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ABSTRACT almost impossible to calculate and are also extremely
loose.
This paper compares Monte Carlo methods, lattice rules, A simple way of getting an error estimate in the

and other low-discrepancy point sets on the problem of QMC case is to randomly shift the point set, modulo
evaluating asian options. The combination of these methods 1 coordinate-wise, and repeat this independently, say,
with variance reduction techniques is also explored. times. This givesm i.i.d. unbiased integral estimates,
from which a variance estimate and a confidence interval
can be computed in the usual way. This randomization
1 INTRODUCTION technique was suggested by Cranley and Patterson (1976).
In this paper, we compare lattice rules with MC
methods, on the financial problem of pricing asian options.
We find that lattice rules easily win over MC and still
dominate in dimensions as large as 120. These results

For the approximation of multidimensional integrals, two
types of methods are widely used. Monte Carlo (MC)
methods are the best known and require the use of a pseu-_"~, ] .
dorandom generator. Quasi-Monte Carlo (QMC) methods indicate that the class of functions for which these low-

use low-discrepancy point sets and are deterministic: The discr-epancy point sets gve efficient estimators iS. not as
idea is to use points that are more regularly distributed restricted as what is usually suggested in the literature

over the integration space than random points. The best (Sloan .and Joe 1_994; Owen 1997). We also compare
known methods to achieve this are the lattice rules and the Iatt|_ce rules with(t, s)-sequences, such as Sobol and
(, 5)-sequences (oft, m, s)-nets): see, e.g., Owen (1998), generallzed Fau_re sequences, on th_e_ same problem, and
Niederreiter (1992) and Sloan and Joe (1994). find that the lattice rules are competitive.

. The paper is organized as follows. Section 2
.When MC methods. are used to estimate the valu<_a of summarizes basic definitions and facts about lattice rules
an integral, the central limit theorem allows the calculation

of an error estimate that gives an idea of the quality of the and criteria to select them, for a given number of points.
: : _— L 71/2q y In section 3, we state the problem of asian options pricing.
estimator. This probabilistic error is i@ (N ), where . ; : . ;
. : : . . We give numerical results in section 4. Finally, we
N is the sample size, independently of the dimension conclude in section 5
s of the integrand. For QMC methods, a wide body '
of literature exists on how to derive deterministic error
bounds (Niederreiter 1992; Hickernell 1998; Hickernell 2 LATTICE RULES
1999). These bounds are the product of two quantities:
The discrepancy which measures the uniformity of the
point set, and a measure w@#hriation of f, which tells

To estimate the integral

about the roughness of the integrand. There are several If= 0.1): /() da,
ways of defining the discrepancy, each one coming with ’
its corresponding definition for the variation gf and we choose a point seP = {x,...,xzx} in [0,1)° and

with a class of functions for which the error bound compute the estimator

applies. For low-discrepancy point sets, these bounds N

are in O((log N)*/N), a better asymptotic rate than Qf:iZf(wv).
O(N~1/2). In practice, however, these bounds are often N & !
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In the MC method, the points iP come from a
pseudorandom generator. For the QMC methBdis a
low-discrepancy point set, coming from either (8 s)-
sequence or a lattice rule.

We recall the following standard definitions regarding
lattice rules (Hickernell 1999; Sloan and Joe 1994).

¢ An s-dimensionalintegration lattice, L, is a discrete
subset of R® that is closed under addition and
substraction and which contains the integer vectors
Z° as a subset.

e A shifted lattice with shift A € IR® is the set
L+A={z+A:ze L} for some latticeL.

e The node setfor a shifted integration latticel, + A,
is the set of points in the lattice that fall inside the
unit cube, that isP = (L + A)N[0,1)%.

e Thedual lattice of L is defined asL.t = {k € R” :
k-zeZforall ze L}.

e A rank-1 lattice is a lattice whose node set may be
expressed as
P={{ih/N}:i=0,...,N —1},
for some generating vectdt € Z°, where {x} =
x — |x] = mod 1.

It is interesting to note that for a rank-1 lattice
with N points and generating vectok of the form
h = (1,a,...,a°" 1), the node set is the set of altuples
formed by successive output values of a linear congruential
generator (LCG) with modulud” and multipliera, from all
possible initial seeds (including 0). We use this connection
to choose our lattice rules (as explained later).

If P is the node set of an integration lattice, assuming
that the integrandf has an absolutely convergent Fourier

or perhaps

IR~ 3)

sup
herLt\{o}

for some constanty > 0. If one considers the class of
functions f for which |f(h)| < ||h||~ for all h # O,
then (2) is theworst case integration errofor that class
of functions, and thus provides an error bound.

A popular norm used in this context is the product
norm ||k|/, = hy---hs Where h; = max(1,|h;|) for
h = (hy,...,hs). The figure of merit (2) with this norm
is known asP,, and is often recommended with = 2
(Sloan and Walsh 1990; Sloan and Joe 1994). With this
product norm ancy = 1, (3) is 1/p, wherep, is known
as theZaremba index(Niederreiter 1992). If one uses
the Euclidean norm instead, witlh = 1, (3) becomes the
distance between the successive hyperplanes in the lattice
L, which is the figure of merit computed by thspectral
test commonly used to measure the quality of LCGs.

The lattice rules used for the experiments reported
in this paper are rank-1 rules that correspond to LCGs
with prime moduli and periodV — 1, and which have
been selected based on the spectral test. These LCGs
are taken from Table 2 of L'Ecuyer (1998b). They have
the convenient property that their lattice structure is good
uniformly in s, for s < 32, and also quite good fomost
s > 32. The same LCG (or lattice rule) can thus be used
for all s, instead of choosing a different rule for eagh
as done, e.g., in Sloan and Joe (1994). The lattice rules
based on LCGs are also very easy to implement: The
points are obtained simply by running the LCG as usual
and taking all the overlapping vectors of successive output
values over the entire period.

To estimate the integration error, we use the random-
ization technique of Cranley and Patterson (1976), which
works as follows. For a given point st= {x;,..., N},
generaten i.i.d. vectorsAy, ..., A,, uniformly distributed

series, the integration error is (see. e.g., Sloan and Joein [0,1)%, and for: = 1,...,m, compute the valueX;

1994)
Qf—1f=

Y ),

heL+\{0}

where f(h) = f[o,1)s f(x)e~2"V=1hxdy is the Fourier
coefficient of f evaluated ath.

It is common to assume that the Fourier coefficients
decrease ah gets away from the origin. This amounts to
assuming thatf is “sufficiently smooth”. In view of (1),
we thus want the points of the dual lattice to be far away
from the origin, when the distances are measured with an
arbitrary norm, sayl| - ||. A generalfigure of merit(to be
minimized) can have the form

>

heL+\{o}

)

[R] = )
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of Qf for the point set{ P + A;}, i.e., P shifted by A;
modulo 1. TheseX; turn out to be i.i.d. random variables
with expectation/ f. Then compute

(4)
as the estimator of f and
6_2

(Xi — f1)?

(5)

m

_ 1
 om(m—1) “

7

as an estimator of the variance jof For the MC estimator,
we usem *x N replications with a pseudorandom number
generator.
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3 PRICING ASIAN OPTIONS

Finance gives rise to several interesting problems involving
the computation of multidimensional integrals. An example
of this kind of problems is the pricing @ontingent claims

which are assets having a price that depends on the value

of other assets, callednderlying assetsAn asian option

is an example of a contingent claim; its price depends on
the mean value of an underlying asset during a certain
period of time. More precisely, let

S(t) = value of the underlying asset at tine
s = number of instants wher§(-) is sampled
T: = beginning of the period in which
the mean is calculated
T expiration date of the optign
t; = T +j(T-Tv)/s, j=1,...,s,
K strike price of the option

If C4(t) denotes the value of the asian call option at time
t, then by definition its final value is

1 S
Ca(T) = max | 0, - ;S(tj) K|,

which is the difference between the average value of the
underlying asset sampled atpoints equally spaced over
the period(7y,T) and the strike price<, provided that
this average exceeds, otherwise the option has no value.

To model the evolution of the underlying asset, we
use the model of Black and Scholes (1973), which says
that

dS(t) = pS(t)dt + o S(t)dB(t),

where 1 is the mean return parameter of the asseis

its volatility parameter and3(-) is a standard Brownian
motion. This model involves other assumptions about the
market implying the existence of a unique risk-neutral
measure under which

dS(t) = rS(t)dt + oS(t)dB(t),

wherer is the risk-free interest rate arfél(-) is a standard
Brownian motion under the risk-neutral measure. The
value at time O of the asian option is then given by

(6)

whereE(-) is the expectation under the risk-neutral measure.
Even for this simple model, one cannot compute
C4(0) analytically (this would amount to compute the
distribution of a sum of lognormal random variables). So
one would rely on MC or QMC methods to estimate the

CA(0) = E(e7"TCA(T)),
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s-dimensional integral (6). To compute each replicate of
C4(T), a pointx € [0,1)* is transformed into a vector of
normal random variables which are used to generate the
values of the Brownian motion at the observation points
t;. The paths ofS(-) are simulated as follows:

S(t;) = S(0)exp ((r —0.50°)t; + aé(tj))

for j = 1,...,s where B(t) ~ N(0,t?), a Gaussian
random variable with meafi and variance.

In practice, it is the option on the arithmetic average
that is sold, but the one on the geometric average can
be used as a control variable, as explained in Kemna and
Vorst (1990). The final value of the asian call option on

the geometric average is defined as
1/s

Ca(T) =max | 0, | [ S) - K
j=1

This option can be priced exactly for the Black-Scholes
model (a product of lognormal random variables is also a
lognormal). The geometric average is always smaller than
the arithmetic average, but these two quantities are highly
correlated and so are the corresponding option prices. As
shown in the next section, this control variable brings
a dramatic variance reduction. We also use antithetic
variates, which give us a small additional reduction
of the variance. For more on variance reduction, see,
e.g., L'Ecuyer (1994) and other references given there.
Lemieux (1996) studies and compares several approaches
for evaluating asian options under the Black-Scholes model,
including simulation with the variance reduction techniques
described above, and other approximation methods.

4 NUMERICAL RESULTS

4.1 Impact of Variance Reduction Techniques

The following results compare lattice rules with MC
simulations on the asian option problem, with and without
the control variable and antithetic variates. Four different
estimators are calculated for both MC and the lattice rules:
A naive estimator (naive), one with antithetic variates
(ant.), one with the control variable (c.v.), and one that
combines these two variance reduction methods (ant. c.v.).
The last 8 columns of Tables 1 and 2 correspond to these
8 cases.

Three values of the strike pric& are considered
in these tables. The higher the strike price, the smaller
the probability of a nonzero final value, which means
(intuitively) a larger relative error. In the tableg, and
¢ are the empirical mean and standard error as defined
in (4) and (5). For the MC estimators, the number in
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parentheses undéris 52/52, wheres? is the value o2
for the naive estimator. For the lattice rule estimators, this
number in parentheses gives the ratio of their estimated
variance 52 to that of thecorrespondingMC estimator

The precision of the estimatord can be assessed
by constructing confidence intervals (C.l.'s) for These
intervals are not given in the tables, but their typical sizes
is well illustrated by the following examples. In Table

(which uses the same variance reduction strategy). The 1, with K = 100 and the naive estimator, the 99% C.I.'s

next line in the tables gives the CPU time in seconds to
perform all themN simulations runs and compute the

estimators. The line labelled “eff.” gives the (estimated)
efficiencyof the estimator, which is defined as the inverse
of the product of the estimated variance by the CPU time.

The numbers in parentheses under the efficiency values

provide ratios similar to those given for the variance three
lines above, but for the efficiency instead ®f.

For the examples considered in this paper, the risk-free
rate and the volatility in the Black-Scholes model are fixed
to r =1In1.09 and o = 0.2. We also takeS(0) = 100,

T = 120 days andm = 100. The length of the sampling
period, T' — Ty, which is also equal to the numbaer of
dimensions, is 10 in Table 1 and 120 in Table 2. The
value of N, which is the number of points as well as the
modulus of the corresponding LCG, and its multipligr
are given at the top of each table.

In Table 1, we see that the control variable increases
the efficiency by large factors (arount)®). When no
other variance reduction technique is used, the lattice rule
estimator is more efficient than the MC estimator by a

are (0.0122,0.0123) for MC and (0.0057,0.0082) for the
lattice rules. For the MC method, the variance estimator
is more accurate because it has more degrees of freedom:
MC makesm N independent runs, whereas with the lattice
rules we have onlyn independent groups of runs.

In the same scope, one can construct C.l's for the
variance ratios, to test whether these ratiosségaificantly
different from 1. Form = 100 (i.e. for the lattice rules),
the variance ratios given in the line belodw in the
tables have to be smaller than 0.699 for the ratios to be
significative at the 99% level. This is the case for all 12
entries in Table 1, and for 8 entries in Table 2.

4.2 Comparison With (t, s)-Sequences

We now compare MC with three types of QMC point
sets: The lattice rules, and point sets taken from Sobol
and generalized Faure (GFaure) sequences. The latter
point sets were obtained using the software FINDER of
Papageorgiou and Traub (1996), Paskov and Traub (1995).
In all cases, we use both the antithetic variates and the

factor as |arge as 500 in one case and at least 100 in control variable. For the MC method, we use the generator
all cases. Even when both variance reduction techniques MRG32k5a of L'Ecuyer (1998a). Ratios for the variance

are combined, lattice rules still provide estimators at least
3 times more efficient than the MC estimators. Variance
reduction techniques “even” the integrand. For this new
integrand, the lattice rules are still doing significantly better
than MC.

Table 2 gives the results of a higher-dimensional
problem, withs = 120, and a smaller number of points,
N = 509. With these parameters, the lattice rules provide
less improvement than in Table 1, but they are still more
efficient than the MC methods.

The control variable does not work as well as in Table
1, but still gives estimators significantly more efficient than
the naive ones, by factors aroum@®. Increasings means
that we sampleS(-) over a longer periodTy, 7). Hence,
the probability of observing abnormal prices is greater and

and the efficiency are given w.r.t. the MC estimator.

To randomize the Sobol and GFaure point sets (for
error estimation), we use the same random shift method as
for the lattice rules. Shifting randomly @, m, s)-net does
not preserve the net property, but ffe £2, it produces
an unbiased estimator with a variance in the order of
N~2(log N)?¢, as shown in Tuffin (1996): This is the
same order of convergence as #wambled neestimator
proposed by Owen (1995), which gives another way to
randomize(t, m, s)-nets.

For the Sobol method, we use the smallest power
of two N greater than the number of point¥ used
by the three other methods, because for Sobol sequences
it is better to takeN as a power of two. It is often
recommended to skip a certain number of points at the
beginning of a(t, s)-sequence (Fox 1986; Bratley, Fox,

this increases the difference between the two averages, sognd Niederreiter 1992). We skipped the fist points

the correlation betweeti's (T") and C(T) is reduced.

In both tables, the variance ratios usually decrease
with K. Notice that f is more irregular for largerk
(f(x) = 0 for a large set of values ot € [0,1)° and
then increases abruptly). Also, the correlation between
C4(T) and C¢(T) decreases, and this goes with a larger
probability of having the pathological case 6% (7") > 0
andCq(T) = 0.
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for Sobol and the first 200000 points for GFaure (as did
Acworth, Broadie, and Glasserman 1997).

In Table 3 (wheres = 10), the lattice rule estimators
lose to both Sobol and GFaure in terms of efficiency, but
in Table 4 (wheres = 60), the situation is reversed.

In another experiment withy = 90 and N = 509,
not shown here, the lattice rules still win over MC by
non-negligible factors, whereas Sobol and GFaure are
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Table 1: s =T — 71 = 10 days. N = 4093, a = 2009.

Monte Carlo Lattice Rule
K ] naive | ant. [ cv. [ ant. c.v. naive [ ant. [ cv. [ ant. c.v.
i 13.001 | 13.004 13.008 13.008 13.008 13.008 13.008 13.008
o 1.60e-2 | 3.54e-3 1.29e-5 1.18e-5 7.39e-4 5.21e-4 8.00e-6 6.60e-6
(1.00) | (4.89e-2)| (6.49e-7) | (5.44e-7) | (2.13e-3)| (2.16e-2)| (3.85e-1)| (3.12e-1)
90 cpu || 47.2 62.4 51.7 69.8 38.0 53.2 42.5 60.8

eff. | 8.27e+1| 1.28e+3 | 1.16e+8 | 1.03e+8 4.82e+4 | 6.93e+4 | 3.67e+8 | 3.78e+8
(1.00) | (15.5) (1410000) | (1240000) || (582) (54.3) (3.16) | (3.68)

[ |[5.864 | 5865 | 5863 5.863 5.863 | 5.863 5.863 5.863
& || 1.23e-2 | 5.79e-3 | 1.18e-5 8.56e-6 6.76e-4 | 5.50e-4 | 6.11e-6 | 4.47e-6
(1.00) | (2.23e-1)| (9.25e-7) | (4.87e-7) | (3.03e-3)| (9.02e-3)| (2.68e-1)| (2.73e-1)

100 | cpu |[ 471 625 51.7 69.9 38.0 53.2 426 60.7

eff. 1.41e+2| 4.77e+2 | 1.39e+8 1.95e+8 5.76e+4 | 6.21e+4 | 6.28e+8 | 8.24e+8
(1.00) (3.38) (986000) (1380000) || (408) (130) (4.52) (4.22)

i | 1.912 | 1.913 1.917 1.917 1.917 1.917 1.917 1.917
& || 7.27e-3 | 4.67e-3 | 8.96e-6 6.16e-6 7.39e-4 | 5.71e-4 | 6.16e-6 | 3.62e-6
(1.00) | (4.13e-1)| (1.52e-6) | (7.18e-7) | (1.03e-2)| (1.49e-2)| (4.73e-1)| (3.45e-1)

110 || cpu || 47.1 62.5 51.8 69.9 38.1 53.2 42.5 60.6

eff. || 4.02e+2| 7.34e+2 | 2.41e+8 3.77e+8 4.80e+4 | 5.77e+4 | 6.20e+8 | 1.26e+8
(2.00) (1.83) (599000) (939000) (120) (78.7) (2.58) (3.34)

Table 2: s =T — T; = 120 days. N = 509, a = 35.

Monte Carlo Lattice Rule

K | naive | ant. [ cw. [ ant. c.v. || naive [ ant. [ cw. [ ant. c.v.

[ || 11.237 | 11.209 | 11.207 | 11.207 || 11.209 | 11.208 | 11.208 | 11.208
6 | 2.86e-2 | 3.28¢-3 | 4.00e-4 | 3.29e-4 || 4.34e-3 | 2.96e-3 | 3.09e-4 | 2.64e-4
(1.00) | (1.32e-2)| (1.96e-4)| (1.33e-4)|| (2.30e-2)| (8.10e-1)| (5.95e-1)| (6.43e-1)
90 |[cpu || 70.1 97.4 70.9 925 55.6 80.4 56.5 785
eff. || 1.74e+1| 9.52e+2 | 8.80e+4 | 9.97e+4 || 9.54e+2 | 1.42e+3 | 1.85e+5 | 1.83e+5
(1.00) | (54.6) | (5050) | (5720) || (54.8) | (1.50) | (2.11) | (1.83)

[ | 3.368 | 3.365 | 3.368 | 3.368 3378 | 3.376 | 3.367 | 3.368
& || 1.99e-2 | 9.40e-3 | 3.16e-4 | 2.33e-4 || 8.44e-3 | 8.38e-3 | 2.32e-4 | 1.83e-4
(1.00) | (2.23e-1)| (2.52e-4)| (1.36e-4)| (1.79e-1)| (7.94e-1)| (5.39-1)| (6.20e-1)
100 || cpu [ 70.1 97.8 70.9 92.4 55.6 777 56.5 78.2
eff. || 3.59e+1| 1.16e+2 | 1.41e+5 | 2.00e+5 || 2.53e+2 | 1.83e+2 | 3.28e+5 | 3.81e+5
(1.00) | (3.22) | (3920) | (5560) | (7.03) | (1.58) | (2.33) | (1.91)

I 0.394 0.386 0.386 0.386 0.387 0.387 0.386 0.386

o 6.92e-3 | 4.66e-3 | 2.55e-4 | 1.79e-4 5.04e-3 | 3.89e-3 | 2.47e-4 | 1.77e-4
(1.00) (4.54e-1)| (1.36e-3)| (6.72e-4)|| (5.30e-1)| (6.96e-1)| (9.40e-1)| (9.75e-1)
110 || cpu || 70.1 97.7 70.9 92.7 55.6 77.7 56.5 77.9

eff. || 2.98e+2| 4.71e+2 | 2.17e+5 | 3.35e+5 || 7.08e+2 | 8.52e+2 | 2.89e+5 | 4.09e+5
(1.00) (1.58) (729) (1130) (2.38) (1.81) (1.34) (1.22)
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Table 3: s =10, N = 4093, a = 209. Table 4: s = 60, N = 4093, a = 209.
[ K] [ MC | LR | Sobol | GFaure || I K ] [ MC [ LR | Sobol | GFaure]|
m 13.008 | 13.008 | 13.008 | 13.008 n 12.179 | 12.179 | 12.179 | 12.179
o 1.18e-5| 6.07e-6| 4.30e-6| 4.49¢e-6 ol 6.92e-5| 3.92e-5| 5.83e-5| 4.46e-5
(1.00) (0.263) | (0.132) | (0.144) (2.00) (0.321) | (0.710) | (0.414)
90 cpu || 192.0 185.0 183.0 218.0 90 cpu || 963.0 922.0 905.0 1039.0
el | 3718.1 | 14652 | 29559 | 22718 et 1217 | 705 |[325 | 485
(1.00) | (3.94) | (7.95) | (6.11) (1.00) | (3.25) | (1.50) | (2.24)
[ 5.863 5.863 5.863 5.863 i 4.826 4.826 4.826 4.826
o 8.61e-6| 4.35e-6| 3.42e-6| 4.03e-6 o 5.04e-5| 2.77e-5| 4.22e-5| 3.50e-5
(1.00) | (0.255) | (0.158) | (0.219) (1.00) | (0.301) | (0.699) | (0.481)
100 || cpu || 191.0 184.0 184.0 218.0 100 || cpu || 963.0 921.0 905.0 1055.0
%f[{ 7068.3 | 28727 46476 28237 %f[; 40.8 141.7 62.2 77.4
(1.00) | (4.06) | (6.58) | (4.00) (1.00) | (3.47) | (1.52) | (1.90)
m 1.917 1.917 1.917 1.917 m 1.192 1.192 1.192 1.192
o 6.18e-6| 3.45e-6| 2.88e-6| 2.74e-6 o 3.75e-5| 2.48e-5| 3.07e-5| 2.70e-5
(1.00) | (0.312) | (0.217) | (0.197) (1.000) | (0.437) | (0.671) | (0.520)
110 || cpu || 190.0 185.0 182.0 219.0 110 || cpu || 964.0 918.0 904.0 1051.0
% 13765 45382 66319 60682 %r[; 73.7 177.1 117.2 130.0
(1.00) | (3.30) | (4.82) | (4.41) (1.00) | (2.40) | (1.59) | (1.77)
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