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ABSTRACT

This paper compares Monte Carlo methods, lattice rule
and other low-discrepancy point sets on the problem
evaluating asian options. The combination of these metho
with variance reduction techniques is also explored.

1 INTRODUCTION

For the approximation of multidimensional integrals, two
types of methods are widely used. Monte Carlo (MC
methods are the best known and require the use of a ps
dorandom generator. Quasi-Monte Carlo (QMC) method
use low-discrepancy point sets and are deterministic: T
idea is to use points that are more regularly distribute
over the integration space than random points. The be
known methods to achieve this are the lattice rules an
(t, s)-sequences (or(t, m, s)-nets); see, e.g., Owen (1998),
Niederreiter (1992) and Sloan and Joe (1994).

When MC methods are used to estimate the value
an integral, the central limit theorem allows the calculatio
of an error estimate that gives an idea of the quality of th
estimator. This probabilistic error is inO(N−1/2), where
N is the sample size, independently of the dimensio
s of the integrand. For QMC methods, a wide bod
of literature exists on how to derive deterministic erro
bounds (Niederreiter 1992; Hickernell 1998; Hickerne
1999). These bounds are the product of two quantitie
The discrepancy, which measures the uniformity of the
point set, and a measure ofvariation of f , which tells
about the roughness of the integrand. There are seve
ways of defining the discrepancy, each one coming wi
its corresponding definition for the variation off and
with a class of functions for which the error bound
applies. For low-discrepancy point sets, these boun
are in O((log N)s/N), a better asymptotic rate than
O(N−1/2). In practice, however, these bounds are ofte
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almost impossible to calculate and are also extremely
loose.

A simple way of getting an error estimate in the
QMC case is to randomly shift the point set, modulo
1 coordinate-wise, and repeat this independently, say,m
times. This givesm i.i.d. unbiased integral estimates,
from which a variance estimate and a confidence interval
can be computed in the usual way. This randomization
technique was suggested by Cranley and Patterson (1976

In this paper, we compare lattice rules with MC
methods, on the financial problem of pricing asian options.
We find that lattice rules easily win over MC and still
dominate in dimensions as large as 120. These results
indicate that the class of functions for which these low-
discrepancy point sets give efficient estimators is not as
restricted as what is usually suggested in the literature
(Sloan and Joe 1994; Owen 1997). We also compare
the lattice rules with(t, s)-sequences, such as Sobol and
generalized Faure sequences, on the same problem, an
find that the lattice rules are competitive.

The paper is organized as follows. Section 2
summarizes basic definitions and facts about lattice rules
and criteria to select them, for a given number of points.
In section 3, we state the problem of asian options pricing.
We give numerical results in section 4. Finally, we
conclude in section 5.

2 LATTICE RULES

To estimate the integral

If =
∫

[0,1)s

f(x) dx,

we choose a point setP = {x1, . . . ,xN} in [0, 1)s and
compute the estimator

Qf =
1
N

N∑
i=1

f(xi).
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In the MC method, the points inP come from a
pseudorandom generator. For the QMC method,P is a
low-discrepancy point set, coming from either a(t, s)-
sequence or a lattice rule.

We recall the following standard definitions regard
lattice rules (Hickernell 1999; Sloan and Joe 1994).

• An s-dimensionalintegration lattice, L, is a discrete
subset of IRs that is closed under addition an
substraction and which contains the integer vec
ZZs as a subset.

• A shifted lattice with shift ∆ ∈ IRs is the set
L + ∆ = {z + ∆ : z ∈ L} for some latticeL.

• The node setfor a shifted integration lattice,L + ∆,
is the set of points in the lattice that fall inside t
unit cube, that is,P = (L + ∆) ∩ [0, 1)s.

• The dual lattice of L is defined asL⊥ = {k ∈ IRs :
k · z ∈ ZZ for all z ∈ L}.

• A rank-1 lattice is a lattice whose node set may
expressed as

P = {{ih/N} : i = 0, . . . , N − 1},

for some generating vectorh ∈ ZZs, where {x} =
x − bxc = x mod 1.

It is interesting to note that for a rank-1 lattic
with N points and generating vectorh of the form
h = (1, a, . . . , as−1), the node set is the set of alls-tuples
formed by successive output values of a linear congrue
generator (LCG) with modulusN and multipliera, from all
possible initial seeds (including 0). We use this connec
to choose our lattice rules (as explained later).

If P is the node set of an integration lattice, assum
that the integrandf has an absolutely convergent Four
series, the integration error is (see. e.g., Sloan and
1994)

Qf − If =
∑

h∈L⊥\{0}
f̂(h), (1)

where f̂(h) =
∫
[0,1)s f(x)e−2π

√−1h·x dx, is the Fourier
coefficient off evaluated ath.

It is common to assume that the Fourier coefficie
decrease ash gets away from the origin. This amounts
assuming thatf is “sufficiently smooth”. In view of (1),
we thus want the points of the dual lattice to be far aw
from the origin, when the distances are measured with
arbitrary norm, say‖ · ‖. A generalfigure of merit(to be
minimized) can have the form

∑
h∈L⊥\{0}

‖h‖−α (2)
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or perhaps

sup
h∈L⊥\{0}

‖h‖−α (3)

for some constantα > 0. If one considers the class of
functions f for which |f̂(h)| ≤ ‖h‖−α for all h 6= 0,
then (2) is theworst case integration errorfor that class
of functions, and thus provides an error bound.

A popular norm used in this context is the product
norm ‖h‖π = h̄1 · · · h̄s where h̄j = max(1, |hj |) for
h = (h1, . . . , hs). The figure of merit (2) with this norm
is known asPα, and is often recommended withα = 2
(Sloan and Walsh 1990; Sloan and Joe 1994). With thi
product norm andα = 1, (3) is 1/ρs whereρs is known
as theZaremba index(Niederreiter 1992). If one uses
the Euclidean norm instead, withα = 1, (3) becomes the
distance between the successive hyperplanes in the latti
L, which is the figure of merit computed by thespectral
test commonly used to measure the quality of LCGs.

The lattice rules used for the experiments reported
in this paper are rank-1 rules that correspond to LCG
with prime moduli and periodN − 1, and which have
been selected based on the spectral test. These LC
are taken from Table 2 of L’Ecuyer (1998b). They have
the convenient property that their lattice structure is good
uniformly in s, for s ≤ 32, and also quite good formost
s > 32. The same LCG (or lattice rule) can thus be used
for all s, instead of choosing a different rule for eachs
as done, e.g., in Sloan and Joe (1994). The lattice rule
based on LCGs are also very easy to implement: Th
points are obtained simply by running the LCG as usua
and taking all the overlapping vectors of successive outpu
values over the entire period.

To estimate the integration error, we use the random
ization technique of Cranley and Patterson (1976), whic
works as follows. For a given point setP = {x1, . . . ,xN},
generatem i.i.d. vectors∆1, . . . ,∆m uniformly distributed
in [0, 1)s, and for i = 1, . . . , m, compute the valueXi

of Qf for the point set{P + ∆i}, i.e., P shifted by∆i

modulo 1. TheseXi turn out to be i.i.d. random variables
with expectationIf . Then compute

µ̂ =
1
m

m∑
i=1

Xi (4)

as the estimator ofIf and

σ̂2 =
1

m(m − 1)

m∑
i=1

(Xi − µ̂)2 (5)

as an estimator of the variance ofµ̂. For the MC estimator,
we usem ∗ N replications with a pseudorandom number
generator.
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3 PRICING ASIAN OPTIONS

Finance gives rise to several interesting problems involvin
the computation of multidimensional integrals. An exampl
of this kind of problems is the pricing ofcontingent claims,
which are assets having a price that depends on the va
of other assets, calledunderlying assets. An asian option
is an example of a contingent claim; its price depends o
the mean value of an underlying asset during a certa
period of time. More precisely, let

S(t) = value of the underlying asset at timet,

s = number of instants whereS(·) is sampled,

T1 = beginning of the period in which

the mean is calculated,

T = expiration date of the option,

tj = T1 + j(T − T1)/s, j = 1, . . . , s,

K = strike price of the option.

If CA(t) denotes the value of the asian call option at tim
t, then by definition its final value is

CA(T ) = max


0,

1
s

s∑
j=1

S(tj) − K


 ,

which is the difference between the average value of th
underlying asset sampled ats points equally spaced over
the period(T1, T ) and the strike priceK, provided that
this average exceedsK, otherwise the option has no value.

To model the evolution of the underlying asset, we
use the model of Black and Scholes (1973), which say
that

dS(t) = µS(t)dt + σS(t)dB(t),

where µ is the mean return parameter of the asset,σ is
its volatility parameter andB(·) is a standard Brownian
motion. This model involves other assumptions about th
market implying the existence of a unique risk-neutra
measure under which

dS(t) = rS(t)dt + σS(t)dB̃(t),

wherer is the risk-free interest rate and̃B(·) is a standard
Brownian motion under the risk-neutral measure. Th
value at time 0 of the asian option is then given by

CA(0) = Ẽ(e−rT CA(T )), (6)

whereẼ(·) is the expectation under the risk-neutral measur
Even for this simple model, one cannot comput

CA(0) analytically (this would amount to compute the
distribution of a sum of lognormal random variables). S
one would rely on MC or QMC methods to estimate the
581
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s-dimensional integral (6). To compute each replicate o
CA(T ), a pointx ∈ [0, 1)s is transformed into a vector of
normal random variables which are used to generate th
values of the Brownian motion at the observation point
tj . The paths ofS(·) are simulated as follows:

S(tj) = S(0) exp
(
(r − 0.5σ2)tj + σB̃(tj)

)

for j = 1, . . . , s, where B̃(t) ∼ N(0, t2), a Gaussian
random variable with mean0 and variancet.

In practice, it is the option on the arithmetic average
that is sold, but the one on the geometric average ca
be used as a control variable, as explained in Kemna an
Vorst (1990). The final value of the asian call option on
the geometric average is defined as

CG(T ) = max


0,


 s∏

j=1

S(tj)




1/s

− K


 .

This option can be priced exactly for the Black-Scholes
model (a product of lognormal random variables is also
lognormal). The geometric average is always smaller tha
the arithmetic average, but these two quantities are high
correlated and so are the corresponding option prices. A
shown in the next section, this control variable brings
a dramatic variance reduction. We also use antithet
variates, which give us a small additional reduction
of the variance. For more on variance reduction, see
e.g., L’Ecuyer (1994) and other references given there
Lemieux (1996) studies and compares several approach
for evaluating asian options under the Black-Scholes mode
including simulation with the variance reduction technique
described above, and other approximation methods.

4 NUMERICAL RESULTS

4.1 Impact of Variance Reduction Techniques

The following results compare lattice rules with MC
simulations on the asian option problem, with and withou
the control variable and antithetic variates. Four differen
estimators are calculated for both MC and the lattice rules
A naive estimator (naive), one with antithetic variates
(ant.), one with the control variable (c.v.), and one tha
combines these two variance reduction methods (ant. c.v
The last 8 columns of Tables 1 and 2 correspond to thes
8 cases.

Three values of the strike priceK are considered
in these tables. The higher the strike price, the smalle
the probability of a nonzero final value, which means
(intuitively) a larger relative error. In the tables,̂µ and
σ̂ are the empirical mean and standard error as define
in (4) and (5). For the MC estimators, the number in
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parentheses under̂σ is σ̂2/σ̂2
0 , whereσ̂2

0 is the value of̂σ2

for the naive estimator. For the lattice rule estimators, th
number in parentheses gives the ratio of their estimat
variance σ̂2 to that of thecorrespondingMC estimator
(which uses the same variance reduction strategy). T
next line in the tables gives the CPU time in seconds
perform all themN simulations runs and compute the
estimators. The line labelled “eff.” gives the (estimated
efficiencyof the estimator, which is defined as the invers
of the product of the estimated variance by the CPU tim
The numbers in parentheses under the efficiency valu
provide ratios similar to those given for the variance thre
lines above, but for the efficiency instead ofσ̂2.

For the examples considered in this paper, the risk-fr
rate and the volatility in the Black-Scholes model are fixe
to r = ln 1.09 and σ = 0.2. We also takeS(0) = 100,
T = 120 days andm = 100. The length of the sampling
period, T − T1, which is also equal to the numbers of
dimensions, is 10 in Table 1 and 120 in Table 2. Th
value of N , which is the number of points as well as the
modulus of the corresponding LCG, and its multipliera,
are given at the top of each table.

In Table 1, we see that the control variable increas
the efficiency by large factors (around106). When no
other variance reduction technique is used, the lattice ru
estimator is more efficient than the MC estimator by
factor as large as 500 in one case and at least 100
all cases. Even when both variance reduction techniqu
are combined, lattice rules still provide estimators at lea
3 times more efficient than the MC estimators. Varianc
reduction techniques “even” the integrand. For this ne
integrand, the lattice rules are still doing significantly bette
than MC.

Table 2 gives the results of a higher-dimensiona
problem, withs = 120, and a smaller number of points,
N = 509. With these parameters, the lattice rules provid
less improvement than in Table 1, but they are still mor
efficient than the MC methods.

The control variable does not work as well as in Tabl
1, but still gives estimators significantly more efficient tha
the naive ones, by factors around103. Increasings means
that we sampleS(·) over a longer period(T1, T ). Hence,
the probability of observing abnormal prices is greater an
this increases the difference between the two averages,
the correlation betweenCA(T ) and CG(T ) is reduced.

In both tables, the variance ratios usually decrea
with K. Notice that f is more irregular for largerK
(f(x) = 0 for a large set of values ofx ∈ [0, 1)s and
then increases abruptly). Also, the correlation betwee
CA(T ) and CG(T ) decreases, and this goes with a large
probability of having the pathological case ofCA(T ) > 0
and CG(T ) = 0.
582
e

s

n
s
t

o

The precision of the estimatorŝσ can be assessed
by constructing confidence intervals (C.I.’s) forσ. These
intervals are not given in the tables, but their typical sizes
is well illustrated by the following examples. In Table
1, with K = 100 and the naive estimator, the 99% C.I.’s
are (0.0122, 0.0123) for MC and (0.0057, 0.0082) for the
lattice rules. For the MC method, the variance estimator
is more accurate because it has more degrees of freedom
MC makesmN independent runs, whereas with the lattice
rules we have onlym independent groups of runs.

In the same scope, one can construct C.I.’s for the
variance ratios, to test whether these ratios aresignificantly
different from 1. Form = 100 (i.e. for the lattice rules),
the variance ratios given in the line beloŵσ in the
tables have to be smaller than 0.699 for the ratios to be
significative at the 99% level. This is the case for all 12
entries in Table 1, and for 8 entries in Table 2.

4.2 Comparison With (t, s)-Sequences

We now compare MC with three types of QMC point
sets: The lattice rules, and point sets taken from Sobol
and generalized Faure (GFaure) sequences. The latte
point sets were obtained using the software FINDER of
Papageorgiou and Traub (1996), Paskov and Traub (1995)
In all cases, we use both the antithetic variates and the
control variable. For the MC method, we use the generator
MRG32k5a of L’Ecuyer (1998a). Ratios for the variance
and the efficiency are given w.r.t. the MC estimator.

To randomize the Sobol and GFaure point sets (for
error estimation), we use the same random shift method as
for the lattice rules. Shifting randomly a(t, m, s)-net does
not preserve the net property, but iff ∈ L2, it produces
an unbiased estimator with a variance in the order of
N−2(log N)2s, as shown in Tuffin (1996): This is the
same order of convergence as thescrambled netestimator
proposed by Owen (1995), which gives another way to
randomize(t, m, s)-nets.

For the Sobol method, we use the smallest power
of two Ñ greater than the number of pointsN used
by the three other methods, because for Sobol sequence
it is better to takeN as a power of two. It is often
recommended to skip a certain number of points at the
beginning of a(t, s)-sequence (Fox 1986; Bratley, Fox,
and Niederreiter 1992). We skipped the first̃N points
for Sobol and the first 200000 points for GFaure (as did
Acworth, Broadie, and Glasserman 1997).

In Table 3 (wheres = 10), the lattice rule estimators
lose to both Sobol and GFaure in terms of efficiency, but
in Table 4 (wheres = 60), the situation is reversed.

In another experiment withs = 90 and N = 509,
not shown here, the lattice rules still win over MC by
non-negligible factors, whereas Sobol and GFaure are
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Table 1: s = T − T1 = 10 days. N = 4093, a = 209.

Monte Carlo Lattice Rule
K naive ant. c.v. ant. c.v. naive ant. c.v. ant. c.v.

µ̂ 13.001 13.004 13.008 13.008 13.008 13.008 13.008 13.008
σ̂ 1.60e-2 3.54e-3 1.29e-5 1.18e-5 7.39e-4 5.21e-4 8.00e-6 6.60e-6

(1.00) (4.89e-2) (6.49e-7) (5.44e-7) (2.13e-3) (2.16e-2) (3.85e-1) (3.12e-1)
90 cpu 47.2 62.4 51.7 69.8 38.0 53.2 42.5 60.8

eff. 8.27e+1 1.28e+3 1.16e+8 1.03e+8 4.82e+4 6.93e+4 3.67e+8 3.78e+8
(1.00) (15.5) (1410000) (1240000) (582) (54.3) (3.16) (3.68)

µ̂ 5.864 5.865 5.863 5.863 5.863 5.863 5.863 5.863
σ̂ 1.23e-2 5.79e-3 1.18e-5 8.56e-6 6.76e-4 5.50e-4 6.11e-6 4.47e-6

(1.00) (2.23e-1) (9.25e-7) (4.87e-7) (3.03e-3) (9.02e-3) (2.68e-1) (2.73e-1)
100 cpu 47.1 62.5 51.7 69.9 38.0 53.2 42.6 60.7

eff. 1.41e+2 4.77e+2 1.39e+8 1.95e+8 5.76e+4 6.21e+4 6.28e+8 8.24e+8
(1.00) (3.38) (986000) (1380000) (408) (130) (4.52) (4.22)

µ̂ 1.912 1.913 1.917 1.917 1.917 1.917 1.917 1.917
σ̂ 7.27e-3 4.67e-3 8.96e-6 6.16e-6 7.39e-4 5.71e-4 6.16e-6 3.62e-6

(1.00) (4.13e-1) (1.52e-6) (7.18e-7) (1.03e-2) (1.49e-2) (4.73e-1) (3.45e-1)
110 cpu 47.1 62.5 51.8 69.9 38.1 53.2 42.5 60.6

eff. 4.02e+2 7.34e+2 2.41e+8 3.77e+8 4.80e+4 5.77e+4 6.20e+8 1.26e+8
(1.00) (1.83) (599000) (939000) (120) (78.7) (2.58) (3.34)

Table 2: s = T − T1 = 120 days. N = 509, a = 35.

Monte Carlo Lattice Rule
K naive ant. c.v. ant. c.v. naive ant. c.v. ant. c.v.

µ̂ 11.237 11.209 11.207 11.207 11.209 11.208 11.208 11.208
σ̂ 2.86e-2 3.28e-3 4.00e-4 3.29e-4 4.34e-3 2.96e-3 3.09e-4 2.64e-4

(1.00) (1.32e-2) (1.96e-4) (1.33e-4) (2.30e-2) (8.10e-1) (5.95e-1) (6.43e-1)
90 cpu 70.1 97.4 70.9 92.5 55.6 80.4 56.5 78.5

eff. 1.74e+1 9.52e+2 8.80e+4 9.97e+4 9.54e+2 1.42e+3 1.85e+5 1.83e+5
(1.00) (54.6) (5050) (5720) (54.8) (1.50) (2.11) (1.83)

µ̂ 3.368 3.365 3.368 3.368 3.378 3.376 3.367 3.368
σ̂ 1.99e-2 9.40e-3 3.16e-4 2.33e-4 8.44e-3 8.38e-3 2.32e-4 1.83e-4

(1.00) (2.23e-1) (2.52e-4) (1.36e-4) (1.79e-1) (7.94e-1) (5.39e-1) (6.20e-1)
100 cpu 70.1 97.8 70.9 92.4 55.6 77.7 56.5 78.2

eff. 3.59e+1 1.16e+2 1.41e+5 2.00e+5 2.53e+2 1.83e+2 3.28e+5 3.81e+5
(1.00) (3.22) (3920) (5560) (7.03) (1.58) (2.33) (1.91)

µ̂ 0.394 0.386 0.386 0.386 0.387 0.387 0.386 0.386
σ̂ 6.92e-3 4.66e-3 2.55e-4 1.79e-4 5.04e-3 3.89e-3 2.47e-4 1.77e-4

(1.00) (4.54e-1) (1.36e-3) (6.72e-4) (5.30e-1) (6.96e-1) (9.40e-1) (9.75e-1)
110 cpu 70.1 97.7 70.9 92.7 55.6 77.7 56.5 77.9

eff. 2.98e+2 4.71e+2 2.17e+5 3.35e+5 7.08e+2 8.52e+2 2.89e+5 4.09e+5
(1.00) (1.58) (729) (1130) (2.38) (1.81) (1.34) (1.22)
583
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Table 3: s = 10, N = 4093, a = 209.

K MC LR Sobol GFaure

µ̂ 13.008 13.008 13.008 13.008
σ̂ 1.18e-5 6.07e-6 4.30e-6 4.49e-6

(1.00) (0.263) (0.132) (0.144)
90 cpu 192.0 185.0 183.0 218.0

eff.
104 3718.1 14652 29559 22718

(1.00) (3.94) (7.95) (6.11)
µ̂ 5.863 5.863 5.863 5.863
σ̂ 8.61e-6 4.35e-6 3.42e-6 4.03e-6

(1.00) (0.255) (0.158) (0.219)
100 cpu 191.0 184.0 184.0 218.0

eff.
104 7068.3 28727 46476 28237

(1.00) (4.06) (6.58) (4.00)
µ̂ 1.917 1.917 1.917 1.917
σ̂ 6.18e-6 3.45e-6 2.88e-6 2.74e-6

(1.00) (0.312) (0.217) (0.197)
110 cpu 190.0 185.0 182.0 219.0

eff.
104 13765 45382 66319 60682

(1.00) (3.30) (4.82) (4.41)

sometimes even less successful than MC. The advantag
of the lattice rules over MC, in this case, decreases mor
slowly with s than the advantage of Sobol or GFaure.

5 CONCLUSION

We gave numerical examples in which lattice rules are
efficient estimators. When no other variance reduction
technique is used for the problem of asian options, the
lattice rules estimator easily beats the MC estimator
sometimes by factors as large as 500. This advantag
decreases as the dimensions increases andN decreases,
but is still present fors as large as 120 andN = 509.

The use of antithetic variates and of the price of the
asian option on the geometric average as a control variab
improves the MC estimator by very large factors, but lattice
rules still provide an additional improvement. Compared
with the Sobol and generalized Faure estimators, the lattic
estimator loses in small dimensions and when the numbe
of points is large. But it dominates in larger dimension
(s ≥ 60). Also, whenN is small, the two other QMC
estimators hardly bring variance reduction compared with
the MC estimator.

The simplicity of implementation of lattice rules
estimators and the fact that they seem to suffer les
from large dimensions than the Sobol or generalized
Faure sequences estimators should encourage adepts
QMC methods to use lattice rules more often to estimate
multidimensional integrals.
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Table 4: s = 60, N = 4093, a = 209.

K MC LR Sobol GFaure

µ̂ 12.179 12.179 12.179 12.179
σ̂ 6.92e-5 3.92e-5 5.83e-5 4.46e-5

(1.00) (0.321) (0.710) (0.414)
90 cpu 963.0 922.0 905.0 1039.0

eff.
104 21.7 70.5 32.5 48.5

(1.00) (3.25) (1.50) (2.24)
µ̂ 4.826 4.826 4.826 4.826
σ̂ 5.04e-5 2.77e-5 4.22e-5 3.50e-5

(1.00) (0.301) (0.699) (0.481)
100 cpu 963.0 921.0 905.0 1055.0

eff.
104 40.8 141.7 62.2 77.4

(1.00) (3.47) (1.52) (1.90)
µ̂ 1.192 1.192 1.192 1.192
σ̂ 3.75e-5 2.48e-5 3.07e-5 2.70e-5

(1.000) (0.437) (0.671) (0.520)
110 cpu 964.0 918.0 904.0 1051.0

eff.
104 73.7 177.1 117.2 130.0

(1.00) (2.40) (1.59) (1.77)
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