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ABSTRACT The basic idea of the RESTART method is to consider
_ _ _ _ _ the rare event as the intersection of a nested sequence
The RESTART method is a widely applicable simulation of events. The probability of the rare event is thus the

technique for the estimation of rare event probabilities. product of conditional probabilities, each of which can
The method is based on the idea to restart the simulation in usually be estimated much more accurately than the rare

certain system states, in order to generate more occurrenceSvent itself, for a given simulation effort.

of the rare event. One of the main questions for any
RESTART implementation iilow and whento restart the
simulation, in order to achieve the most accurate results
for a fixed simulation effort.

In this paper we investigate and compare, both
theoretically and empirically, different implementations of
the RESTART method. We find that the original RESTART
implementation, in which each path is split into a fixed
number of copies, may not be the most efficient one. It is
generally better to fix the total simulation effort for each
stage of the simulation. Furthermore, given this effort,
the best strategy is to restart an equal number of times
from each state, rather than to restart each time from a
randomly chosen state.

1 INTRODUCTION

The RESTART (REpetitive Simulation Trials After Reach-
ing Thresholds) method is a simple simulation method
for the estimation of small probabilities. It was in-
troduced in Villen-Altamirano (1991) and enhanced in
Villen-Altamirano (1994), but it is similar to an older
technique calledsplitting proposed in Kahn et al. (1951).

Although RESTART has been shown to be an efficient
and flexible simulation method in many cases, it is not
clear what the best implementation is for a given class of
problems. To clarify this issue, we investigate and compare
various implementations and discuss their advantages and
disadvantages. In the original RESTART implementation,
at every restart stage each run is split into a fixed number
of copies. We call this thd-ixed Splitting (FS) method.
Analytical and empirical results suggest however that the FS
method may not be the best implementation. We propose
another implementation, in which the total simulation
effort per stage is fixed. We call this thHéxed Effort
(FE) method. This strategy not only yields more accurate
results (for a fixed simulation budget), but is also more
robust, in the sense that it is much less sensitive to the
choice of the states in which the simulation is restarted.
On the negative side, it requires somewhat more computer
memory than the FS method.

The rest of the paper is organized as follows. In
Section 2 we describe the general setting in which our
rare event estimation takes place. We shortly review
the RESTART method, and introduce the FE and FS
implementations. We discuss some of the properties of the

Theoretical aspects of the method were considered in estimator of the rare event probability. In Section 3 we have
Glasserman et al (1996a) and Glasserman et al. (1996b).a closer look at the implementation alternatives, and argue
Other studies include Glasserman et al. (1997), where which alternative gives the better performance. In Section 4
large deviations aspects of the RESTART method were a number of simulation experiments are conducted using
considered, and Schreiber et al. (1996), where a method totwo different models. Finally, in Section 5 we give our
control the variance buildup in the estimator was presented. conclusions and some directions for future research.
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2 OVERFLOW PROBABILITIES

In this section we describe the class of problems for which
we wish to use the RESTART method. The basic setting
is the following (for examples see Section 4): Consider
a Markov processX := (X, t > 0) with spaceFE, and

let f be a real-valued measurable function Bn Define

Zy = f(Xy), for all t > 0. Assume for definiteness that
Zy > 0. For anythresholdor level L > 0, let T, denote
the first time that the proces8 := (Z;, ¢ > 0) hits the
set[L,0); and letT, denote the first time, after 0, that
Z hits the set(—o0,0]. We assume thal, and T, are
well-defined (possibly infinite) stopping times with respect
to the history ofX.

We are interested in the probability,say, of the event
Dy, .= {TL < Ty}, i.e., the probability thatZ up-crosses
level L before it down-crosses level 0. Note thatlepends
on the initial distribution ofX.

An exact analysis ofy is often not possible. A
standard way to estimate by simulation is the following.
Generate independently realizations (sample paths) of
the Markov process¥. Each pathz® := (z{”) defines
a realizationz( := (") of Z. Let I, be the indicator
that z(*) up-crosses levelL before it down-crosses level
0. An unbiased estimate for is given by

1 <
:;;Ii'

For small values ofy this method is not very efficient.
We can see this by examining thelative error (RE) of

@)

the corresponding estimator (We use the same notation
for estimate and estimator, as is often done in statistical

inference), which is defined as

Vary 1—7

Ey ry

Note that the relative error tends to infinity gstends

to 0. An alternative way to estimate is based on the
following observation: IfL > K then D; C Dk, where,

of course,Dg denotes the event thdf up-crosses level
K before it down-crosses level 0. Therefore, we have by
basic conditional probability,

RE(9) :=

Y = P1DP2,

with p1 = P(DK) andp2 = P(DL|DK)

Hence, if we estimate botp; and p, and multiply
the results, we obtain an estimate far Whenp; and p-
are considerably larger than this estimation procedure
is likely to be more efficient than the standard method
in Equation (1). Moreover, the same arguments may
be used when we divide the intervdl, L] into multiple
subintervals, instead of just two. We will investigate this
next.
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2.1 Fixed Effort RESTART

We describe in this section a simple implementation of
the RESTART method for estimating the probability
defined previously. First, we partition the intenfal L)
into m subintervals[Lg, L1), [L1, La), ..., [Lm-1, Lm),
with 0 =: Lo < [ < ... < L, := L. Let D; denote
the event that process reaches level; before returning

to 0. It is assumed thafZ actually hits all thresholds
Lq,...,L,, if event D;, occurs. ThenDq,D-,...,D,,

is a nested sequence of events, decreasing,jo And,
with p; := P(Dy),ps := P(D2|Dy), ..., we have

Y =P1DP2" " Pm-

We wish to estimate at th&th stage(k = 1,...,m) the
conditional probabilityp,. We do this by generating a

fixed number of samplesl{k) ,,’f> of the indicator
that processZ reaches IevelL;c before returning to O,
starting from levelL;_,. We callr; the simulationeffort
at stagek, and refer to this RESTART implementation as
the Fixed Effort (FE) method.

How these indicators are generated from samples of
X still remains to be specified, and we will postpone this
issue till Section 3. Nevertheless, we may investigate some
properties of the FE method for the simplest case in which

all the random variablesfl) , 1™ are independent and

T'm

|dent|cally distributed, with E[(k) =pg,j=1,...,r5, k=
1,...,m. For this case natural esUmators;mlf .y Pm
are g|ven by
R
Pri=—t k=1, (2)
Tk

where R, = 37, 1*) is the total number of successes
at the kth stage. Moreover, the natural estimator,ofs

m
7 =[] o
k=1

Obviously these are unbiased estimators. Moreover, the
variance ofy is given by

®3)

Vary = E5*—(E4)?=E][# -
i=1
- H{Varﬁi+(Eﬁz)2}*V2
=1
m p
_ H{ D

(H

)
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2.1.1 Parameter optimization

In the estimatory we still have considerable freedom in

choosing the simulation parameters. Let us assume that

the simulation time of sampling from each Bernodl}i‘)

is about the same, and that we are given a fixed total
simulation effortr := r; +---+r,,. How we should
choose the parameters, Lq,...,L,_1 andry,..., 7y,

in order to minimize the variance of? To clarify this
issue, first notice that

m
Varg =~2>"
=1

asr — oo. Suppose thus that is large enough such that
Var4 is approximated well by the sum above. For any
given choice ofm andp, ..., p., the optimal choice for
T1,...,Tm is determined by minimizing_", b;/r;, with

b; := (1—p;)/p;, under the conditiom; +---+r; =r. To
get an idea what the solution of thiiscreteoptimization
program is for larger, we consider the corresponding
continuousversion (where ther; are elements of R),
adding a Lagrange multiplier. We arrive at the following
minimization problem:

1—p;
1
o)

(4)

N b,
minimize > K+t =),
i=1""

where the minimum is taken over al} > 0 and K > 0.
It is easy check that the values of,..., r, for which
all partial derivatives in the expression above are 0, must
satisfy
bi ’1"1-2

bj r

-,
J

i,je{l,....,m}.

In particular,r; = r, ZT and therefore = r; > g—l
so that
T=Tr—=m = 1 =1,...,m. (5)
Zj:l V bj
Hence, for this choice of the; we have
2 Zm 1—p; 2
m Vb, ( i=1 : )
Vary ~ 42 (szl \F) g p . (6)
T T

Next, we wish to examine for dixed m the optimal
choice for thepartition pq,...,p,, under the condition
p1---pm =7 > 0. ( From these probabilities we can infer
directly the optimal levelsLq,..., L,,—1.) By (6) this
is equivalent to minimizing>_"", \/(1 — p;)/p;, under
the same condition. Again, by introducing a Lagrange
multiplier, we easily find that the, should all be equal.
Thus, for a fixed choice ofn the variance ofy is minimal
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if we choosep; = v'/™ and, from (5),r; = r/m for all
1. The variance is then

v m? (1=t

Var~y ~
v ,-Yl/m r

It remains to minimize this last expression with respect to
m. For smally, this is equivalent to minimizinga? /~'/™.
This is again a discrete optimization problem. For real
positive m the minimum is attained inn = —log(vy)/2.
This suggests that for smallwe should take approximately
—log(v)/2 thresholds. Or equivalently, the number of
thresholds should be such that the probability of crossing
a threshold when starting from the previous threshold, i.e.,
p;, is roughly equal to € ~ 0.135. The same probability
for the original RESTART method has been found in
Villen-Altamirano (1994).

Thus, if we use these optimal choices for the
parameters, we have (for smalland larger)
eyl 2
Var&zi( 7 log7) .
4r

This should be compared with the variance of the standard
estimator, with the same simulation effort For smally
this variance is approximately/r.

Therefore, for the RESTART method with fixed effort,
the relative error ofy is

elogy
2\/r "’

compared with a relative error of approximately,/rv
for standard simulation, see Equation (2).

RE(Y) ~

2.2 Fixed Splitting RESTART

The more “standard” implementation of the RESTART
method is slightly different from the FE method described
before. We divide the estimation procedure into
stages and at each stage {1,...,m} generate samples
I{k),...,lﬁf) from the indicator that proces8, starting
from level L;_;, reaches levelL, before returning to
0. However, now the effort per stage isandom
Specifically, »; is constant, butry, = n; Ri_1, where
Ry =TI%Y 4. 4 17D is the number of successes
at stagek — 1, andn;, are somefixed numbers, possibly
depending ork, k = 2,...,m. Since each successful path
is “split” into a fixed number of copies, we call this the
Fixed Splitting(FS) method.

As before, we are at this stage not interested in
how these indicators are generated from samplesXof
We will recall some properties of this implementation
from Glasserman et al (1996b) , for the simplest case
in which all the random variablesfl),...,lr(ff) are i.i.d.

with ELY = py, j=1,...,m, k=1,...,m.
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The natural estimators ¢fy,...,p,, and~ are again
given by (2) and (3). By conditioning on th&;’s it
is not difficult to see that these estimators are unbiased.
Moreover, sincery, = npRi_1, for k = 2,...,m, (3)
reduces to the simpler formula

. Ry,
V= mmoo
H;cn:1 Nk
where we have put; := r;.

The variance ofy follows through recurrence, and is
given (see Glasserman et al (1996b)) by

()

m m

:722

k=1

1 —px

k
k=1 Hj:l pin;

1 —px

vary = 2 o Er

(8)

The last equality follows from the fact that g =
ng ERk_l.

When we compare (8) with (4) we see that for the
FS method to be as efficient as the FE method we should
choosem ~ —log(y)/2, pr ~ e 2, and By = r/m,
so thatn, ~ 1/p, ~ €2. Moreover, the FE and FS
implementations yield approximately the same variance
for some (large) fixed expected total simulation effort

~
~

2.3 RESTART with dependent runs

We now address the questidrow the indicator random

variables are generated from samples of the Markov process

X.

Assume, as before, that the inter{@lL] is divided into
levelsO0 = Ly, Ly, ...,L, = L. The general RESTART
simulation procedure is as follows. From level 0 we ryn
(fixed) independent copies of (and Z), and definequl)
as the indicator that thgth copy of Z reaches level
before visiting 0,j = 1,...,r;. At the first stage, we save
the entrance statesf all paths that reach levdl,. More
precisely, for every copy of which crosses level; we
remember the state of the correspondiigat the time
crossing. After thaty, new copies ofZ are started, each
copy from a certain saved state (two or more copies may

offspring which in turn generate offspring when they hit
the next level, etc.

Notice that in general the indicatm{sli(k)} are not
independent; the success probability of an indicator depends
typically on the state from whiclX restarts. Lepy(x) be
the probability thatZ, starting from levelL;_,, reaches
level L, before 0, whenX starts from stater. Also, let
1 be the conditional distribution oX at the time when
Z crossesLy, given that this happens befoge returns to
0. Finally, let S, be a random variable with distribution
ui. Then, obviously

Epe(Sk) =pr, k=1,...,m.

Now, consider the estimator (3) for the FE method. At
every stagek € {1,...,m} we have

ER, = 7 Epi(Sk) = 7k Dk

Consequently, by first conditioning dR,,,, then onR,,, 1,
etc., we find that also in this case (3) is an unbiased
estimator fory. For the FS method we can prove similarly
that (7) is an unbiased estimator for

To investigate the variance &f = py - - - pm, let us
assume that the total simulation effort in every stage is
large, so thap,, is approximately distributed as, + o V%,
where oy, is the (small) standard deviation @f and Vj
has a standard normal distribution. Because dhis are
assumed to be small, we have

m

Var [ [ (pk + 0k Vi) ~ Vary >
k=1 k=1

Vi _ ~? Var i&

Dk = Pk

Let Y; denote the total number of paths that hit level
L, of all the paths that start from théh initial state,
i=1,...,Rr_1. The {Y;} and also{(Y;,Y;)}.x; are
identically distributed. We can show that

pr(l —pr)
T
E{Rk_l(Rk_1 -1 (Yl Yo — (

p)
Tk

Var py,

Ry

)3

Rp_1

+

share the same saved state), and we generate Bernoullis

IJ(.Q),j =1,...,7r9, sSuch that(§2) indicates whether thgth
copy of Z (Z starting from levell,; and X from a saved
state) reaches level, before 0. This process repeats
itself at all the subsequent staggs .., m. In the Fixed
Effort (FE) implementationy;, is fixed at every stagé.
In the Fixed Splitting (FS) implementatiarn, = Ry_1ny,
wheren,, is fixed andRy_; is the number of successful
hits of level L, before 0.

A typical outcome of the simulation can thus be

3 RESTART IMPLEMENTATIONS

In this section we have a closer look at the implementation
issues concerning RESTART. In the previous section we
have already encountered two different implementations:
the FE method, which fixes the the effort per stage, and
the FS method, which fixed the number of splits per

reached state in a stage. Also parameter optimization, as
discussed in the previous section, is in some sense an

viewed as a “tree” ofZ-paths. We start with; roots implementation issue. It seems reasonable to choose the
Whenever one of the roots reaches a threshold, it generatesparameters of any implementation such as suggested in

604



A Comparison of Restart Implementations

Sections 2.1 and 2.2, even if the runs are not independent.

Numerical experiments, based on the models of the next
section, support this idea.

In what follows, we use the terminology of Section 2.3.
The wordssaved stateentrance stateand starting state
are used interchangeably.

3.1 Single Step vs. Global Step

In any simulation experiment involving RESTART we
have two choices: either we simulate “stage—by—stage”

or “root-by-root”. In the first case we complete all the we haveR, starting statesS,

paths starting from a certain stage before we move to the
next one. This is called th&ingle Stepapproach. In
the second case, we generate all the offspring originating
from a single root before we move to the next root. We
call this theGlobal Stepapproach.

Although the “classical” Global Step approach uses,

in general, less memory than the Single Step approach,

the latter method offers more flexibility in controlling the
variance of the estimator. This was also demonstrated in
Schreiber et al. (1996). We will therefore mainly use the
Single Step approach in our experiments.

3.2 Fixed Effort vs. Fixed Splitting

In the Fixed Splitting(FS) method we create at every stage
a fixed number of offspring from each saved state. In the
Fixed Effort(FE) method we create at every stage a fixed
total number of offspring.

We expect the FS method to perform less than optimal
in multistage simulations, because the total number of
simulations for each stage is uncontrollable. When the
number of splits per stage is too small, we will see the
simulation paths "die-out"; when on the other hand the
number of splits per stage is too high the number of
simulation paths will "explode". In the first case the
variance in the estimator will become too large, in the
second case the time spent on simulation will become
too large. It is therefore of utmost importance to keep
the underlying branching process “critical". Glasserman
et al. have tried this principle in Glasserman et al.
(1996a) byrandomizingthe number of splits in order to
ensure the critical nature of the simulation. This again

entrance states (created by the successful hits of stage
k —1). We could draw an entrance sta@ndomly each
time we need to generate a sample path in stag&his
seems sensible because we are then using the empirical
entrance distribution into stage k for the starting states.

We will call this the Random Assignmembethod.

An alternative approach is to distribute the,_
starting states evenly (deterministically) amongst the
runs. We call this thd=ixed Assignmentethod.

We will analyse the variance generated in the second
stage in a two-stage situation for both methods. Suppose
...,Sr,. Ry is assumed
here to befixed We wish to start a total ofy := nyR;
new runs, whereny > 1 is some fixed integer. The
success probability from some statewill be denoted
by pa2(s). Let Y; be the number of successful runs (that
reach the next level) starting from stafe Since we have
only one intermediate stage, tl#%’s are independent and
identically distributed samples of the entrance state, and
Ep2(S;) = po. Consequently,

1 &
p2i=— > Y

is an unbiased estimator fagp.

Fixed Assignment From each starting state we staug
independent paths. Themiven the vector of starting
statesS := (S1,...,Sg,), Y; has a Binomial distribution
of size n, and success probability,(.S;). Let us denote
conditional expectation and variance with respecttoy
Es and Vag, respectively. We have

R 1
Varps, = P, {p2(1 = p2) + (n2 — 1)Varpa(S1)} .

Random Assignment We distribute theR; starting states
completely randomly amongst the = ny,R; new runs.
Let K; denote the number of runs that start from stéite
Then, the vectorK := (K1,...,Kg,) has a multinomial
distribution of sizer, and with equal success probabilities
1/Ry. Notice that the¥; are identically distributed, but not
independent. Also, each pd(t;,Y;),i # j has the same
distribution. Moreover, giverk, theY;’s are independent;
and givenK and S, eachY; has a Binomial distribution

has disadvantages as it needs a pilot run to determine \ih size K; and success probability,(S;). Finally, K

the distribution for the generator of the number of splits

and S are independent. By conditioning oA ad S

pf each stage. The Fixed Effort method avoids these 5nq ysing the independencies we arrive at the following
problems in a much better way because the number of equation for the variance ofy:

simulations we will perform per stage is fixed in advance.

3.3 Fixed Assignment vs. Random Assignment

In stagek of the simulation we have to distribute the
sample paths we need to simulate over the givan
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(7’2 — 1)Varp2(51)
Ry

b

When we compare this with the variance for the Fixed
Assignment case we see that the last formula always gives

. 1
Varp, = P, {pz(l —p2) +
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a higher variance, irrespective of the unknown constant (high) level L, before the system empties, starting from
Varp,(S1). This is a perhaps surprising result, which has an empty system. See Figure 1 for a graphical illustration.
been verified empirically also to hold for the multilevel

case, see Section 4.

A Queue 1 Queue 2
9_
4 NUMERICAL EXPERIMENTS
To analyse the behaviour of the different RESTART imple- Figure 1: Tandem model
mentations we conduct a series of simulation experiments
using two different models. In particular, we compare the
FS and FE implementations, both as Single Step methods.
Also, the FE implementation will be evaluated in both Let Y; and Z; be number of clients in the first and
the Random Assignment (RA) and the Fixed Assignment the second queue at time respectively (including the
(FA) case. customers in service). TheX := (Y;,Z;,t > 0) is

The RESTART parameters (e.ga, L1, ..., Ly, €tc.) the underlying Markov process in the general set-up of
are chosen in accordance with the values suggested inSection 2.
Sections 2.1 and 2.2. For example, we try to choose the

levels such that success probabilities (of hitting the next ] ) ] -
level) are near the “optimal” value—2. Also, we have Remark 1 Notice thaty is defined as the probability

used a truncation procedure to discard unpromising trials, ©f overflow beforeboth buffers become empty, not just
as in Glasserman et al. (1996a). the second buffer. We therefore have a slightly different

setting than described in Section 2. However, the RESTART

In all tables~y denotes the rare event probability of ' \ .
procedure is easily adapted for this case.

interest. The estimate of is given by 4. For each¥y
the corresponding estimate of tiRelative Error (RE) is
included. As a measure of the efficiency of the estimétor .
we use theRelative Time Variance produ¢RTV), which We compare the FE approach with the FS approach
we define as the simulation time (in seconds of CPU time ©Of Glasserman et al. (1996a); and we do this for two
used on a Sun Ultra 2 using Sun CC 2.1 with optimization different cases. In the first case the second buffer has
level 5) multiplied by the squared (estimate of the) relative the highest load, and in the second case the first buffer.
error of 4. Notice that the RTV is equivalent to the AS Service rates we usg;, = 4,u = 2, in the first
“work-balanced variance” used in Glynn et al. (1992). case, andu; = 4/3,p2 = 2, in the second case. In
Once a stable estimate of the variance is reached, thePoth cases\ = 1. Two different levels are considered:
RTV becomes constant. This constant is smaller for more L = 20 and 60. The intermediate levels will be chosen
efficient simulation schemes. Practically, if scheme 1 as multiples of 2, hencd,, := 2k, k=0,1...,m—1,
gives a RTV which is half that of scheme 2, it would take Where m is 10 and 30, respectively. The number of

twice as long to estimate within a certain accuracy via ~ Samples were chosen ag = 10°, Vk for the FE method

method to optimize comparability between the simulation

methods. As in Glasserman et al. (1996a), a cut-off
4.1 Tandem queue technique has been used to reduce simulation time. The
idea is to discard unpromising paths which lead back to
zero, since a lot of time is being spent simulating paths
back to the empty system state. The simulation results
for this model are found in Table 1, along with the exact
probabilities which were obtained from Glasserman et al.
(1996a). For each estimate ¢fwe have simulated long
enough to obtain relative errors of about 3%.

The first model is a 2-node tandem queue. Customers
arrive at the first queue according to a Poisson process
with rate A. The service time of a customer at the first
gueue is exponential with raje, independent of the input
process and the service time at the second node. The
output process of the first queue forms the input process
of the second queue. The service time of customer at the
second queue is exponential with ratg also independent We conclude that also in this case the FE method is
of every thing else. This model has received consider- more efficient than the FS method. Note that, as observed
able attention in rare event probability estimation, e.g., in in Glasserman et al. (1996a), in the second case, where
Glasserman et al. (1996b) and Parekh et al. (1989). We the first buffer is the bottleneck the RTV is much higher
wish to estimate the probability of the event that the (for both the FE and FS implementation) than in the first
number of customers in the the second queue reaches somease. The RTV seems to grow quadratically with
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Table 1: Results for the tandem queue. Parameters

(A, p1, p2) = (1,4,2) in top and(1, 4,2) in bottom half

L o RE sec RTV

Exact 20 1.27e-6

FE 20 1.256e-6 6.4e-3 418 1.7e-2
FS 20 1.256e-6 9.6e-3 281 2.6e-2
Exact 60 1.16e-18

FE 60 1.179e-18 1.2e-2 2195 3.0e-1
FS 60 1.128e-18 1.9e-2 1450 5.4e-1
Exact 20 3.82e-6

FE 20 3.812e-6 3.6e-3 1521 1.9e-2
FS 20 3.811le-6 9.6e-3 1418 1.3e-1
Exact 60 3.47e-18

FE 60 3.440e-18 9.4e-3 1817 1.6e-1
FS 60 3.398e-18 3.0e-1 4909 4.3e0

4.2 Flow line

The second model deals with a continuous flow line

consisting of three machines and two intermediate buffers.

Machine i € {1,2,3} can process the continuous flow
products at some maximum ratg, called themachine
speed Moreover, the machines are prone to failure. The
life and repair times of the machineare exponentially
distributed with parameters; and u;, respectively, and

to implement the IS estimator. A uniformization rate of
70 was found to give the most accurate results and the
number of cycles (runs) i0°. The overflow levelL is
taken to be 3; The intermediate levels for the RESTART
methods arel; := k/2, k=1,...,6. The number of
runs is1.5-10° for the first stage and0® for the following
stages. The total simulation time for each experiment is
about one minute. See Table 2 for simulation results.

Table 2: Rgsults for the flow line model

o RE sec RTV
SS 8.20e-6 0.110 61 0.7408
IS 7.95e-6 0.0149 63 0.0140
RS,FA 7.85e-6 0.0070 62 0.0031
RS,RA 7.79e-6 0.0077 65 0.0038

Comparing the RTV’s we observe that the RESTART
method compares very well with IS. It is not safe to
conclude that in general the RESTART method outperforms
IS, since this would require a more careful consideration of
their respective implementations. We found the RESTART
method easier to implement, and requiring less critical
optimization parameters, and thus a more robust estimator.

5 CONCLUSIONS

are independent of each other. The buffer capacities are We have compared severalimplementations ofthe RESTART

C1 and Cs. The system is depicted in Figure 2 .

a G
el [ [
Figure 2. Flow line model

This model has been studied in Kroese et al. (1998),

method and have found that the original RESTART imple-
mentation (which we call the Fixed Splitting (FS) imple-

mentation), in which each path is split into a fixed number
of copies, is in general not the most efficient one. It is
better to fix the total simulation effort for each stage of the
simulation (we call this the Fixed Effort (FE) implemen-

tation). In this way the number of paths that hit the next
level will remain approximately the same, irrespective of

where an Importance Sampling procedure was described how we chose the RESTART parameters. On the contrary,

for the efficient estimation of the overflow probability

in the second buffel32 (defined as the probability that
buffer B2 reaches levell := C; before it empties again,
starting from an empty system). The translation into the
RESTART set-up is the following. LeY; and Z; be the
level of the first and second buffer at timgrespectively;
and letM, € {0,1}® denote the state of the machines at
time t. Then obviouslyX := (M,;,Y;, Z;,t > 0) is the
basic Markov process of Section 2.

We wish to compare the performance of different
RESTART methods with that of the Importance Sampling
(IS) method in Kroese et al. (1998).

The model parameters atg =3 , v, =2, v3 = 1,

A =5, =2 ﬂ1:1 [LQZ]. and C; = 1. The third
machine is assumed to be perfectly reliable. In Kroese
et al. (1998), a uniformization-based approach is used
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the FS implementation is very sensitive to the choice of
the RESTART parameters; if we do not choose these
parameters exactly right, the paths will either “die-out”
or “explode”, leading to excessive simulation time. For
both methods (FE and FS) the “optimal” parameters are
determined by making the success probabilities in each
stage approximately—2, and the number of trials in each
phase equal.

We also find that, if we use the FE method, it is
better, for a given total effort per stage, to restart an equal
number of times from each saved state, rather than to
restart each time from a randomly (in this case uniformly)
chosen saved state.

We note that if the entrance distribution is (approxi-
mately) known, we should sample from this (approximate)
distribution, thus rendering the samples independent and
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reducing the variance of the estimator. The advantage of Matematica Aplicada - Universidad Pdditnica de
such an approach is currently being investigated. Another Madrid, Julio 1997.

direction for future research is the estimation sthtion-

ary probabilities rather than overflow probabilities via the AyTHOR BIOGRAPHIES

RESTART method.
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