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ABSTRACT

We propose Monte Carlo algorithms to estimate the samp
size and coverage of guaranteed-coverage tolerance interv
for nonnormal distributions. The current literature focuse
on computation of the tolerance factor, but addresses less
the sample size, coverage, and confidence, which need to
set prior to the tolerance factor.  The coverage estimatio
algorithm, which always converges, is based on our pro
that the coverage is a quantile of an observable rando
variable. The sample-size estimation algorithm, which seem
to converge in empirical results, is based on the gener
stochastic root-finding algorithm, retrospective
approximation. Following previous sensitivity analysis for
the tolerance factor, we analyze relationships among th
sample size, coverage, and confidence.

1 INTRODUCTION

We consider guaranteed-coverage tolerance interva
(GCTIs) for random product characteristics X whose
distribution XF  is continuous but has unknown mean µ
and unknown variance 2σ .  Based on a random sample

{
nXX ....,,1
} from the distribution xF , a GCTI for X is

defined as I( X , S, k), where I( X , S, k) equals (X - kS,∞)
for lower one-sided, (∞, X + kS) for upper one-sided, and
( X - kS, X + kS) for two-sided intervals (Wald and

Wolfowitz, 1946), where ∑ == n
i i nXX 1 /  and

∑ = −−= n
i i nXXS 1

22 )1(/)( .  For such intervals, a

practitioner can state with confidence γ that the proportion
of the population in the random tolerance interval, base
on a sample of size n and a tolerance factor k, is at least α.
The four tolerance parameters—sample size n∈ {2,3,…},
tolerance factor k∈ R, coverage ∈α (0,1), and confidence

γ ∈(0,1) —are determined so that

SX ,P { XP { X ∈  I( X ,S, k)} ≥ α}= γ. (1)
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GCTIs have wide uses in quality control and system
reliability.  For specific examples, see Chen and Schmeise
(1995), Patel (1986), and Odeh and Owen (1980).

The existing literature focuses on computation of the
tolerance factor k.  Most of it assumes normal distributions,
e.g., Wald and Wolfowitz (1946), Guttman (1970),
Aitchison and Dunsmore (1975), Odeh and Owen (1980),
and Eberhardt et al. (1989).  The one-sided tolerance facto
for normal distributions is a multiple of a noncentral t
quantile (see Section 2).  The two-sided factor can be
computed by solving a nonlinear equation.  Nonnormal
literature also exists.  Chen and Schmeiser (1995) propos
quantile estimation methods to compute the tolerance
factor for nonnormal distributions.  Aitchison and
Dunsmore (1975) and Patel (1986) also discuss differen
forms of tolerance intervals for binomial, Poisson,
exponential, and other standard populations.  Guenthe
(1985) provides an extensive discussion of distribution-free
tolerance intervals.

Before computation of the tolerance factor, values of
n, α , and γ  need to be set.  The following sample-size

determination procedure, used by a rocket manufacturer
motivates our research.

Sample-size determination procedure: Given coverage α
and confidence γ:

1. Compute the sample size n satisfying Equation (1) for
a given nominal value of k.

2. Collect a real sample { nxx ....,,1 } and compute the

tolerance factor
k = (x  - L) / s,

where L is the constant lower specification of product
characteristics.

3. Compute the coverage α~  so that with confidence γ the

interval I( X , S, k) contains at least proportion α~  of
the population, i.e., solve the following equation for α~

SX ,P { XP { X ∈  I( X , S, k)} ≥  α~ } = γ. (2)
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4. If αα >~ , stop and return n; otherwise, update n and go

to Step 2.

Our motivation of computing the sample size and cover
for nonnormal distributions arises from the on
dimensional root-finding problems in Steps 1 and 3.  Ste
computes the sample size n satisfying Equation 1, given k
,α, γ, and the distribution shape; Step 3 computes 
coverage α~  satisfying Equation (2) (or α satisfying
Equation 1), given γ, n, k, and the distribution shape.  
traditional approach to these two problems is to build
extensive table of values for the four tolerance parame
in Equation (1) for each distribution of interest.  With su
a table, practitioners can choose values of the sample
and coverage from the table whenever they are nee
The drawbacks of this approach are that any table wi
wide range of tolerance parameter values and distribu
types would be huge, and that interpolation—or wor
extrapolation—may be used to approximate values that
not listed in the table.

In this research, we are interested in black-box Mo
Carlo algorithms that compute any tolerance paramete
interest.  That is, we consider the problem of finding a
lower one-sided tolerance parameter (e.g., n) that satisfies
the tolerance logic (Equation 1) when the other th
parameters (e.g., k, α, and γ) and distribution shape ar
known.  Specifically, the problem is defined as follows.

Research Problem: Given

(a) the shape of continuous distribution function )(⋅XF

with unknown mean µ  and unknown variance 2σ ,
(b) three of the following four tolerance parameters:

y sample size n,
y tolerance factor k,
y coverage α,
y confidence γ.

Find: the other unknown tolerance parameter satisfying
tolerance logic, i.e.,

SX ,P { XP { X ≥ X - k S} ≥ α}= γ. (3)

The assumption of known distribution shape means tha
standardized moments are known but the mean or vari
is unknown.   When the real data do not adequately fit 
standard distributions (e.g. exponential), practitioners 
define the distribution shape through a simulation rout
that can generate observations whenever needed.  In
paper, we focus on estimation algorithms for lower o
sided GCTIs.  The proposed methods in Section 3 ca
modified easily for upper one-sided GCTIs and exten
for two-sided GCTIs.  Furthermore, we propose algorith
only for the sample size and the coverage.  The tolera
factor k can be estimated by the quantile estimation met
proposed in Chen and Schmeiser (1995).  Furtherm
estimating the confidence γ is straightforward (Schmeise
1990).  We review both in Section 2.
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The rest of this paper is organized as follows.  I
Section 2, we review the related literature.  In Section 
we propose estimation algorithms for the coverage an
sample size.  The coverage estimator always converges; 
sample-size estimator seems to converge in our simulati
results.  In Section 4, we continue Chen and Schmeise
(1995) sensitivity analysis for the sample size, coverag
and confidence.

2 LITERATURE REVIEW

This section reviews the literature on computation of th
four tolerance parameters.  The confidence estimator a
tolerance-factor estimator discussed here are designed 
nonnormal parametric distributions and the coverag
estimator is for normal distributions.  The literature on
sample size is different from, but related to, our problem
We discuss the computation of these four toleranc
parameters in turn.

2.1 Confidence

We consider the problem of computing the confidence th
the tolerance interval (X - k S,∞) contains at least
proportion α of the measurements for nonnorma
distributions.  That is, computing the probability

γ= SX ,P { XP { α≥−≥ }SkXX }, given n, k, α , and the

distribution shape )(⋅XF .  Numerical computation of γ may

not be efficient because γ is a (n+1)-dimensional integral,
except in the normal case where γ is a noncentral t
percentage point.  However, γ can be estimated easily by
Monte Carlo simulation.  We can generate m samples

},...,{ 111 nxx ,..., },...,{ 1 mnm xx  from the distribution XF ,

using any arbitrary values of µ  and σ .  (Notice that γ
does not depend on the unknown mean µ  or standard
deviation σ .)  For each sample, compute the sample mea

ix  and sample standard deviation is  for i = 1,...,m.  Then

γ  can be estimated by

∑
=

∧
=

m

i
i my

1
/γ , (4)

where

.
                      otherwise 0

}{P if 1 X





 ≥−≥= αii

i
skxX

y

It is easy to show that the estimate 
∧
γ  is unbiased with

variance )1( γγ −  /m.
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2.2 Tolerance Factor

Chen and Schmeiser (1995) propose quantile estimati
methods for computing the tolerance factor for nonnorm
distributions, as defined earlier in the research problem
They show that the tolerance factor k satisfying Equation (3)
is the γth quantile of the random variable K =

SFX X /)]1([ 1 α−− − . This result follows from the

equivalence of Equation (3) and γ=≤ }{ kKPK .  Notice

that K is observable because K does not depend on the
population mean µ or standard deviation σ.  Therefore we
can generate m observations 1k ,..., mk  of the random

variable ik = iXi sFx /)]1([ 1 α−− −  for i = 1,...,m, where ix  and

is  are the sample mean and sample standard deviation

distribution )(⋅XF , using any arbitrary values of µ and σ.

Then the tolerance factor estimate is

   ))1(())1(( )1(ˆ
γγ ωω ++ −+= mm kkk , the convex

combination of the  γ)1( +m th and  γ)1( +m th order

statistics, where the weight is   γγω )1()( +−+= mm .

(Here,  a  is the biggest integer less than or equal to a and

 a  is the smallest integer greater than or equal to a.)  The

asymptotic distribution m (
∧
k - k) is normal with mean 0

and variance )]([/)1( 2 kfKγγ − , where )(⋅Kf  is the density

function of the random variable K.  (See Lehmann, 1983,
page 394.)

If the distribution )(⋅XF  is normal, then random

variable n K is a noncentral t with (n-1) degrees of

freedom and noncentrality parameter αzn , where αz  is

the α th quantile of the standard normal.  Therefore, th

tolerance factor is k = /)(,1 αγ zntn−  n  , where )(, δγυt

is the γth quantile of the noncentral t with υ degrees of

freedom and noncentrality δ .  For this special case,
numerical computation of k would be more efficient.

2.3 Coverage

Owen and Hua (1977) derive methods for computing th
coverage for normal distributions, i.e., solving Equation (3
for α, given n, k, γ, and the normal distribution shape.  The
purpose is to obtain the γ-confidence limit (i.e., α) for the

random coverage XP {X X≥ - k S}. They use the result of k

= nzntn /)(,1 αγ−  and suggest searching for the

noncentral-t noncentrality αzn  so that the probability of

the noncentral t (i.e., n K) being less than n k is γ.
595
on
l
.

 of

e

e
)

However, they did not suggest any search methods.  Ode
and Owen (1980) provide tables of α values.

In the case of nonnormal distributions, the random

variable Kn  may not have noncentral t or other

standard distributions.  Numerical evaluation of α is
difficult.  In Section 3.1, we propose a quantile estimation
approach that requires no root search.

2.4 Sample Size

Most literature on the sample size assumes norma
distributions and addresses a problem slightly different
from ours.  In additional to the criterion of Equation (3),
another criterion is added so that the tolerance interval doe
not cover too large a proportion of the population, relative
to the lower limit α.  When the sample size is very small,
the interval becomes very wide and is of little use.
Faulkenberry and Weeks (1968), Faulkenberry and Daly
(1970), and Kirkpatrick (1977) suggest a second criterion

of XSX P{P , { X≥ X - k S} ≥ 'α  }= δ , where α' > α and δ
is a small value.  Then, the confidence that the random
coverage XP {X X≥ - k S} lies between α and α' is (γ-δ).

Other variations of the second criterion include controlling
both limits of the random coverage around α (Wilks, 1941,
and Odeh et al., 1989) and controlling coverage on both
tails of two-sided intervals (Chou and Mee, 1984).  Since
there are two criteria, this procedure determines not only
the sample size but also the tolerance factor, while α and γ
are pre-chosen values.

3 METHODS

In Sections 3.1 and 3.2, we propose algorithms to solve
Equation (3) for the nonnormal coverage α and for the
nonnormal sample size n, respectively.  To estimate α, we
invert the root-finding equation in the form that α is a
quantile of an observable random variable and then
estimate α by order statistics.  To estimate n, we apply
retrospective approximation algorithms developed by Chen
and Schmeiser (1995), with small changes for the discret
root-finding function of the sample size n.  We show that
the estimate of α always converges and that the estimate of
n seems to converge in our simulation results.

3.1 Computing the coverage

Here we consider finding the coverage α for nonnormal
distributions, such that the tolerance interval contains a
least proportion α of the population, with confidence γ.
That is, we solve Equation (3) for α,  given values of n, k,
γ, and the distribution shape.  We propose an estimation
method similar to the quantile estimation method for the
tolerance factor k (Section 2).  Analogous to the random
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variable k for the tolerance factor, we define the random

variable C = XP {X≥ X - k S}.  Then Equation (3) is

equivalent to

P{C ≥ α} = γ.

Hence α is the (1-γ)th quantile of the random variable C.
Again, the random variable C is observable because it does
not depend on the mean µ or standard deviation σ of
distribution )(⋅XF .  Therefore, we can generate m

independent Monte Carlo observations 1c ,..., mc of C,

using arbitrary values of µ and σ.  Then estimate α by

   ))1)(1(())1)(1(( )1( γγ ωωα −+−+

∧
−+= mm cc , (5)

the convex combination of the  )1)(1( γ−+m  th and

 )1)(1( γ−+m th order statistics, where the weight is

ω =  )1)(1( γ−+m  - (m+1)(1-γ).  Specifically, the

algorithm performs as follows.

Estimation of coverage α:

Given: sample size n, tolerance factor k, confidence γ, and
the distribution shape.

Procedure:
1. Independently generate m random samples

{ 11x ,..., nx1 },...,{ 1mx ,..., mnx } from distribution

)(⋅XF  using any arbitrary values of µ and σ.

2. Compute the sample mean ix  and standard deviation

is  for i = 1,...,m.

3. Compute ic  = P{X ≥ ix  - k is } for i = 1,...,m.

4. Compute 
∧

α  from 1c , 2c ,..., mc  using Equation (5).

By Lehmann (1983, page 394), the asymptotic distributio

of α
∧

 is

m (
∧
α  -α)

D → N ( 0, −1(γ γ ) / [ )(2 αCf ] ), (6)

where )(⋅Cf  is the density function of C.  Hence, the

estimator α
∧

 always converges at rate O(1 m).

3.2 Computing the Sample Size

Here we consider finding the sample size n for a
nonnormal distribution such that a practitioner can stat
with confidence γ that the tolerance interval [X  - k S, ∞)
contains at least the proportion α of the population.  That
is, we solve Equation (3) for the root n, given values of k,
α, γ, and the distribution shape.  Unlike in Section 3.1, it i
difficult here to invert the root-finding function to express
596
n as a statistical constant, e.g., quantile.  Therefore we
implement the general stochastic root-finding algorithm,
retrospective approximation (RA), with small
modifications.  Simulation results show that the modified
RA seems to converge to the true value despite lack o
convergence proof.  To emphasize their dependence on th

sample size n, we denote the sample mean X  and sample
standard deviation S by nX  and nS .  Furthermore, for

convenience, we denote the root-finding function of any
sample size n~  by g( n~ ; k, α) = 

nn
SX ~~ ,P { XP {X nX ~≥ -

k nS~ } ≥ α}  Then given n~ , k, α, and the distribution shape,

function value g( n~ ; k, α) is the confidence that the random
coverage is at least α.  Therefore Equation (3) is equivalent
to g(n; k, α) =γ.  We want to solve this equation for n.

Knowing properties of the root-finding function is
useful for solving the equation.  The function g has four
properties: (1) The domain of g( ),;~ ⋅⋅n is discrete because

the sample size n~ ∈ {2, 3, 4,...}; (2) Function g is
nonmonotonic with respect to n~ ; (3) In the special case of
symmetric distributions, then g( n~ ; 0, 0.5) equals 0.5 for
any finite value of n~ ; in general,





 ≥=

∞

∞→
otherwise 0

 if 1
),;~(lim ~

kk
kngn α  ,

where ∞k = σαµ /)]1([ 1 −− −
XF (see Section 4); (4) The root

n may not be unique or may not exist; for example, in the
special case that )(⋅XF  is symmetric at mean, then g( n~ ; 0,

0.5) equals 0.5 for any sample size.  Therefore, the
equation g( n~ ; 0, 0.5) = γ has infinite number of roots if γ=
0.5, and has no root, otherwise.

Solving equation g( n~ ; k,α) =γ for the root n~  = n is a
stochastic root-finding problem (SRFP), solving a
deterministic equation using only estimates of function
values (Chen and Schmeiser, 1994a).  Since the functio
value g( n~ ; k, α ) is an ( 1~ +n )-dimensional integral,
numerical computation may not be efficient.  However, we
can estimate the function value easily via simulation
experiment.  As shown in Equation (4), an unbiased

estimator of g( n~ ; k,α ) is g
∧

( n~ ; k, α) = ∑ =
m
i i mY1 / , where

iY  equals 1 if  P{X ≥ iX  - k iS } ≥ α and equals 0,

otherwise, for i=1,...,m.
Chen and Schmeiser (1994b) propose RA algorithms

for one-dimensional SRFPs whose root-finding functions
are continuous over the real line.  Let  g∧ ( n~ ; k,α,ω ) denote

the estimate g
∧

( n~ ; k,α) generated from the simulation
experiment using a vector of m pseudo-random number
strings ω =( 1ω ,..., mω ). Each string iω  is used to generate

the ith sample { 1ix ,..., inx } from distribution )(⋅XF , where

i=1,...,m.  RA iteratively solves a sequence of sample-path
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equations {g
∧

( *
iN ; k,α, iω ) =γ: i = 1, 2,...}, where iω  =

( 1iω ,...,
i

imω ) and the sequence { �,, 21 mm } is increasing.

In each iteration, the sample-path equation is solved unt

bounding interval of the retrospective root *iN  is found,

starting at an initial point and moving by a step-size iδ ,

which is doubled each time.  The linear interpolate of t
bounds, called iN , is returned. After i iterations, the root

estimator iN  is then the weighted average of thos
solutions 1N , 2N ,..., iN ; the jth weight is proportional to

the number of samples jm , j = 1,…, i.  A specific RA

version, called independent bounding RA (IBRA
performs as follows.

IBRA Algorithm:

Given algorithm parameters: the standard error toleran
0σ , an initial solution 0N , initial step size 1δ , initial

number of samples 1m , the number-of-samples

multiplier 1c , and the step-size multiplier 2c .

Find:  the root n satisfying g( n ; k,α) =γ.

0. Initialize the retrospective iteration number i = 1.
1. Independently generate iω .

2. Solve Equation g
∧

( *
iN ;k,α, iω ) = γ until a bounding

interval of the root *
iN  is found, starting at the point

1−iN  (note: 0N  = 0N ) and moving by step size iδ ,

which is doubled each time.  Return the line
interpolate iN  of the bounds.

3. Compute iN = ∑ ∑= =
i
j

i
j jjj mNm1 1/ and its standard

error estimate 
∧
se( iN )= Nσ  / ∑ =

i
j jm1 , where Nσ  =

])([)1(
2

11
21

j
i
j j

i
j jj NmNmi ∑∑ ==

− −−  (Note that

Nσ =0 for i=1).

4. If se
∧

( iN ) < 0σ , stop.  Otherwise, compute 1+iδ =

c2 N
i
j jj mm σ∑ =

−
+

− +1
1

1
1 )()(  (but 2δ  = 1δ ) and

1+im  = 1c im , let i←i+1, and go to Step 1.

RA assumes that the root-finding function is continuo
over the whole real line, lies below γ for n~  below the true
root, and lies above γ for n~  above the root.  Additional
conditions on g and g

∧
 guarantee that the RA root estimato

converges to the true root with probability one (Che
1994).

Since the sample size and hence the function g are
discrete, the IBRA must be modified.  Three roundin
59
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steps are added to each IBRA iteration i: (1) Round down
the step-size iδ , since small step size seems to be more

efficient, (2) round the retrospective solution iN to the

nearest integer, and (3) round up the root estimatoriN , to
ensure that the confidence is at least γ.  Furthermore, before
implementing the modified IBRA, if k < k ∞ , replace g by
1-g so that the root-finding function will not go downward
to 0.  In this modified IBRA, convergence of the sample-
size estimator is not guaranteed because g is discrete and
also for n~  the root may not be unique.

Despite the lack of convergence proof, the modified
IBRA algorithm seems to converge to the correct sample
size in our simulation results as shown in Table 1.  There
are twelve design points in Table 1, each consisting of th
normal distribution shape and different combination of α, γ,
and k:

• ∈α {.1,.5,.9} and γ∈ {.1,.5,.9} but excluding the
combination (α,γ) = (.5, .5) because in this case k
must be zero and therefore there are infinite numbe
of solutions (see the fourth property of g). We
further delete half the combinations because k only
changes sign when (α,γ) becomes (1-α, 1-γ), e.g.,
(.1, .9) and (.9, .1) have same results.  Then only
four (α,γ) combinations are included.

• k∈ { 5k , 50k , 500k }, where 'nk  is the tolerance factor

corresponding to a root of n'; note that nk ′  is

computed by the quantile estimation method in
Chen and Schmeiser (1995).

For each design point, the sample size estimate n̂ (= iN )

and its standard error estimate )ˆ(
^

nse  are computed based

on twenty simulation runs.  Only significant digits are
listed.  Table 1 shows that the estimates n̂  are very close
to the true root n, where the standard error increases with
the value of n.  The simulation time depends on the value
of γ; the simulation time for γ = .5 is about three times
larger than for other γ values.  This is because the function
estimate ),;(ˆ ⋅⋅ng  has larger variance when ),;( ⋅⋅ng  is

around 0.5 (see Equation 4).
7
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Table1: Empirical results for Sample-Size Estimators

α γ k n n̂ se n( )
∧ ∧

.1 .1  -2.7435  5  4.6  .16

.1 .1  -1.5594  50  49.8  .2

.1 .1  -1.3611  500  508  1.8

.1 .5  -1.3818  5  4.9  .2

.1 .5  -1.2891  50  48.6  .26

.1 .5  -1.2823  500  497  1.2

.1 .9  -.67525  5  4.8  .2

.1 .9  -1.0594  50  50.2  .13

.1 .9  -1.2062  500  493  2

.5 .1  -.68567  5  4.9  .1

.5 .1  -.18372  50  49.9  .28

.5 .1  -.05738  500  499  1.8

4 ANALYSIS

This section is an extension of the sensitivity analysis for
the tolerance factor k in Chen and Schmeiser (1995),  
which shows that k is an increasing function of α and of γ,
but is not necessarily a monotonic function of n.  Here we
continue the analysis for (α, γ), (n, γ), and (n, α).  We show
that α is a decreasing function of γ, but α or γ is not
necessarily monotonic with respect to n.  Despite
nonmonotonicity, when n goes to infinity, α converges to a
constant )(-1 σµ kXF − .  Analogously, when n goes to

infinity, α converges to 1 if k ≥ ∞k  (recall
∞k = σαµ /)]1([ 1 −− −

XF ) and converges  to 0, otherwise.

As in Chen and Schmeiser (1995), we use geometric
graphs to illustrate the analysis.  In the sample plane of (S,

X ), define a straight line L as the set of sample points (s,

x ) that satisfy x  = k s + )1(1 α−−
XF . Then the geometric

graph relates to the four tolerance parameters n, k, α, and γ,
and the distribution shape as follows: (1) the spread o
sample points (s, x ) depends on the sample size n and the
distribution shape; (2) the slope of line L is k; (3) the x -

axis intercept )1(1 α−−
XF  and s-axis intercept

)1(1 α−− −
XF / k depend on α and the distribution shape; (4)

the probability that a random point (s, x ) lies on or below
line L is γ.  We use these dependencies to analyze the (α,γ),
(α , n), and (γ , n) interrelations in turn.

Figure 1 shows that the coverage α is a decreasing
function of the confidence γ, given values of n, k, and the

distribution shape.  Fifty observations of (S, X ) from the
598
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-1

-0.5

0

0.5

1

X

L:  α=0.7
L:  α=0.85

-0.53
-0.68

Johnson BS  population with µ=0, σ=1, skewness = 4,

kurtosis = 35, and sample size n = 10 are plotted.  Two
parallel lines, with the same slope k = 1, correspond to α=
0.7 and 0.85.  As α increases, the x -axis intercept
decreases and the s-axis intercept increases, moving the
line L parallel to the right.  Therefore, γ, the probability of
a point (s, x ) lying on or below L, decreases as α increases.

Figure 1: The ( γα , ) Relationship: Plot of Line L in the

),( XS  Sample Plane for Johnson BS  Distribution, n = 10,

k = 1, and α  = 0.7, 0.85

Figure 2 shows that as the sample size n goes to
infinity, then the confidence γ nonmonotonically tends to 1
if k ≥ ∞k , and to 0, otherwise.  The constant k ∞  is the slope

of the line joining the x -axis intersect (0, )1(1 α−−
XF ) and

the limiting point (σ, µ) of (s, x ).  Fifty observations (s,
x ), from the same population as in Figure 1, are plotte
for n = 10 and n = 300.  The three lines correspond to α=
0.85 and k =0.5, 0.68 (=k ∞ ), and 1. When the sample size n
goes to infinity, all sample points (s, x ) degenerate to the
limiting point (σ, µ), which is (1, 0) here.  For line L with k
= 1 (greater than k ∞  = 0.68), the point (σ, µ) is below the
line.  Hence as n goes to infinity, the probability of lying
on or below the line (i.e., γ) goes to 1. Similarly, for line L
with k = 0.5 (less than k ∞ ), all points (s, x ) shrink to the
point (σ, µ) above the line, as n goes to infinity, and hence
γ goes to 0. The convergence of γ may not be monotonic,
however.  As mentioned earlier in this section, γ increases
with k but k is not necessarily monotonic with n.  Therefore
γ is not necessarily monotonic with n, even for the normal
population.
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Figure 2: The (n,γ) Relationship: Plot of Line L in (S, X )
Sample Plane for Johnson BS  Distribution, n = 10, 300, k

=0.5, 0.68, 1, and α= 0.85

Finally we show that the coverage α converges to the
constant ∞α = )(1 σµ kFX −−  as n goes to infinity, given

values of k and γ, and the distribution shape.  As discuss
in Section 3.1,  α is the (1-γ)th quantile of the random
variable C = }{P SkXXX −≥ . When n goes to infinity, the

sample mean X  and sample standard deviation S
degenerate to µ and σ, respectively.  Therefore the rando
variable C, and every quantile, converge to α∞  =
PX { X≥ µ- kσ}.  Notice that α∞  depends on k and the
distribution shape but not µ or σ.  As for γ, coverage α may
not converge monotonically unless k is a monotonic
function of n.

For cases that the monotonicity holds, Figures 3(a) 
3(b), respectively, show that α increases with n, converging
to α∞  for α ∈ (0,α∞ ] and decreases with n but also
converges to α∞ , otherwise.  In Figure 3(a), three curv
illustrate that γ is an increasing function of n and converges
to 1 for α = 0.5, 0.55, 0.6, k=0.5, and the Johnson SB

distribution with skewness 4 and kurtosis 35.  The threα
values are less than α∞  (0.66 here), therefore k must be
greater than their associate k ∞  values (recall that α∞ =1-

XF (µ-kσ) and k ∞ = σαµ /)]1([ 1 −− −
XF ), and hence the thre

curves increase monotonically to γ=1).  The two line
segments E1 and E2 correspond to n = 7 and γ = 0.75,
respectively.  Since α is decreasing with γ, the intersections
of the segment E1 and the three curves, from top to botto
correspond to the three increasing α values 0.5, 0.55, 0.6
Furthermore, the intersections of the segment E2 and the
three curves, from left to right, illustrate that α increases as
n increases.  In the limit, α converges to α∞ . Similarly,
Figure 3(b) shows that α decreases with n, converging to

∞α  for α ∈[ ∞α ,1).  The three curves illustrate that γ
599
d

decreases to 0 as n goes to infinity for α = 0.8, 0.85, 0.9

(larger than ∞α  and hence k ∞< k  ), where k and the

distribution shape are as in Figure 3(a). The intersectio
of the line segment E1 (corresponding to n=12) and the
three curves illustrate three increasing α values 0.8, 0.85,
0.9, from top to bottom.  Therefore the intersections of th
line segment E2 (corresponding to γ = 0.125) and the three
curves illustrate that α decreases by n; in the limit, α
converges to ∞α .

Figure 3: The (n,α) Relationship: Plot of γ as a Function of
n for α = 0.5, 0.55, 0.6 in 3(a) and α = 0.8,0.85, 0.9 in 3(b),
where k = 0.5, α∞ = 0.66,and the Distribution Shape is
Johnson BS
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