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ABSTRACT GCTlIs have wide uses in quality control and system
reliability. For specific examples, see Chen and Schmeiser
We propose Monte Carlo algorithms to estimate the sample (1995), Patel (1986), and Odeh and Owen (1980).
size and coverage of guaranteed-coverage tolerance intervals ~ The existing literature focuses on computation of the
for nonnormal distributions. The current literature focuses tolerance factok. Most of it assumes normal distributions,
on computation of the tolerance factor, but addresses less orf-9., Wald and Wolfowitz (1946), Guttman (1970),
the sample size, coverage, and confidence, which need to béAitchison and Dunsmore (1975), Odeh and Owen (1980),
set prior to the tolerance factor. The coverage estimationand Eberhardt et al. (1989). The one-sided tolerance factor
algorithm, which always converges, is based on our proof for normal distributions is a multlple of a noncenttal
that the coverage is a quantile of an observable randomquantile (see Section 2). The two-sided factor can be
variable. The sample-size estimation algorithm, which seemscomputed by solving a nonlinear equation. Nonnormal
to converge in empirical results, is based on the generalliterature also exists. Chen and Schmeiser (1995) propose
stochastic root-finding algorithm, retrospective quantile estimation methods to compute the tolerance
approximation. Following previous sensitivity analysis for factor for nonnormal distributions.  Aitchison and
the tolerance factor, we analyze relationships among the Dunsmore (1975) and Patel (1986) also discuss different
sample size, coverage, and confidence. forms of tolerance intervals for binomial, Poisson,
exponential, and other standard populations. Guenther
(1985) provides an extensive discussion of distribution-free
1 INTRODUCTION tolerance intervals.

) ) Before computation of the tolerance factor, values of
We consider guaranteed-coverage tolerance intervals, o, gng y need to be set. The following sample-size
(GCTIs) for random product characteristiéé whose Y

distribution Fy is continuous but has unknown megan
and unknown variancer®>. Based on a random sample
{ X, v X, } from the distribution F, , a GCTI forX is Sample-size determination procedureGiven coverage

defined ad( X, S, B, wherel( X , S, R equals K - kSe) and confidenc:
for lower one-sided,of, X + kS for upper one-sided, and
(X- kSX+ k9 for two-sided_intervals (Wald and a given nominal value &

Wolfowitz,  1946), where X-= Zinzlxi /n  and Collect a real sample %....x,} and compute the
§% =31 (X = X)*/(n-1). For such intervals, a tolerance factor

practitioner can state with confidengehat the proportion k=(X-L)Ts
of the population in the random tolerance interval, based wherelL is the constant lower specification of product

determination procedure, used by a rocket manufacturer,
motivates our research.

Compute the sample sizesatisfying Equation (1) for

N

on a sample of size and a tolerance factér is at leastr. characteristics.

The four tolerance parameters—sample sizg2,3,...}, 3. Compute the coverage so that with confidencegthe

tolerance factok] R, coveragea 0(0,1), and confidence interval I( X , S,k) contains at least proportiod of

yL1(0,1) —are determined so that the population, i.e., solve the following equation for
P s { Px {XOI(X,S, B} za}=y. 1) Py s { Px {XOI(X,S,B} = a}=y. 2)
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4. If a >a, stop and return; otherwise, update and go The rest of this paper is organized as follows. In
to Step 2. Section 2, we review the related literature. In Section 3,
we propose estimation algorithms for the coverage and
Our motivation of computing the sample size and coverage sample size. The coverage estimator always converges; the
for nonnormal distributions arises from the one- sample-size estimator seems to converge in our simulation
dimensional root-finding problems in Steps 1 and 3. Step 1 results. In Section 4, we continue Chen and Schmeiser's
computes the sample simesatisfying Equation 1, givek (1995) sensitivity analysis for the sample size, coverage,
., v, and the distribution shape; Step 3 computes the and confidence.
coverage a satisfying Equation (2) (or satisfying
Equation 1), givery, n, k, and the distribution shape. A 2 | |TERATURE REVIEW
traditional approach to these two problems is to build an
extensive table of values for the four tolerance parameters_., . . . . .
This section reviews the literature on computation of the

in Equation (1) for each distribution of interest. With such four tolerance parameters. The confidence estimator and

a table, practitioners can choose values of the sample Slzetolerance factor estimator discussed here are designed for
and coverage from the table whenever they are needed. . L 9
‘nonnormal parametric distributions and the coverage

The drawbacks of this approach are that any table with aestimator is for normal distributions. The literature on
wide range of tolerance parameter values and distribution T )
sample size is different from, but related to, our problem.

types would be huge, and that interpolation—or worse, We discuss the computation of these four tolerance
extrapolation—may be used to approximate values that are . P
parameters in turn.

not listed in the table.

In this research, we are interested in black-box Monte
Carlo algorithms that compute any tolerance parameter of
Interest. That is, we consider the problem of fmdm_g aY e consider the problem of computing the confidence that
lower one-sided tolerance parameter (ejythat satisfies i _ )
the tolerance logic (Equation 1) when the other three th€ tolerance interval X - k Se) contains at least
parameters (e.gk, a, andy) and distribution shape are Proportion o of the measurements for nonnormal
known. Specifically, the problem is defined as follows. distributions.  That is, computing the probability
V:PX,S{PX {X=X-kS=a}, given n, k, a, and the
distribution shapery (). Numerical computation gfmay
(a) the shape of continuous distribution functieg ()0 not be efficient becausgis a fi+1)-dimensional integral,
except in the normal case whegeis a noncentralt

percentage point. Howeveyr,can be estimated easily by
Monte Carlo simulation. We can generate samples

2.1 Confidence

Research Problem:Given

with unknown mearu and unknown variance?,

(b) three of the following four tolerance parameters:
* sample size,

. tolerance factok {X10se- X0} oo ed Xps oo X} from  the distribution Fy
coveragey, using any arbitrary values gf and o. (Notice thaty
» confidencey. does not depend on the unknown meanor standard
Find: the other unknown tolerance parameter satisfying the deviationo.) For each sample, compute the sample mean
tolerance logic, i.e., X, and sample standard deviatiep fori = 1,...m. Then
Pes{Px{X2 X-k§ 2 a}=y. 3) y can be estimated by
The assumption of known distribution shape means that all m
standardized moments are known but the mean or variance y=3% yi/m, (4)

is unknown. When the real data do not adequately fit any

standard distributions (e.g. exponential), practitioners can Where

define the distribution shape through a simulation routine _

that can generate observations whenever needed. In this _H1 if Py {X=xi -ks}za
paper, we focus on estimation algorithms for lower one- P EO otherwise

sided GCTIs. The proposed methods in Section 3 can be

modified easily for upper one-sided GCTIs and extended It is easy to show that the est|mawe is unbiased with
for two-sided GCTls. Furthermore, we propose algorithms variance/@-y) /m.

only for the sample size and the coverage. The tolerance

factork can be estimated by the quantile estimation method

proposed in Chen and Schmeiser (1995). Furthermore,

estimating the confidencgis straightforward (Schmeiser,

1990). We review both in Section 2.
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2.2 Tolerance Factor

Chen and Schmeiser (1995) propose quantile estimation

methods for computing the tolerance factor for nonnormal
distributions, as defined earlier in the research problem.
They show that the tolerance fackosatisfying Equation (3)

is the yth quantile of the random variabl&
[X-Fy'(1-a)]/S. This result follows from the
equivalence of Equation (3) anB{K <k} =y . Notice
that K is observable becaudé does not depend on the
population meamu or standard deviation. Therefore we
can generatem observationsky,...,k,, of the random

variable k =[% - Fx(1-a)]/s fori =1,..m, where X, and

However, they did not suggest any search methods. Odeh
and Owen (1980) provide tablesmfalues.
In the case of nonnormal distributions, the random

variable /n K may not have noncentral or other
standard distributions.  Numerical evaluation ®f is

difficult. In Section 3.1, we propose a quantile estimation
approach that requires no root search.

2.4 Sample Size

Most literature on the sample size assumes normal
distributions and addresses a problem slightly different
from ours. In additional to the criterion of Equation (3),

another criterion is added so that the tolerance interval does

s are the sample mean and sample standard deviation ofnot cover too large a proportion of the population, relative

distribution F, ()1, using any arbitrary values @f and o.

Then the tolerance factor estimate is

Izzwk(mmﬂ)m + (1= ) Kgmeayy g » the convex
combination of the [[m+1)y[3h and [(m+1)y[th order
statistics, where the weight iso =[(m+)y[+ (m+1y.

(Here, [@[Jis the biggest integer less than or equal tnd

[A[Jis the smallest integer greater than or equal)toThe

. . . . 0 . .
asymptotic distributiory/m (k - k) is normal with mean 0

and variancey(1-y) /[ fZ(k)], where f, ()} is the density

function of the random variabl€. (See Lehmann, 1983,
page 394.)
If the distribution Fy () is normal, then random

variable «/H K is a noncentrat with (n-1) degrees of

freedom and noncentrality paramete/rrT z, ,wherez, is
the o th quantile of the standard normal. Therefore, the

tolerance factor ik = tn_lyy(\/ﬁ z,)/ Jn , Wheret,, (3)

is theyth quantile of the noncentralwith v degrees of

freedom and noncentralityd. For this special case,
numerical computation ¢&fwould be more efficient.

2.3 Coverage

Owen and Hua (1977) derive methods for computing the
coverage for normal distributions, i.e., solving Equation (3)
for a, givenn, k, y, and the normal distribution shape. The

purpose is to obtain thgconfidence limit (i.e.a) for the

random coverag®y {X= X - kS. They use the result &
tn_Ly(x/ﬁ Za)/\/ﬁ and suggest searching for the
noncentral noncentrality\/ﬁza so that the probability of

the noncentrak (i.e., \/EK) being less than\/ﬁ kis .
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to the lower limita. When the sample size is very small,
the interval becomes very wide and is of little use.
Faulkenberry and Weeks (1968), Faulkenberry and Daly
(1970), and Kirkpatrick (1977) suggest a second criterion
of Py {Px{X2 X-kS=a'}=3, wherea' >a and 5

is a small value. Then, the confidence that the random
coveragePy {X= X - kS} lies betweena anda' is (-3).
Other variations of the second criterion include controlling
both limits of the random coverage aroun@ilks, 1941,

and Odeh et al., 1989) and controlling coverage on both
tails of two-sided intervals (Chou and Mee, 1984). Since
there are two criteria, this procedure determines not only

the sample size but also the tolerance factor, whiady
are pre-chosen values.

3 METHODS

In Sections 3.1 and 3.2, we propose algorithms to solve
Equation (3) for the nonnormal coverageand for the
nonnormal sample sizg respectively. To estimatg we
invert the root-finding equation in the form thatis a
quantile of an observable random variable and then
estimatea by order statistics. To estimatg we apply
retrospective approximation algorithms developed by Chen
and Schmeiser (1995), with small changes for the discrete
root-finding function of the sample sire We show that
the estimate ofi always converges and that the estimate of
n seems to converge in our simulation results.

3.1 Computing the coverage

Here we consider finding the coveragefor nonnormal
distributions, such that the tolerance interval contains at
least proportiona of the population, with confidence
That is, we solve Equation (3) far given values of, k,

y, and the distribution shape. We propose an estimation
method similar to the quantile estimation method for the
tolerance factok (Section 2). Analogous to the random
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variablek for the tolerance factor, we define the random
variable C = P, {X= X - kS.. Then Equation (3) is
equivalent to

P{C =za} =Y.

Hencea is the (1y)th quantile of the random variab@
Again, the random variablg is observable because it does
not depend on the megn or standard deviatiow of
distribution Fy ().  Therefore, we can generatm

independent Monte Carlo observatiors,...,c,of C,
using arbitrary values @fando. Then estimate by
O

(5)

the convex combination of théim+1)(1-y)J th and
[(m+1)(1-y)1h order statistics, where the weight is

() Im+)(1-y)d - (Mm+1)(1y). Specifically, the
algorithm performs as follows.

a =@ Cmna-yn (1~ 0) Cgmia-y)n -

Estimation of coveragen:

Given: sample siza, tolerance factok, confidencey, and
the distribution shape.

Procedure:
1. Independently generate m random samples
{ X1 X beeood X oo Xmnt from  distribution

Fy (0! using any arbitrary values pfando.

2. Compute the sample mean and standard deviation
s fori=1,..m
3. Computec; =P{X 2 X; -ks;}fori=1,..m
O
4. Computea from c,C,,...,Cy, Using Equation (5).

By Lehmann (1983, page 394), the asymptotic distribution
of a is

0
Jm(a )08~ N (0, ya-v)/[2@]),  (6)

where fc () is the density function of. Hence, the
O
estimatord always converges at rate M).

3.2 Computing the Sample Size

Here we consider finding the sample size for a
nonnormal distribution such that a practitioner can state
with confidencey that the tolerance interval - k'S, )
contains at least the proportionof the population. That

is, we solve Equation (3) for the roat given values ok,

a, y, and the distribution shape. Unlike in Section 3.1, it is
difficult here to invert the root-finding function to express
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n as a statistical constant, e.g., quantile. Therefore we
implement the general stochastic root-finding algorithm,
retrospective  approximation  (RA), with  small
modifications. Simulation results show that the modified
RA seems to converge to the true value despite lack of
convergence proof. To emphasize their dependence on the
sample sizen, we denote the sample mean and sample
standard deviatior$ by X,, and S,. Furthermore, for
convenience, we denote the root-finding function of any

sample sizefi by g(fi; k a) = Py o { Py {X=Xz-

kS;} =a} Then givenn, k, a, and the distribution shape,
function valueg(n'; k, a) is the confidence that the random
coverage is at leaat Therefore Equation (3) is equivalent
to g(n; k, a) =y. We want to solve this equation far

Knowing properties of the root-finding function is
useful for solving the equation. The functigrhas four
properties: (1) The domain of n; 0 is discrete because
the sample sizen 0{2, 3, 4,..}; (2) Functiong is
nonmonotonic with respect to; (3) In the special case of
symmetric distributions, theg(n; 0, 0.5) equals 0.5 for
any finite value ofn; in general,

if k=k”
otherwise '

lims_ ., g(n;k,a) = %

wherek® = [u-Fy¢'(@1-a)]/o (See Section 4); (4) The root

n may not be unigue or may not exist; for example, in the
special case thaky ()1 is symmetric at mean, theyin; 0,

0.5) equals 0.5 for any sample size. Therefore, the
equationg(n;0,0.5) =y has infinite number of roots &

0.5, and has no root, otherwise.

Solving equatiorg(n; k,a) =y for the rooth =nis a
stochastic root-finding problem (SRFP), solving a
deterministic equation using only estimates of function
values (Chen and Schmeiser, 1994a). Since the function
value g(n; k, a) is an (n+1)-dimensional integral,
numerical computation may not be efficient. However, we
can estimate the function value easily via simulation
experiment. As shown in Equation (4), an unbiased

estimator ofgy(i; k,a) is 9(f; k, a) = S{,Y; /M, where

Y, equals 1 if PX = X; - kS}=2a and equals 0,

otherwise, foi=1,...m.
Chen and Schmeiser (1994b) propose RA algorithms
for one-dimensional SRFPs whose root-finding functions

are continuous over the real line. L(7; k.0, w) denote
the estimated(f; ka) generated from the simulation

experiment using a vector of pseudo-random number
strings w=(w ,..., Wy, ). Each stringw; is used to generate

theith sample {,...,X;, } from distribution Fy ((y, where
i=1,...m. RA iteratively solves a sequence of sample-path
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equations P(N; ; ko,w;) =y: i = 1, 2,...}, wherew, =
(@i ...,y ) @and the sequencedy, m;, ... } is increasing.

In each iteration, the sample-path equation is solved until a

bounding interval of the retrospective rot{ is found,
starting at an initial point and moving by a step-sie

which is doubled each time. The linear interpolate of the
bounds, calledN;, is returned. Aftei iterations, the root

estimator N; is then the weighted average of those
solutions N¢, N, ,...,N; ; the jth weight is proportional to
the number of samplem;, j = 1,...,i. A specific RA

version, called independent bounding RA (IBRA),

performs as follows.
IBRA Algorithm:

Given algorithm parameters: the standard error tolerance
0o, an initial solutionNg, initial step sized, , initial
number of samplesm;, the number-of-samples
multiplier ¢, , and the step-size multipliex, .

Find: the rootn satisfyingg(n; k,a) =v.

Initialize the retrospective iteration number 1.
Independently generais, .

Solve Equationd (N; ko, w,) =y until a bounding
interval of the rootN; is found, starting at the point
Ni4 (note: No = Ng) and moving by step sizé;,

which is doubled each time. Return the linear
interpolateN; of the bounds.

Compute Ni=3'mN;/y}ym; and its standard
error estimatese( Nj )=oy /,/z'j:1mj , where gy =

\/(i—l)‘l[z‘j:1mj|\|f—(z‘j:lmj)ﬁf] (Note that
oy =0 fori=1).

If s=(Ni) <oy, stop.
C \/(Ziquj)_“(mjﬂ)’lw (but 6, =4,) and

Otherwise, computé, ;=

mya =¢ M, leti —~i+1, and go to Step 1.

RA assumes that the root-finding function is continuous
over the whole real line, lies belopfor n below the true

root, and lies aboveg for n above the root. Additional

conditions org and 9 guarantee that the RA root estimator
converges to the true root with probability one (Chen,
1994).

Since the sample size and hence the funagjcare
discrete, the IBRA must be modified. Three rounding
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steps are added to each IBRA iteratioil) Round down
the step-sized; , since small step size seems to be more

efficient, (2) round the retrospective solutidN;to the

nearest integer, and (3) round up the root estiniitorto
ensure that the confidence is at lgasFurthermore, before
implementing the modified IBRA, ik < K”, replaceg by
1-g so that the root-finding function will not go downward
to 0. In this modified IBRA, convergence of the sample-
size estimator is not guaranteed becays$e discrete and
also forn the root may not be unique.

Despite the lack of convergence proof, the modified
IBRA algorithm seems to converge to the correct sample
size in our simulation results as shown in Table 1. There
are twelve design points in Table 1, each consisting of the
normal distribution shape and different combination,gf
andk:

* ¢0{1,5,9} and y0{.1,.5,.9} but excluding the
combination ¢,y) = (.5, .5) because in this cake
must be zero and therefore there are infinite number
of solutions (see the fourth property gj. We
further delete half the combinations becakismly
changes sign wherofy) becomes (¥, 1), e.g.,

(.1, .9) and (.9, .1) have same results. Then only
four (a,y) combinations are included.

KO{ ks, kso s Koo}, Where k. is the tolerance factor

corresponding to a root of; note thatk, is

computed by the quantile estimation method in
Chen and Schmeiser (1995).

For each design point, the sample size estinigte ﬁi)
and its standard error estimagfg(ﬁ) are computed based

on twenty simulation runs. Only significant digits are
listed. Table 1 shows that the estimafesare very close
to the true rooh, where the standard error increases with
the value on. The simulation time depends on the value
of y; the simulation time foy = .5 is about three times
larger than for othey values. This is because the function
estimate g(n;L[0) has larger variance whem(n;L0 is

around 0.5 (see Equation 4).
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Tablel: Empirical results for Sample-Size Estimators
a |v |k n A [se(n
1 [.1]-2.7435 5 46 | .16
1 [.1]-1.5594 50 | 49.8 .2
1 [.1]-1.3611 500 508| 1.8
1 [.5]-1.3818 5 49| 2
1 [.5]-1.2891 50 | 48.6] .26
1 |.5]-1.2823 500 497 1.2
1 [.9]-.67525 5 48 | .2
1 [.9]-1.0594 50 | 50.2| .13
1 [.9]-1.2062 500 493| 2
5 [.1 | -.68567 5 49 1
5 [.1|-.18372 50 | 49.9] .28
5 [.1 | -.05738 500 499| 1.8

4  ANALYSIS

This section is an extension of the sensitivity analysis for

the tolerance factok in Chen and Schmeiser (1995),
which shows thak is an increasing function ef and ofy,
but is not necessarily a monotonic functiomofHere we
continue the analysis fouy), (n,y), and ,a). We show
that a is a decreasing function of but a or y is not
necessarily monotonic with respect to. Despite
nonmonotonicity, whem goes to infinity,a converges to a

constant1-Fy (u—ko). Analogously, whem goes to

infinity, o converges to 1 if k =k~ (recall
k*=[u-F*1-a)]/o) and converges to 0, otherwise.

As in Chen and Schmeiser (1995), we use geometric

graphs to illustrate the analysis. In the sample plan8g, of (
X ), define a straight liné as the set of sample poins (
X) that satisfyX = ks + Fy'(1-a). Then the geometric
graph relates to the four tolerance parameteksa, andy,

Johnson S;  population withp=0, o=1, skewness = 4,
kurtosis = 35, and sample sire= 10 are plotted. Two
parallel lines, with the same sloge= 1, correspond ta=
0.7 and 0.85. Asa increases, theX-axis intercept
decreases and theaxis intercept increases, moving the
line L parallel to the right. Therefore, the probability of

a point §,x) lying on or below., decreases asincreases.

1

0.5

Figure 1: The ¢,y ) Relationship: Plot of Line L in the
(S, X) Sample Plane for Johnsay, Distribution,n = 10,
k=1, anda =0.7,0.85

Figure 2 shows that as the sample sizgoes to
infinity, then the confidencgnonmonotonically tends to 1
if k= k*, and to 0, otherwise. The const#ftis the slope
of the line joining thex -axis intersect (OFy-(1-a)) and
the limiting point 6, ) of (s, X). Fifty observationsg
x), from the same population as in Figure 1, are plotted
for n=10 andn = 300. The three lines correspondoto

0.85 anck =0.5, 0.68 (X*), and 1. When the sample size
goes to infinity, all sample points, (X) degenerate to the

and the distribution shape as follows: (1) the spread of limiting point (o, u), which is (1, 0) here. For lirie with k

sample pointsy X) depends on the sample sizand the
distribution shape; (2) the slope of liheis k; (3) the X -

axis intercept Fgl(l—a) and saxis intercept

- Fgl(l—a)/ k depend om and the distribution shape; (4)

the probability that a random poirg, ) lies on or below
line L isy. We use these dependencies to analyzeothe (
(a,n), and (/, n) interrelations in turn.

Figure 1 shows that the coverageis a decreasing
function of the confidence, given values of, k, and the

distribution shape. Fifty observations & (Y) from the
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=1 (greater thak” = 0.68), the pointd, ) is below the
line. Hence a% goes to infinity, the probability of lying
on or below the line (i.ey) goes to 1. Similarly, for liné
with k = 0.5 (less thark™), all points §, %) shrink to the
point (o, ) above the line, as goes to infinity, and hence
y goes to 0. The convergenceyfmay not be monotonic,
however. As mentioned earlier in this sectipimcreases
with k butk is not necessarily monotonic with Therefore
y is not necessarily monotonic with even for the normal
population.
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Figure 2: Thef,y) Relationship: Plot of Line L ing X )
Sample Plane for Johnsdsy Distribution,n = 10, 300k
=0.5, 0.68, 1, and= 0.85

Finally we show that the coverageconverges to the
constanta®= 1- Fy (4 —ko) asn goes to infinity, given

values ofk andy, and the distribution shape. As discussed
in Section 3.1, a is the (1y)th quantile of the random
variableC =P, {X = X -kS} . Whenn goes to infinity, the

sample mean X and sample standard deviatio
degenerate ta ando, respectively. Therefore the random
variable C, and every quantile, converge t@~
P«{X=p- ka}. Notice that @ depends ork and the
distribution shape but nptor o. As fory, coveragex may
not converge monotonically unleds is a monotonic
function ofn.

For cases that the monotonicity holds, Figures 3(a) and
3(b), respectively, show thatincreases witlm, converging
to a” for a[d (0,0°] and decreases witim but also
converges tod”, otherwise. In Figure 3(a), three curves
illustrate thaty is an increasing function ofand converges
to 1 fora = 0.5, 0.55, 0.6k=0.5, and the Johnso®&;
distribution with skewness 4 and kurtosis 35. The three
values are less thaé” (0.66 here), therefork must be
greater than their associak€ values (recall thapr”=1-
F, (u-ko) andk”= [u-F*(1-a)]/o ), and hence the three
curves increase monotonically t=1). The two line
segmentsE; and E, correspond ton = 7 andy = 0.75,
respectively. Sincea is decreasing witly, the intersections
of the segmerk; and the three curves, from top to bottom,
correspond to the three increasmgalues 0.5, 0.55, 0.6.
Furthermore, the intersections of the segntentand the
three curves, from left to right, illustrate tltaincreases as
n increases. In the limity converges tod”. Similarly,
Figure 3(b) shows that decreases with, converging to
a” for a[a”,1). The three curves illustrate that

599

decreases to 0 asgoes to infinity fora = 0.8, 0.85, 0.9
(larger thana® and hencek<k® ), wherek and the
distribution shape are as in Figure 3(a). The intersections
of the line segmenE; (corresponding tc=12) and the
three curves illustrate three increasingalues 0.8, 0.85,
0.9, from top to bottom. Therefore the intersections of the
line segmenE, (corresponding tg = 0.125) and the three
curves illustrate thatr decreases bwy; in the limit, a
converges tar”.

0.95f
0.85f
Y075
0.65)
0.55 I I I I I I
2 7 12 17 22 27 32 37
n
3(a)
0.3
El a=.8
— - a=.85
0.2} "0=9
N E2
0.1f - ~
~
O 1 1 |-.-|~-.|->--|.-
2 7 12 17 22 27 32 37
n
3(b)
Figure 3: Therf,a) Relationship: Plot of as a Function of

nfor a = 0.5, 0.55, 0.6 in 3(a) ared= 0.8,0.85, 0.9 in 3(b),
wherek = 0.5, "= 0.66,and the Distribution Shape is
JohnsonSg
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