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ABSTRACT

In this paper, we investigate the problem of deriving p
cision estimates for bootstrap quantities within param
families. Efron’s [1992] jackknife-after-bootstrap is a s
ple approach that only uses the information in the orig
bootstrap samples via the importance sampling techn
with no further resampling required. This method
be applied to many Monte Carlo experiments, espec
to the parametric input modeling problems. Varia
analysis of the parametric jackknife-after-bootstrap is
cussed. Under some reasonable conditions, the param
jackknife-after-bootstrap method is as good as the
jackknife method. A generalized parametric jackkn
after-bootstrap method is introduced.

1 INTRODUCTION

Monte Carlo simulation is a powerful method for stu
ing complex real-world systems when models of th
systems are virtually impossible to solve mathematic
The bootstrap method is a computer-based Monte C
technique that has become very popular in recent y
for estimating standard errors, confidence intervals, bi
and prediction errors. But the parametric bootstrap me
has received less attention in both theory and practic
Monte Carlo simulation. The number of applications of
parametric bootstrap technique in Monte Carlo simula
is limited. Cheng [1995] points out the importance
parametric bootstrap which has been playing an impo
role in parametric input modeling problems. Many Mo
Carlo experiments can be considered as an applicatio
the parametric bootstrap. Sometimes, people just d
realize that they are using parametric bootstrap.

As with any estimated quantities, measures of prec
for bootstrap estimates are often desirable or required
assess the accuracy of the variation for the simulation
the first stage requires the second stage of simula
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Bootstrap-after-bootstrap, true jackknife, and some ot
methods are often used to deal with this problem. B
all of them need further samples. Sometimes the involv
computation can become prohibitive, as Nelson [199
points out that bootstrap methods are computationa
expensive. The jackknife-after-bootstrap (JAB) propos
by Efron [1992] is in an attempt to provide a solution
this problem. It uses only the information from the origin
bootstrap samples without further resampling. Compar
with bootstrap-after-bootstrap, JAB usually requires 10
1000 times less computation (Efron [1992]).

The parametric version of JAB is an application of th
importance sampling method (Hammersley and Handsco
[1964]). It is an efficient Monte Carlo simulation method
Only the information from the first stage bootstrap samp
is used to construct jackknife estimates of the second le
accuracy of the variation-estimate. No further samp
are required. In this paper, we mainly study the varian
properties of the parametric JAB comparing with the tr
jackknife method. In Section 2, we review the paramet
Bootstrap and jackknife techniques. In Section 3, w
outline the parametric version of JAB. In Section 4, w
study the variance properties of the parametric JAB.
Section 5, we introduce a generalized version of parame
JAB. In Section 6, we discuss our conclusions. Detail
discussions of non-parametric JAB can be found in Efr
[1992], Efron and Tibshirani [1993], Tibshirani [1992]
DiCiccio and Martin [1992], and Wang, Rao, and Sha
[1997].

2 PARAMETRIC BOOTSTRAP AND JACKKNIFE

We briefly review the parametric bootstrap and jackkn
methods (see Efron [1982], Efron and Tibshirani [1993
Hall [1992] and Shao and Tu [1995] for more details).

Suppose thatF = {fη(x), η ∈ N} is a parametric
family of density functions indexed by a parametric vect
η and the observed datax = (x1, . . . , xn) is an independent
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and identically distributed (i.i.d.) sample from a memb
of F ,

fη
i.i.d.−→ (x1, . . . , xn) = x.

Let fη(x) =
∏n

j=1 fη(xj) indicate the density of whole
sample. The parameter spaceN is a subset ofk-
dimensional Euclidean space.

Given x, we estimateη according to some rule
η̂ = η̂(x), such as the maximum likelihood estimato
method. A parametric bootstrap sample is an i.i.d. sam
from fη̂,

fη̂
i.i.d.−→ (x∗

1, . . . , x
∗
n) = x∗. (1)

Suppose thats(x) is a real-valued statistic of interest
Then s∗ = s(x∗), the statistic of interest evaluated fo
data setx∗, is a bootstrap replication ofs. A typical
bootstrap analysis consists of independently drawing a la
number B of independent bootstrap samples, evaluati
the bootstrap replicatess∗b = s(x∗b) for b = 1, . . . , B
and using summary statistics of thes∗b values to assess
the accuracy of the original statistics(x). The bootstrap
estimate of standard error fors is

ŝeB{s} =

[
B∑

b=1

(s∗b − s∗.)2

B − 1

]1/2

, (2)

wheres∗. =
∑B

b=1 s∗b/B.
Let x(i) indicate the data set remaining after deletio

of the ith point,

x(i) = (x1, . . . , xi−1, xi+1, . . . , xn).

Let s(i) = s(x(i)) present the corresponding deleted poi
value of the statistic of interest, and letη̂(i) = η̂(x(i)) be
the estimate ofη based on the deleted point date setx(i).
The jackknife estimate for the standard error ofs(x) is

ŝejack{s} =

[
n − 1

n

n∑
i=1

(s(i) − s())2
]1/2

, (3)

wheres() =
∑n

i=1 s(i)/n.

3 PARAMETRIC JACKKNIFE-AFTER-
BOOTSTRAP

The method of JAB was proposed by Efron [1992
Suppose we have drawnB bootstrap samples and calculate
ŝeB ≡ ŝeB{s}, a bootstrap estimate of the standard error
s(x). We would like to have a measure of the uncertain
in ŝeB . The JAB method provides a way of estimatin
se(ŝeB) using only information in ourB bootstrap samples.
The true parametric jackknife estimate of standard error
ŝeB involves two steps. In the first step, fori = 1, . . . , n,
588
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let η̂(i) = η̂(x(i)) be the estimate ofη based on the
deleted point date setx(i). Under deleted point bootstrap
sampling, we draw an i.i.d. sample fromfη̂(i) ,

fη̂(i)

i.i.d.−→ (x∗
1, . . . , x

∗
n) = x∗ (4)

and recomputeŝeB and called the result̂seB(i). In the
second step, we define

ŝejack(ŝeB) =

[
n − 1

n

n∑
i=1

(ŝeB(i) − ŝeB(.))2
]1/2

(5)

where ŝeB(.) =
∑n

i=1 ŝeB(i)/n. Here ŝejack(ŝeB) is the
true parametric jackknife estimate of standard error ofŝeB .

The bootstrap density ratio

Ri(x∗) =
fη̂(i)(x

∗)
fη̂(x∗)

is assumed to be finite with probability 1 when sampling
from fη̂(i)(x

∗). Then we have a standard importance
sampling result from Lemma 2 of Efron [1992]. The
following two expectations ofs(x∗)Ri(x∗) and s(x∗) are
the same under the two different probability measures.

Theorem 3.1 For i = 1, . . . , n,

Efη̂
[s(x∗)Ri(x∗)] = Efη̂(i)

[s(x∗)] .

Proof: For i = 1, . . . , n,

Efη̂
[s(x∗)Ri(x∗)]

=
∫

· · ·
∫

s(x∗
1, . . . , x

∗
n)

n∏
j=1

fη̂(i)(x
∗
j )

fη̂(x∗
j )

×
n∏

j=1

fη̂(x∗
j ) dx∗

1 · · · dx∗
n

=
∫

· · ·
∫

s(x∗
1, . . . , x

∗
n)

n∏
j=1

fη̂(i)(x
∗
j ) dx∗

1 · · · dx∗
n

= Efη̂(i)
[s(x∗)] .

2

Based on the suggestion of Theorem 3.1, we reuse th
original B bootstrap samples without further resampling
from fη̂(i) (i = 1, . . . , n). Define

s∗b
(i) = s(x∗b)Ri(x∗b), b = 1, . . . , B, i = 1, . . . , n

and

s̃eB(i) =

[
B∑

b=1

(s∗b
(i) − s∗.

(i))
2

B − 1

]1/2

, (6)



A Parametric Version of Jackknife-After-Bootstrap

d

f

-
g
s
al
-
m

e
n
g
e
le
t
d
g

s
e
f

ce
ed
n
d

where s∗.
(i) =

∑B
b=1 s∗b

(i)/B. We use s̃eB(i) to replace
ŝeB(i) in Equation 5. Then the parametric JAB is define
as

ŝejab(ŝeB) =

[
n − 1

n

n∑
i=1

(
s̃eB(i) − s̃eB(.)

)2

]1/2

(7)

where s̃eB(.) =
∑n

i=1 ŝeB(i)/n.

4 VARIANCE ANALYSIS

Importance sampling has long been recognized as a use
technique for increasing the efficiency of Monte Carlo
simulation. Hammersley and Handscomb [1964], Sieg
mund [1976], Wilson (1984), Therneau, [1983], Hesterber
[1988], Johns [1988], Glynn and Iglehart [1989] discus
different applications of importance sampling. The usu
situation where importance sampling may be helpful in
volves estimating the expected value of some rando
variable with known distribution, by simulation. The
simulation size required for a given accuracy may b
substantially reduced by sampling from a suitably chose
alternative distribution and correcting the estimate usin
the appropriate likelihood ratio. The object in importanc
sampling is to concentrate the distribution of the samp
point in the parts of the interval that are of the mos
importance instead of spreading them out evenly. Goo
results in importance sampling require good samplin
distributions. A bad sampling distribution can result in
variance increase.

For the parametric JAB, importance sampling i
used not as a classical variance reduction techniqu
Instead, it is used to construct jackknife estimates o
the second level accuracy of variation. Therefore, varian
reductions in importance sampling are not guarante
even though the parametric JAB is an efficient simulatio
method. Variance may decrease or increase. It depen
on the given parametric family of density functions
F = {fη(x), η ∈ N}, the observed datax = (x1, · · · , xn)
which is an i.i.d. sample from some member ofF , and
the rule for estimatingη.

The following lemma is very useful for variance
analysis of the parametric JAB.

Lemma 4.1 For i = 1, . . . , n, if

lim
n→∞ η̂ = η a.s.

and fη̂(x) is continuous inη, then

lim
n→∞ η̂(i) = η a.s.

and
lim

n→∞ Ri(x) = 1 a.s. .
589
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Proof: For i = 1, . . . , n, if

lim
n→∞ η̂ = η a.s.

then
lim

n→∞ η̂(i) = η a.s.

Sincefη̂(x) is continuous inη, by the Corollary 2 (Chow
and Teicher [1978], page 67), we have

lim
n→∞ fη̂ = fη(x) a.s.

and
lim

n→∞ fη̂(i) = fη(x) a.s.

Therefore

lim
n→∞ Ri(x) = lim

n→∞
fη̂(i)(x)
fη̂(x)

=
limn→∞ fη̂(i)(x)
limn→∞ fη̂(x)

=
fη(x)
fη(x)

= 1 a.s.

2

For i = 1, . . . , n, we define the difference in between
the two variances ofs(x∗)Ri(x∗) and s(x∗) under two
different probability measures, respectively,

Di = Varfη̂
[s(x∗)Ri(x∗)] − Varfη̂(i)

[s(x∗)] .

Based on the result of Theorem 3.1, we define

µi = Efη̂
[s(x∗)Ri(x∗)] = Efη̂(i)

[s(x∗)] .

We are now introducing the main results for variance
analysis of the parametric JAB.

Theorem 4.1 For i = 1, . . . , n,

Di = Efη̂

[
s2(x∗)Ri(x∗) (Ri(x∗) − 1)

]
.

Proof: For i = 1, . . . , n,

Di = Varfη̂
[s(x∗)Ri(x∗)] − Varfη̂(i)

[s(x∗)]

= Efη̂

[
s2(x∗)R2

i (x
∗)

] − µ2
i

−
(
Efη̂(i)

[
s2(x∗)

] − µ2
i

)
= Efη̂

[
s2(x∗)R2

i (x
∗)

] − Efη̂(i)

[
s2(x∗)

]
= Efη̂

[
s2(x∗)R2

i (x
∗)

] − Efη̂

[
s2(x∗)Ri(x∗)

]
= Efη̂

[
s2(x∗)Ri(x∗) (Ri(x∗) − 1)

]
2

In Theorem 4.1, boths2(x∗) andRi(x∗) are nonneg-
ative. We hope thatDi is as small as possible. HereDi

depends on the expectation and the variance ofRi(x∗)−1.
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Theorem 4.2 For i = 1, . . . , n,

Efη̂
[Ri(x∗) − 1] = 0.

Proof: For i = 1, . . . , n,

Efη̂
[Ri(x∗) − 1] = Efη̂

Ri(x∗) − 1

=
∫

· · ·
∫ n∏

j=1

fη̂(i)(x
∗
j )

fη̂(x∗
j )

n∏
j=1

fη̂(x∗
j ) dx∗

1 · · · dx∗
n − 1

=
∫

· · ·
∫ n∏

j=1

fη̂(i)(x
∗
j ) dx∗

1 · · · dx∗
n − 1 = 0.

2

Theorem 4.1 indicates that the factorRi(x∗) − 1, in
the average sense, is zero. But we still don’t know ho
good theDi is and what the variance ofRi(x∗) − 1 is.

Theorem 4.3 For i = 1, . . . , n,

Varfη̂
[Ri(x∗) − 1] = Efη̂(i)

Ri(x∗) − 1.

Proof: For i = 1, . . . , n,

Varfη̂
[Ri(x∗) − 1] = Efη̂

[Ri(x∗) − 1]2

= Efη̂
R2

i (x
∗) − 1

=
∫

· · ·
∫

R2
i (x

∗)
n∏

j=1

fη̂(x∗
j ) dx∗

1 · · · dx∗
n − 1

=
∫

· · ·
∫

Ri(x∗)
n∏

j=1

fη̂(i)(x
∗
j )

fη̂(x∗
j )

×
n∏

j=1

fη̂(x∗
j ) dx∗

1 · · · dx∗
n − 1

=
∫

· · ·
∫

Ri(x∗)
n∏

j=1

fη̂(i)(x
∗
j ) dx∗

1 · · · dx∗
n − 1

= Efη̂(i)
Ri(x∗) − 1.

2

If the sample sizen of the observed data is large
enough and̂η is a consistent estimate ofη, from Lemma
4.1, fη̂ is almost as the same asfη̂(i) . In other words,
the two densities are almost the same in the same den
family if the density family is insensitive with respect to
the parameterη. From Theorem 4.3,Efη̂(i)

Ri(x∗) − 1 is

almost zero. It indicates that the variance ofRi(x∗) − 1
is almost zero. From both Theorems 4.2 and 4.3, t
expectation and variance ofRi(x∗) − 1 are almost zeros.
Therefore, from Theorem 4.1,Di is almost zero.

As another view ofDi, we consider the ratio of the
two variances ofs(x∗)Ri(x∗) and s(x∗).
590
ity

e

Theorem 4.4 For i = 1, . . . , n,

Varfη̂
[s(x∗)Ri(x∗)]

Varfη̂(i)
[s(x∗)]

=
Efη̂(i)

[
s2(x∗)Ri(x∗)

] − µi

Efη̂
[s2(x∗)Ri(x∗)] − µi

.

Proof: For i = 1, . . . , n,

Varfη̂
[s(x∗)Ri(x∗)]

Varfη̂(i)
[s(x∗)]

=
Efη̂

[
s2(x∗)R2

i (x
∗)

] − µi

Efη̂(i)
[s2(x∗)] − µi

=

∫ · · · ∫ s2(x∗)
∏n

j=1

f2
η̂(i)

(x∗
j )

f2
η̂
(x∗

j
)

∏n
j=1 fη̂(x∗

j )∫ · · · ∫ s2(x∗)
∏n

j=1 fη̂(i)(x
∗
j )

×dx∗
1 · · · dx∗

n − µi

×dx∗
1 · · · dx∗

n − µi

=

∫ · · · ∫ s2(x∗)
∏n

j=1
fη̂(i)

(x∗
j )

fη̂(x∗
j
)

∏n
j=1 fη̂(i)(x

∗
j )∫ · · · ∫ s2(x∗)

∏n
j=1

fη̂(i)
(x∗

j
)

fη̂(x∗
j
)

∏n
j=1 fη̂(x∗

j )

×dx∗
1 · · · dx∗

n − µi

×dx∗
1 · · · dx∗

n − µi

=
Efη̂(i)

[
s2(x∗)Ri(x∗)

] − µi

Efη̂
[s2(x∗)Ri(x∗)] − µi

.

2

Similar to the discussion of Theorem 4.3, we assu
that the sample sizen of the observed data is large enoug
and η̂ is a consistent estimate ofη. From Theorem 4.4,
the ratio of the two variances ofs(x∗)Ri(x∗) and s(x∗)
is almost 1. In other words, The variance ofs(x∗)Ri(x∗)
and the variance ofs(x∗) are nearly identical.

Theoretically speaking, the parametric JAB should
as good as the true jackknife method under the two ba
conditions, which are not difficult to meet in general.
practice, the sample sizen of the observed data is larg
enough whenn ≥ 30. To find a consistent estimatêη
of η is not difficult either. In many cases, for exampl
the maximum likelihood estimator method will solve th
problem.

5 GENERALIZATION

In this section, we introduce a generalized version of
parametric JAB, which is more applicable to the parame
input modeling problems. In both formulas 1 and 4
the parametric JAB, the numbern is required to be as
the same as the size of the observed data. A genera
parametric JAB is to relax this condition. We allown to
be any numberm, which may not be the same numb
as n. Both formulas 1 and 4 become

fη̂
i.i.d.−→ (x∗

1, . . . , x
∗
m) = x∗
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and
fη̂(i)

i.i.d.−→ (x∗
1, . . . , x

∗
m) = x∗.

For the generalized parametric JAB, all discussions a
results of previous sections stay the same.

6 CONCLUSIONS

The parametric JAB method, a clever idea, introduces
simple way of estimating the standard error of the bootstr
estimates within parametric families, without the need
do a second level of bootstrap replication. It is an efficie
method. Under some reasonable conditions, the quality
the parametric JAB is almost as good as the true jackkn
method. The bootstrap-after-bootstrap and true jackkn
methods are too computationally intensive for routine us

As pointed out by Cheng [1995], it should be realize
that bootstrapping methods are an alternative to, rather th
a replacement for, more standard statistical procedures.
parametric JAB method can be applied to many Mon
Carlo experiments, especially, to the parametric inp
modeling problems.
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