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ABSTRACT Bootstrap-after-bootstrap, true jackknife, and some other
methods are often used to deal with this problem. But
In this paper, we investigate the problem of deriving pre- all of them need further samples. Sometimes the involved
cision estimates for bootstrap quantities within parametric computation can become prohibitive, as Nelson [1990]
families. Efron’s [1992] jackknife-after-bootstrap is a sim-  points out that bootstrap methods are computationally
ple approach that only uses the information in the original expensive. The jackknife-after-bootstrap (JAB) proposed
bootstrap samples via the importance sampling technique, by Efron [1992] is in an attempt to provide a solution to
with no further resampling required. This method can this problem. It uses only the information from the original
be applied to many Monte Carlo experiments, especially, bootstrap samples without further resampling. Comparing
to the parametric input modeling problems. Variance with bootstrap-after-bootstrap, JAB usually requires 100—
analysis of the parametric jackknife-after-bootstrap is dis- 1000 times less computation (Efron [1992]).
cussed. Under some reasonable conditions, the parametric ~ The parametric version of JAB is an application of the
jackknife-after-bootstrap method is as good as the true importance sampling method (Hammersley and Handscomb
jackknife method. A generalized parametric jackknife- [1964]). It is an efficient Monte Carlo simulation method.

after-bootstrap method is introduced. Only the information from the first stage bootstrap samples
is used to construct jackknife estimates of the second level
1 INTRODUCTION accuracy of the variation-estimate. No further samples

are required. In this paper, we mainly study the variance

Monte Carlo simulation is a powerful method for study- properties of the parametric JAB comparing with the true
ing complex real-world systems when models of these jackknife method. In Section 2, we review the parametric
systems are virtually impossible to solve mathematically. Bootstrap and jackknife techniques. In Section 3, we
The bootstrap method is a computer-based Monte Carlo outline the parametric version of JAB. In Section 4, we
technique that has become very popular in recent years study the variance properties of the parametric JAB. In
for estimating standard errors, confidence intervals, biases, Section 5, we introduce a generalized version of parametric
and prediction errors. But the parametric bootstrap method JAB. In Section 6, we discuss our conclusions. Detailed
has received less attention in both theory and practice of discussions of non-parametric JAB can be found in Efron
Monte Carlo simulation. The number of applications of the [1992], Efron and Tibshirani [1993], Tibshirani [1992],
parametric bootstrap technique in Monte Carlo simulation DiCiccio and Martin [1992], and Wang, Rao, and Shao
is limited. Cheng [1995] points out the importance of [1997].
parametric bootstrap which has been playing an important
role in parametric input modeling problems. Many Monte 2 PARAMETRIC BOOTSTRAP AND JACKKNIFE
Carlo experiments can be considered as an application of
the parametric bootstrap. Sometimes, people just don't We briefly review the parametric bootstrap and jackknife
realize that they are using parametric bootstrap. methods (see Efron [1982], Efron and Tibshirani [1993],

As with any estimated quantities, measures of precision Hall [1992] and Shao and Tu [1995] for more details).
for bootstrap estimates are often desirable or required. To Suppose thatF = {f,(z),n € N} is a parametric
assess the accuracy of the variation for the simulation from family of density functions indexed by a parametric vector
the first stage requires the second stage of simulation. n and the observed data= (1, ..., z,) is an independent
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and identically distributed (i.i.d.) sample from a member let 7, = 7(x(;) be the estimate of; based on the
of F, deleted point date set(;). Under deleted point bootstrap
fa Lid (1,...,2) = x. sampling, we draw an i.i.d. sample frof,,

Let f,(x) =[[}_, fy(z;) indicate the density of whole
sample. The parameter spadé is a subset ofk-
dimensional Euclidean space.

Given x, we estimaten according to some rule
7 = 7(x), such as the maximum likelihood estimator
method. A parametric bootstrap sample is an i.i.d. sample n 1/2

11d

fﬁ(z)

and recomputesez and called the resulteg(;). In the
second step, we define

(x7,...,2}) =x" (4)

rn

from fs, » Sejack (Sep) = n-l Z(S%B(i) —sep())? (5)
fa — (z1,...,2;) =x". Q) i=1
Suppose that(x) is a real-valued statistic of interest. ~ where sep() = 31" sep(;)/n. Here sejuck(sep) is the
Then s* = s(x*), the statistic of interest evaluated for true parametric jackknife estimate of standard errafegf.
data setx*, is a bootstrap replication of. A typical The bootstrap density ratio
bootstrap analysis consists of independently drawing a large
number B of independent bootstrap samples, evaluating . T (X¥)
the bootstrap replicates*® = s(x**) for b = 1,...,B Rilx) = fa(x*)
and using summary statistics of th&’ values to assess
the accuracy of the original statistidx). The bootstrap is assumed to be finite with probability 1 when sampling
estimate of standard error faris from fﬁ(i)(x*). Then we have a standard importance
sampling result from Lemma 2 of Efron [1992]. The
B (g%b _ g2 1/2 following two expectations of(x*)R;(x*) and s(x*) are
sep{s} =) B_ll ; 2) the same under the two different probability measures.
b=1

B Theorem 3.1 Fori=1,...,n
wheres* =3"," | s**/B.

Let x;) indicate the data set remaining after deletion E;, [s(x*)Ri(x*)] = Ef, [s(x")].
of the ith pomt K (i)

Proof: Fori=1,...,n,

Let s(;y = s(x(;)) present the corresponding deleted point By [s(x") i(x7)]

value of the statistic of interest, and Igt;) = 7j(x(;)) be _ / / H fnm
the estimate of) based on the deleted point date 3@5 Lyeeesdn

The jackknife estimate for the standard errorsgk) is

X(,) = (iCl,...,$i71,$i+1,...,$n).

Lo 1/2 X H fa(@}) dat - day,
- n—
Sejack{S} = " Z(S(i) — S())2 s (3)
i=1 = / / s(xs, ..., x H fiw (x3) dai - da},
where S) = Z?:l S(i) /n
= By, s
3 PARAMETRIC JACKKNIFE-AFTER- 0

BOOTSTRAP Based on the suggestion of Theorem 3.1, we reuse the

original B bootstrap samples without further resampling

The method of JAB was proposed by Efron [1992]. from f, (i =1 n). Define
i (=1,...,n).

Suppose we have draws bootstrap samples and calculated
sep = sep{s}, a bootstrap estimate of the standard error of B A .

s(x). We would like to have a measure of the uncertainty s = sTR(T), b=1,..., B, i=1,....n
in seg. The JAB method provides a way of estimating and

se(sep) using only information in ouB bootstrap samples. B/ % . \271/2
The true parametric jackknife estimate of standard error of Sep(p = Z (S(i) B S(i)) (6)
sep involves two steps. In the first step, fo=1,...,n, ® pat B-1 ’
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where s’("z:) = Zlesz‘i”)/B. We usesep(; to replace Proof: Fori=1,...,n, if
sep(;) in Equation 5. Then the parametric JAB is defined
as lim =7 as.
1 < V2 th

. . n— - - 2 en

Sejab(05) = | = ;(SeB“) —%en()) 0 Jim ) =7 as.
wheresep() = 7, sep(/n. Since f;(z) is continuous iy, by the Corollary 2 (Chow

' h and Teicher [1978], page 67), we have

4 VARIANCE ANALYSIS lim f; = f,(z) as.

Importance sampling has long been recognized as a useful
technique for increasing the efficiency of Monte Carlo and .

simulation. Hammersley and Handscomb [1964], Sieg- nlinio Fa = falz) as.
mund [1976], Wilson (1984), Therneau, [1983], Hesterberg Therefore

[1988], Johns [1988], Glynn and Iglehart [1989] discuss

different applications of importance sampling. The usual . . Ja (@)

o . ) . lim R;(z) = lim —/=——

situation where importance sampling may be helpful in- n—o0 n—oo fs(x)

volves estimating the expected value of some random limy, oo fa (£)  fo(2)

variable with known distribution, by simulation. The = — X2 I — ) as.

. : . : . lim,, o0 f5(x) fa(x)

simulation size required for a given accuracy may be

substantially reduced by sampling from a suitably chosen O
alternative distribution and correcting the estimate using Fori=1,...,n, we define the difference in between

the appropriate likelihood ratio. The object in importance the two variances of(x*)R;(x*) and s(x*) under two
sampling is to concentrate the distribution of the sample different probability measures, respectively,
point in the parts of the interval that are of the most
importance instead of spreading them out evenly. Good D; = Vary, [s(x*)Ri(x")] — Varg, ~[s(x*)].
results in importance sampling require good sampling
distributions. A bad sampling distribution can result in Based on the result of Theorem 3.1, we define
variance increase.

For the parametric JAB, importance sampling is pi = Ep, [s(xX) Ri(x7)] = Eg; - [s(x7)] .
used not as a classical variance reduction technique. ) _ _ )
Instead, it is used to construct jackknife estimates of We are now introducing the main results for variance
the second level accuracy of variation. Therefore, variance @nalysis of the parametric JAB.
reductions in importance sampling are not guaranteed

even though the parametric JAB is an efficient simulation 1 neorem 4.1 Fori=1,....n,

method. Variance may decrease or increase. It depends % * *
; y € ; . P D; = By, [$*(x")Ry(x") (Rs(x*) — 1)] .
on the given parametric family of density functions
F ={fy(x),n € N}, the observed data = (zy,---,zn) Proof: Fori=1,...,n,
which is an i.i.d. sample from some member Bf and
the rule for estimating;. D; = Vary, [s(x")Ri(x")] — Varg, [s(x™)]

The following lemma is very useful for variance

_ 2(* 2 (¥ 2
analysis of the parametric JAB. = By, [S*RIxY)] - 1

2k 2
Lemma 4.1 Fori=1,...,n, if - (Efﬁ(i) [s%(x*)] - Nz—)
lim 7 =n as. = Ey [SQ(X*)RE(X*)} - Ef'ﬁ(i) [Sz(X*)]
i i ; = Ey [Sz(X*)R?(X*)} —Ey, [52(X*)Ri(x*)]
and f;(x) is continuous iny, then _ By [R)RO) (R — 1]

lim 7 =7 as.

n—00 O
In Theorem 4.1, both?(x*) and R;(x*) are nonneg-
. _ ative. We hope thaD; is as small as possible. Herg;
lim R;(z)=1 as. . : :
n—oo depends on the expectation and the variancB,¢k*) — 1.

and
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Theorem 4.2 Fori=1,...,n, Theorem 4.4 Fori=1,...,n
* * 2 * . * .
Eff] [Rl(X*) _ 1] =0. \/al"f77 [S(X )RZ(X )] _ Efﬁ(i) [5 (X )RZ(X )} 1223
Varg, [s()] By, [0 R ()] —
Proof: Fori=1,...,n,
Proof: Fori=1,...,n,
Ep, [Ri(x") —1] = Ef,,R-< x*) -1 Vary, [s(x*) R, (x*)]

/- / (12 ) - Vary, )

By, [s°(x") R} (x")] — i
/ /H fig (@}) dat---dzy, —1=0. Ef, ) [82(x*)] = pi .
ff,s?(x*)H;l . ’;(zzi = H?:l fn(f;)
O - f .. f82(x*) H;'L:1 fﬁ(i) (1?)

Theorem 4.1 indicates that the fact®;(x*) — 1, in dt e da — 1,
the average sense, is zero. But we still don't know how L n — Hi

good theD; is and what the variance a®;(x*) — 1 is.

xdxy - -dxk — ps
* n fn (J')
f"'fSZ(X)Hj 1 f(nz ) HJ 1fn()( 7)
n fn,
S [ s2(x) ] j=1 f(nzm*) Hg 1 fa( )

xdxy - -dx} —

Proof: Fori=1,...,n, Xdﬂs’{---dx:;—

Efﬁm [2(x*)Ri(x*)] — pa
Ey, [s(x*)Ri(x*)] — pi

Theorem 4.3 Fori=1,...,n, =

Vary, [R;(x*) — 1] = Efﬁ(i)Ri(x*) -1

w%@@%nﬂ%wwwﬁ -

= EpRA(x%) -1 D
) . Similar to the discussion of Theorem 4.3, we assume
= / /R H fala) doy---dwy, =1 that the sample size of the observed data is large enough
and 7 is a consistent estimate of From Theorem 4.4,
- Ry fn( (@5 ) the ratio of the two variances of(x*)R;(x*) and s(x*)
- f" 5 is almost 1. In other words, The variance «k*) R; (x*)
‘ and the variance of(x*) are nearly identical.
« H fola?) dat---dat — 1 Theoretically speaking, the parametric JAB should be

as good as the true jackknife method under the two basic
conditions, which are not difficult to meet in general. In
_ /”./Ri H Fa (@5) - da, —1 practice, the sample size of the obseryed data 'is large
enough whenn > 30. To find a consistent estimatg
of n is not difficult either. In many cases, for example,
the maximum likelihood estimator method will solve this
0 problem.

= By, Rix") - :

If the sample sizen of the observed data is large
enough andj is a consistent estimate of from Lemma 5 GENERALIZATION
4.1, f; is almost as the same #B.,- In other words, ) . . ) .
the two densities are almost the same in the same density!n this section, we introduce a generalized version of the
family if the density family is insensitive with respect to Parametric JAB, which is more applicable to the parametric
the parameter,. From Theorem 4.3, R;(x*) — 1 is input modellng problems. In both formu_las 1 and 4 of
! the parametric JAB, the number is required to be as

the same as the size of the observed data. A generalized
parametric JAB is to relax this condition. We allawto

be any numbem, which may not be the same number
asn. Both formulas 1 and 4 become

almost zero. It indicates that the variance Bf(x*) — 1
is almost zero. From both Theorems 4.2 and 4.3, the
expectation and variance dt;(x*) — 1 are almost zeros.
Therefore, from Theorem 4.1); is almost zero.

As another view ofD;, we consider the ratio of the -
two variances ofs(x*)R;(x*) and s(x*). I3 L (z7,...,2}) =x"

s m
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