domain and the scrip

object hooks

statistics hooks

binary domain script domain

Tcl command loopobject dispatcher loop

visit

system hooks

objects

statistics
Figure 5: The Operation of GMSim

domain. The command loop is responsible for parsing
script commands. Simulation proceeds by transferrin
control to the binary domain and the object dispatche
loop. In turn, the instantiated (alive) objects gain contro
according to their ordering in a scheduler queue. Fo
each visited object a piece of behavioral code is execute
before control is relinquished. Scheduling is discussed i
more detail in section 7.

The package system represents a way to extend th
modeling capabilities of GMSim. The behavior of the tool
itself can be extended by script programming. The idea i
to permit the user to specify Tcl procedures that will be
evaluated by GMSim at specific points during operation
This is illustrated in figure 5 and the procedures are calle
script hooks. Further discussion of the script hook facilities
are beyond the scope of this paper.

GMSim provides a graphical user interface if the
hosting program supports Tk. Figure 7 shows the appearin
screen for a particular simulation example. The main
window shows a log of responses as script commands a
evaluated. The log is an example of a report in GMSim
A Report, which is associated with an underlying text file
and optionally a window, can be managed entirely from
the script domain. A particular kind of report, called a
dump report, can be requested for any alive object. Thi
makes the object verbose about its inner workings.

The verboseness features together with the facilitie
for simulation control are indispensable debugging aids
This is particularly important for complex models with
many objects and involved interactions. Note however tha
the debugging features can be turned off to gain executio
speed for batch runs.

Note finally that GMSim includes a system where
configuration parameters for objects can be set and rea
from the script domain.

GMSim: A Tool for Compositional GSMP Modeling

de
h

Th
el
os
od
m
is

in

a

e
.

e

5 EXAMPLE: M /M /1 QUEUE

To get an idea of GMSim in action we consider aM /M /1
queuing (Kleinrock 1975) example. The queue mo
comprises three objects as depicted in figure 6. T

1 ExpArr 2 ExpSrv3 Queue

queue

queue

srvQArrIfc SrvIfc

QDepIfc

Figure 6: TheM /M /1 Queuing Model.

involved classes, links and interfaces are also shown.
leftmost object generates arrivals which are immediat
fed to the intermediate queuing object. The rightm
object corresponds to the service facility. The source-c
for the implementation of this example is available fro
the GMSim source distribution. Otherwise, the reader
referred to section 6 which describes the programm
interface of GMSim.

The script file used to build the model and launch
particular simulation is listed below.

Supress all command in log
sim_log mask ""
script hook used by arrival statistics
proc arrHook {who num} {

if {$num > 0} {
write time and current count to report
sim_rep write arep "[sim_curr time]: \

[sim_stats read $who]"
}
invoke hook at every arrival
return [list [expr $num + 1] ""]

}
This example depends on mm1 package
sim_pkg require mm1
gstats is a standard package for statistics
sim_pkg require gstats
class parameters
sim_par set ExpArr "-#queue" 1
sim_par set ExpSrv "-#queue" 1
sim_par set Queue "-#srv" 1
allocate space for 3 objects and 1 statistics
sim_alloc 4
create arrival, server and queue objects
set arr [sim_new ExpArr]
set srv [sim_new ExpSrv]
set queue [sim_new Queue]
create count statistics
set arrcnt [sim_new Count]
link objects
sim_link set $arr queue $queue
sim_link set $queue srv $srv
sim_link set $srv queue $queue
prepare for run, slow speed
sim_speed slow
sim_run setup
assign statistics and set hook
sim_stats assign $arr -ArrCnt $arrcnt
sim_hook add $arrcnt arrHook
open statistics report and dumps for objects
sim_rep open arep -mode w
sim_rep won arep -width 30 -height 20
sim_dump won "$arr $queue $srv" -width 40 -height 40
start run
sim_run start »
559
l
e

e
y
t
e

g

perform 3 state transitions
for {set i 0} {$i < 3} {incr i} {

sim_run go >
}

We leave this without further comments but note
that it involves two additional packages calledmm1and
gstats . Dump reports for each of the three objects are
also prepared.

If this script file is sourced by GMSim the appearing
windows will be as shown in figures 7 and 8.

Figure 7: The Main and Command Windows for the
M /M /1 Queuing Example

Except from menus and buttons, the main window
displays the simulation log. The last (dimmed) line shows
the response after the most recent simulation step. Th
three windows in figure 8 show the requested dump reports
The lower window in figure 7 is the command window.
As commands are entered here they are passed to th
interpreter. This makes GMSim ideal for interactive use.
However, the tool can also be used in non-interactive
(batch) mode. Then all windows are suppressed.

6 PROGRAMMING

The following subsections give a flavor of how object-
oriented programming according to the GSMP view takes
place. Macro expansion and the concept of C++ hook
functions are central to the discussion. Note that this
is completely different from script hooks as discussed in
section 4. See (Nilsen 1998) for a complete specification
of the programming interface.

lsen

e
o
ck

te
.

to
e
e

h
o

y

+

g

er
e

r
h
ks

l
.

n.

n
g

e.

s

or
n

s

d

s

d.

bit
Ni

Figure 8: The Report Windows for theM /M /1 Queuing
Example

6.1 Macro Expansion

Code development for GMSim depends on using a numb
of M4 macros in a C++ environment. The idea is t
extend the concept of a class declaration by using blo
constructs like

sim_xxx(...) sim_use(...) {
sim_yyy(...);
...

sim_data:
...

sim_hooks:
...

sim_body:
...

};

where the names prefixed bysim are M4 macros. As
the macros are expanded code is automatically genera
that takes care of all interactions with the GMSim core
Various kinds of blocks are recognized corresponding
the different kinds of prototype classes. In section 6.2 w
discussthe most important case, alive classes, in mor
detail. Note that as the block-opening macrosim xxx
is expanded, the actual class inherits a common hierarc
of base classes pertinent to GMSim. This is invisible t
the programmer.

The sim use macro macro is always used to specif
inheritance. Anything between the delimitingsim data
andsim hooks statements is expected to be ordinary C+
560
r

d

y

variable declarations pertinent to the class. The trailin
part of the block, i.e. after thesim body statement, is
expected to be ordinary member function declarations.

For each of the block constructs there is a set of memb
functions, referred to as hooks. The hook functions ar
called from within thecore and represents a convenient
way to let the user implement a particular behavior fo
a class. Each hook has a default implementation whic
is used unless overridden by the user. Overridden hoo
should be declared between thesim hooks and the
sim body statements. Note that there will be severa
hooks of the same type in a multi-level class hierarchy
All instances are called in response to a hook invocatio

6.2 Alive Classes

An alive class is declared by the construct

sim_vaclass(name) sim_use(...) {
sim_events(...);
sim_links(...);

sim_data:
...

sim_hooks:
<std. hooks>
void nextState (void);
Sim_UsrTime nextOccur (int ev);
void verbose(ostream &os);

sim_body:
...

};

Emerging links are specified by thesim links macro.
The type designation of a link must correspond to a
interface declared elsewhere. In addition to specifyin
ordinary inheritance, thesim use macro is used to
declare that the class conforms to a particular interfac
Only links with a conforming type can connect to an
instantiated object.

In accordance with the GSMP view a number of event
can be defined for the class by thesim events macro.
The following event-set identifiers are also introduced in
the scope of the class:trigEvs , actEvs , oldEvs ,
and newEvs . These sets are used to express the behavi
at a state transition according to the GSMP formulatio
in section 2.

A state description comprises ordinary C++ variable
in the sim data section. ThenextState hook is
responsible for maintaining the state. The hook is invoke
at every state transition and isthe most important hook
as it implements the behavioral model for a class. Thi
includes handling of the event setsoldEvs andnewEvs .
By default, the assignmentoldEvs = actEvs is made
just before visiting the object. Immediately after visit the
nextOccur hook is called for each event innewEvs .
This determines when the actual events is to be schedule
Scheduled events may also be canceled at this point.

The verbose hook can be used to extend the
verboseness when dumps are prepared. It is a good ha

GMSim: A Tool for Compositional GSMP Modeling

t

o
e
c

f
rt
d

a
e

e
e
n
r
r

ia

o

,
e
d
s
o
e
i

e
e
r
h

d

t

is
i
y

is

ll

of
d
e
g
x

f

n

ey

-
t

d

it
le

ly
y

t

e
-

to always supply such a hook since it is often of grea
help in tracking programming errors.

Otherwise, there is a number of standard hooks f
each class (not shown) that can be used to set and ch
configuration parameters, and initialize and clean the obje
to a known state.

7 SCHEDULING

Every alive object is responsible for proper scheduling o
its own events. In fact, local scheduling is an intrinsic pa
of the GSMP formulation. The objects are in turn arrange
by a global priority queue. Hence, GMSim employs
two-level scheduling strategy. This is efficient since th
number of entriesN in the global queue is reduced.

There are several ways to implement the globa
scheduler queue (McCormac and Sargent 1981, Jon
1986, Chung et al. 1993). The methods can be classifi
depending on whether they use time-mapping (Kingsto
1986, Brown 1988) or maintain a balanced tree structu
(Kingston 1985, Sleator and Tarjan 1985). The forme
class employs the principle of hashing. It has the potent
of performing a queuing operation2 in O(1) time, thus
being independent of queue sizeN . Unfortunately, this
works well only if N and the scheduling distribution does
not vary too much during the course of a simulation.

The tree based methods are more robust to dynam
variations. The provision is that the tree is balanced s
as to keep a queuing operations bounded byO(log N).
SinceN can often be quite large in complex simulations
logarithmic behavior is essential. One way to achiev
tree balancing is to impose a structural constraint an
reorganize the tree accordingly at each access. A le
strict approach is to use restructuring heuristic which d
not guarantee that the tree is always balanced. Howev
amortized over a large number of accesses the tree w
be sufficiently balanced for theO(log N) bound to apply.

In GMSim a tree based pairing heap (Fredman
al. 1986) algorithm is used to maintain the global queu
The algorithm employs a lazy restructuring heuristic fo
the heap-ordered tree rather than strict balancing. T
algorithm is insensitive both to dynamic variations inN
and also in the scheduling distribution. In the amortize
sense a queuing operation will be bounded byO(log N).

A salient feature is that the administration cos
associated with an entry depends mainly on itslife-time
in the queue and less on the number of entriesN at
any particular time. Hence, insertion is bounded byO(1)
and the waste is kept at a minimum when an entry
exceptionally removed from the queue. We argue that th
is a nice feature since exceptional removal will probabl

2This includes both an insertion and a removal.
561
r
ck
t

l
s
d

e

l

ic

s

r,
ll

t
.

e

s

be a frequently occuring case when GSMP modeling
used.

In sum, we argue that the paring heap strategy fits we
with the compositional GSMP view and that it performs
well under various operation conditions.

8 CONCLUDING REMARKS

The contribution of this paper has been the development
a compositional GSMP view and how this can be combine
with an object-oriented programming approach. Th
proposed methodology deals with combinatorial explodin
state space which is otherwise characteristical for comple
systems.

We have restricted attention to the simulation aspect o
the GSMP framework but it is important to keep in mind
that the reason for applying the mathematical descriptio
in the first place is the flavor of qualitative theory that
can be established. E.g. asynchronous sampling (Bratl
et al. 1987, Fox and Glynn 1987), which is generally
considered to be efficient, follows easily from the GSMP
view (Glynn 1988).

Since the systematic and well-structured GSMP for
mulation is directly reflected by GMSim, we argue tha
the tool is both consistent and efficient. Combined with
the debugging features, the run-time linking property an
the scripting facilities, we think that GMSim represents a
versatile and convenient simulation tool. The fact that
is distributed with the source code also makes it suitab
for research on simulation methodology.

Even if we strongly believe that GMSim is efficient
with respect to execution time, this remains to be proper
documented. One direction for future research is to stud
the performance of GMSim compared to other tools.

ACKNOWLEDGMENTS

This work is mainly supported by grant no. 100722/410
from the Norwegian Research Council. Additional funds
have been provided by Telenor RD.

REFERENCES

Bratley, P., Fox, B.L., and Schrage, L.E. 1987.A Guide
to Simulation. Springer-Verlag.

Brown, R. 1988. Calendar queues: A fast O(1) priority
queue implementation for the simulation event se
problem. Communications of the ACM, 31(10):1220–
1227.

Chung, K., Sang, J., and Rego, V. 1993. A performanc
comparison of event calendar algorithms: an empir
ical approach. Software Practice and Experience,
23(10):1107–1138.

Nilsen

s
t

s

n
-

v

s

t

ov
y

ized

-

e

r

).

e

v
t.

ry

h
y)
rk.
tant

in
are
ata
on.
Cinlar, E. 1975. Introduction to Stochastic Processes.
Prentice-Hall, Inc.

McCormac, W.M. and Sargent, R.G. 1981. Analysi
of future event set algorithms for discrete even
simulation. Communications of the ACM, 24(12).

Cox, D.R. and Miller, H.D. 1965.The Theory of Stochastic
Processes. John Wiley and Sons.

Fox, B.L. and Glynn, P.W. 1987. Estimating time average
via randomly-spaced observations.SIAM Journal on
Applied Mathematics, 47(1):186–200.

Fredman, M.L., Sedgewick, R., Sleator, D.D., and Tarja
R.E. 1986. The pairing heap: A new form of self
adjusting heap.Algorithmica, 1:111–129.

Glynn, P.W. 1983. On the role of generalized semi-Marko
processes in simulation output analysis. InProc. of
the 1983 Winter Simulation Conference, pages 38–42.

Glynn, P.W. and Iglehart, D.L. 1988. Simulation method
for queues: An overview.Queuing Systems: Theory
and Applications, 3:221–256.

Glynn, P.W. 1989. A GSMP formalism for discrete even
systems.Proc. of the IEEE, 77(1):14–23.

Glynn, P.W. 1996. Special issue: Generalized semi-Mark
processes.Discrete Event Dynamic Systems: Theor
and Applications, 6(1).

Haas, P.J. and Shedler, G.S. 1987. Regenerative general
semi-Markov processes.Communications in Statistics
- Stochastic Models, 3(3):409–438.

Jones, D.W. 1986. An empirical comparison of priority
queue and event-set implementations.Communications
of the ACM, 29(4):300–311.

Kingston, J.H. 1985. Analysis of tree algorithms for th
simulation event list.Acta Informatica, 22:15–33.

Kingston, J.H. 1986. Analysis of henriksen’s algorithm fo
the simulation event set.SIAM Journal on Computing,
15(3):887–902.

Kleinrock, L. 1975. Queuing Systems: Vol. 1 Theory.
Wiley.

Seindal, R. The GNU m4 macro processor. The
GNU Project, the Free Software Foundation (FSF
<http://www.fsf.org>.

Ni, L.M. and McKinley, P.K. 1993. A survey of wormhole
routing techniques in direct networks.IEEE Computer,
26(2):62–76.

Nilsen, F.B. 1997. Efficient flit-level simulation. InProc.
of the 1997 Summer Computer Simulation Conferenc,
pages 79–84, Arlington, VA, , July 1997.

Nilsen, F.B. 1998. GMSim: A generalized semi-Marko
simulation environment. Research Report 258, Dep
of Informatics, Univ. of Oslo, Norway, April 1998.
<http://www.ifi.uio.no/˜froden/gmsim>.

Ousterhout, J.K. 1994.Tcl and the Tk Toolkit. Addison-
Wesley Publishing Company.
562
,

Shedler, G.S. 1993.Regenerative Stochastic Simulation.
Academic Press, Inc.

Sleator, D.D. and Tarjan, R.E. 1985. Self-adjusting bina
search trees.Journal of the ACM, 32(3):652–686.

Stroustrup, B. 1991.The C++ programming language.
Addison-Wesley, second edition.

AUTHOR BIOGRAPHIES

FRODE B. NILSEN is currently employed as a Researc
Scientist at Telenor RD (the dominant PNO in Norwa
working on strategic development of the access netwo
Previously he was employed as a Research Assis
at the Dept. of Informatics, Univ. of Oslo. He
received a M.S. and Ph.D. from the same place
1993 and 1998, respectively. His research interests
network architectures, high-speed communication, d
communications and methods for performance evaluati

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

