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ABSTRACT

The RESTART method is a widely applicable simulation
technique for the estimation of rare event probabilitie
The method is based on the idea to restart the simulation
certain system states, in order to generate more occurren
of the rare event. One of the main questions for an
RESTART implementation ishow and when to restart the
simulation, in order to achieve the most accurate resu
for a fixed simulation effort.

In this paper we investigate and compare, bot
theoretically and empirically, different implementations o
the RESTART method. We find that the original RESTART
implementation, in which each path is split into a fixed
number of copies, may not be the most efficient one. It
generally better to fix the total simulation effort for each
stage of the simulation. Furthermore, given this effor
the best strategy is to restart an equal number of tim
from each state, rather than to restart each time from
randomly chosen state.

1 INTRODUCTION

The RESTART (REpetitive Simulation Trials After Reach
ing Thresholds) method is a simple simulation metho
for the estimation of small probabilities. It was in-
troduced in Villen-Altamirano (1991) and enhanced in
Villen-Altamirano (1994), but it is similar to an older
technique calledsplitting proposed in Kahn et al. (1951).
Theoretical aspects of the method were considered
Glasserman et al (1996a) and Glasserman et al. (1996
Other studies include Glasserman et al. (1997), whe
large deviations aspects of the RESTART method we
considered, and Schreiber et al. (1996), where a method
control the variance buildup in the estimator was presente
601
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The basic idea of the RESTART method is to consid
the rare event as the intersection of a nested seque
of events. The probability of the rare event is thus th
product of conditional probabilities, each of which ca
usually be estimated much more accurately than the r
event itself, for a given simulation effort.

Although RESTART has been shown to be an efficie
and flexible simulation method in many cases, it is n
clear what the best implementation is for a given class
problems. To clarify this issue, we investigate and compa
various implementations and discuss their advantages
disadvantages. In the original RESTART implementatio
at every restart stage each run is split into a fixed numb
of copies. We call this theFixed Splitting (FS) method.
Analytical and empirical results suggest however that the
method may not be the best implementation. We propo
another implementation, in which the total simulatio
effort per stage is fixed. We call this theFixed Effort
(FE) method. This strategy not only yields more accura
results (for a fixed simulation budget), but is also mo
robust, in the sense that it is much less sensitive to
choice of the states in which the simulation is restarte
On the negative side, it requires somewhat more compu
memory than the FS method.

The rest of the paper is organized as follows.
Section 2 we describe the general setting in which o
rare event estimation takes place. We shortly revie
the RESTART method, and introduce the FE and F
implementations. We discuss some of the properties of
estimator of the rare event probability. In Section 3 we ha
a closer look at the implementation alternatives, and arg
which alternative gives the better performance. In Section
a number of simulation experiments are conducted us
two different models. Finally, in Section 5 we give ou
conclusions and some directions for future research.
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2 OVERFLOW PROBABILITIES

In this section we describe the class of problems for which
we wish to use the RESTART method. The basic setting
is the following (for examples see Section 4): Conside
a Markov processX := (Xt, t ≥ 0) with spaceE, and
let f be a real-valued measurable function onE. Define
Zt := f(Xt), for all t ≥ 0. Assume for definiteness that
Z0 ≥ 0. For any thresholdor level L > 0, let TL denote
the first time that the processZ := (Zt, t ≥ 0) hits the
set [L,∞); and letT0 denote the first time, after 0, that
Z hits the set(−∞, 0]. We assume thatTL and T0 are
well-defined (possibly infinite) stopping times with respect
to the history ofX.

We are interested in the probability,γ say, of the event
DL := {TL < T0}, i.e., the probability thatZ up-crosses
level L before it down-crosses level 0. Note thatγ depends
on the initial distribution ofX.

An exact analysis ofγ is often not possible. A
standard way to estimateγ by simulation is the following.
Generate independentlyr realizations (sample paths) of
the Markov processX. Each pathx(i) := (x(i)

t ) defines
a realizationz(i) := (z(i)

t ) of Z. Let Ii be the indicator
that z(i) up-crosses levelL before it down-crosses level
0. An unbiased estimate forγ is given by

γ̂ :=
1
r

r∑
i=1

Ii. (1)

For small values ofγ this method is not very efficient.
We can see this by examining therelative error (RE) of
the corresponding estimator (We use the same notatio
for estimate and estimator, as is often done in statistica
inference), which is defined as

RE(γ̂) :=

√
Var γ̂
E γ̂

=
√

1 − γ

r γ
.

Note that the relative error tends to infinity asγ tends
to 0. An alternative way to estimateγ is based on the
following observation: IfL > K then DL ⊂ DK , where,
of course,DK denotes the event thatZ up-crosses level
K before it down-crosses level 0. Therefore, we have b
basic conditional probability,

γ = p1 p2,

with p1 := P(DK) and p2 := P(DL|DK).
Hence, if we estimate bothp1 and p2 and multiply

the results, we obtain an estimate forγ. Whenp1 andp2
are considerably larger thanγ, this estimation procedure
is likely to be more efficient than the standard method
in Equation (1). Moreover, the same arguments ma
be used when we divide the interval[0, L] into multiple
subintervals, instead of just two. We will investigate this
next.
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2.1 Fixed Effort RESTART

We describe in this section a simple implementation o
the RESTART method for estimating the probabilityγ
defined previously. First, we partition the interval[0, L)
into m subintervals[L0, L1), [L1, L2), . . . , [Lm−1, Lm),
with 0 =: L0 < L1 < . . . < Lm := L. Let Di denote
the event that processZ reaches levelLi before returning
to 0. It is assumed thatZ actually hits all thresholds
L1, . . . , Lm if event DL occurs. ThenD1, D2, . . . , Dm

is a nested sequence of events, decreasing toDm. And,
with p1 := P(D1), p2 := P(D2|D1), . . ., we have

γ = p1 p2 · · · pm.

We wish to estimate at thekth stage(k = 1, . . . , m) the
conditional probabilitypk. We do this by generating a
fixed number of samplesI(k)

1 , . . . , I
(k)
rk of the indicator

that processZ reaches levelLk before returning to 0,
starting from levelLk−1. We call rk the simulationeffort
at stagek, and refer to this RESTART implementation as
the Fixed Effort (FE) method.

How these indicators are generated from samples
X still remains to be specified, and we will postpone thi
issue till Section 3. Nevertheless, we may investigate som
properties of the FE method for the simplest case in whic
all the random variablesI(1)

1 , . . . , I
(m)
rm are independent and

identically distributed, with EI(k)
j = pk, j = 1, . . . , rk, k =

1, . . . , m. For this case natural estimators ofp1, . . . , pm

are given by

p̂k :=
Rk

rk
, k = 1, . . . , m, (2)

where Rk =
∑rk

i=1 I
(k)
i is the total number of successes

at thekth stage. Moreover, the natural estimator ofγ is

γ̂ :=
m∏

k=1

p̂k. (3)

Obviously these are unbiased estimators. Moreover, th
variance ofγ̂ is given by

Var γ̂ = E γ̂2 − (E γ̂)2 = E
m∏

i=1

p̂2
i − γ2

=
m∏

i=1

{ Var p̂i + (E p̂i)2} − γ2

=
m∏

i=1

{pi(1 − pi)
ri

+ p2
i } − γ2

= γ2

(
m∏

i=1

{1 − pi

pi ri
+ 1} − 1

)
.
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2.1.1 Parameter optimization

In the estimator̂γ we still have considerable freedom in
choosing the simulation parameters. Let us assume tha
the simulation time of sampling from each BernoulliI

(i)
j

is about the same, and that we are given a fixed tota
simulation effort r := r1 + · · · + rm. How we should
choose the parametersm, L1, . . . , Lm−1 and r1, . . . , rm

in order to minimize the variance of̂γ? To clarify this
issue, first notice that

Var γ̂ = γ2
m∑

i=1

1 − pi

pi ri
+ o (1/r), (4)

as r → ∞. Suppose thus thatr is large enough such that
Var γ̂ is approximated well by the sum above. For any
given choice ofm andp1, . . . , pm, the optimal choice for
r1, . . . , rm is determined by minimizing

∑m
i=1 bi/ri, with

bi := (1−pi)/pi, under the conditionr1+ · · ·+rk = r. To
get an idea what the solution of thisdiscreteoptimization
program is for larger, we consider the corresponding
continuousversion (where theri are elements of R+),
adding a Lagrange multiplier. We arrive at the following
minimization problem:

minimize
m∑

i=1

bi

ri
+ K(r1 + · · · + rm − r),

where the minimum is taken over allri > 0 and K > 0.
It is easy check that the values ofr1, . . . , rm for which
all partial derivatives in the expression above are 0, mus
satisfy

bi

bj
=

r2
i

r2
j

, i, j ∈ {1, . . . , m}.

In particular,ri = r1

√
bi

b1
, and thereforer = r1

∑m
i=1

√
bi

b1
,

so that

ri = r

√
bi∑m

j=1

√
bj

, i = 1, . . . , m. (5)

Hence, for this choice of theri we have

Var γ̂ ≈ γ2

(∑m
i=1

√
bi

)2
r

= γ2

(∑m
i=1

√
1−pi

pi

)2

r
. (6)

Next, we wish to examine for afixed m the optimal
choice for thepartition p1, . . . , pm, under the condition
p1 · · · pm = γ > 0. ( From these probabilities we can infer
directly the optimal levelsL1, . . . , Lm−1.) By (6) this
is equivalent to minimizing

∑m
i=1

√
(1 − pi)/pi, under

the same condition. Again, by introducing a Lagrange
multiplier, we easily find that thepi should all be equal.
Thus, for a fixed choice ofm the variance of̂γ is minimal
603
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if we choosepi = γ1/m and, from (5),ri = r/m for all
i. The variance is then

Var γ̂ ≈ γ2 m2(1 − γ1/m)
γ1/m r

.

It remains to minimize this last expression with respect to
m. For smallγ, this is equivalent to minimizingm2/γ1/m.
This is again a discrete optimization problem. For real
positive m the minimum is attained inm = − log(γ)/2.
This suggests that for smallγ we should take approximately
− log(γ)/2 thresholds. Or equivalently, the number of
thresholds should be such that the probability of crossing
a threshold when starting from the previous threshold, i.e.,
pi, is roughly equal to e−2 ≈ 0.135. The same probability
for the original RESTART method has been found in
Villen-Altamirano (1994).

Thus, if we use these optimal choices for the
parameters, we have (for smallγ and larger)

Var γ̂ ≈ (eγ log γ)2

4 r
.

This should be compared with the variance of the standard
estimator, with the same simulation effortr. For smallγ
this variance is approximatelyγ/r.

Therefore, for the RESTART method with fixed effort,
the relative error of̂γ is

RE(γ̂) ≈ −e log γ

2
√

r
,

compared with a relative error of approximately1/
√

rγ
for standard simulation, see Equation (2).

2.2 Fixed Splitting RESTART

The more “standard” implementation of the RESTART
method is slightly different from the FE method described
before. We divide the estimation procedure intom
stages and at each stagek ∈ {1, . . . , m} generate samples
I
(k)
1 , . . . , I

(k)
rk from the indicator that processZ, starting

from level Lk−1, reaches levelLk before returning to
0. However, now the effort per stage israndom.
Specifically, r1 is constant, butrk = nk Rk−1, where
Rk−1 = I

(k−1)
1 + · · · + I

(k−1)
rk−1 is the number of successes

at stagek − 1, and nk are somefixed numbers, possibly
depending onk, k = 2, . . . , m. Since each successful path
is “split” into a fixed number of copies, we call this the
Fixed Splitting(FS) method.

As before, we are at this stage not interested in
how these indicators are generated from samples ofX.
We will recall some properties of this implementation
from Glasserman et al (1996b) , for the simplest case
in which all the random variablesI(1)

1 , . . . , I
(m)
rm are i.i.d.

with EI
(k)
j = pk, j = 1, . . . , rk, k = 1, . . . , m.
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The natural estimators ofp1, . . . , pm and γ are again
given by (2) and (3). By conditioning on theRk ’s it
is not difficult to see that these estimators are unbiase
Moreover, sincerk = nkRk−1, for k = 2, . . . , m, (3)
reduces to the simpler formula

γ̂ :=
Rm∏m
k=1 nk

, (7)

where we have putn1 := r1.
The variance of̂γ follows through recurrence, and is

given (see Glasserman et al (1996b)) by

Var γ̂ = γ2
m∑

k=1

1 − pk∏k
j=1 pjnj

= γ2
m∑

k=1

1 − pk

pk Erk
. (8)

The last equality follows from the fact that Erk =
nk ERk−1.

When we compare (8) with (4) we see that for th
FS method to be as efficient as the FE method we shou
choosem ≈ − log(γ)/2, pk ≈ e−2, and Erk = r/m,
so that nk ≈ 1/pk ≈ e2. Moreover, the FE and FS
implementations yield approximately the same varianc
for some (large) fixed expected total simulation effortr.

2.3 RESTART with dependent runs

We now address the questionhow the indicator random
variables are generated from samples of the Markov proce
X.

Assume, as before, that the interval[0, L] is divided into
levels 0 = L0, L1, . . . , Lm = L. The general RESTART
simulation procedure is as follows. From level 0 we runr1

(fixed) independent copies ofX (and Z), and defineI(1)
j

as the indicator that thejth copy of Z reaches levelL1
before visiting 0,j = 1, . . . , r1. At the first stage, we save
the entrance statesof all paths that reach levelL1. More
precisely, for every copy ofZ which crosses levelL1 we
remember the state of the correspondingX at the time
crossing. After that,r2 new copies ofZ are started, each
copy from a certain saved state (two or more copies m
share the same saved state), and we generate Berno
I
(2)
j , j = 1, . . . , r2, such thatI(2)

j indicates whether thejth
copy of Z (Z starting from levelL1 andX from a saved
state) reaches levelL2 before 0. This process repeats
itself at all the subsequent stages3, . . . , m. In the Fixed
Effort (FE) implementation,rk is fixed at every stagek.
In the Fixed Splitting (FS) implementationrk = Rk−1nk,
wherenk is fixed andRk−1 is the number of successful
hits of level Lk before 0.

A typical outcome of the simulation can thus be
viewed as a “tree” ofZ-paths. We start withr1 roots.
Whenever one of the roots reaches a threshold, it genera
604
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offspring, which in turn generate offspring when they hit
the next level, etc.

Notice that in general the indicators{I
(k)
i } are not

independent; the success probability of an indicator depen
typically on the state from whichX restarts. Letpk(x) be
the probability thatZ, starting from levelLk−1, reaches
level Lk before 0, whenX starts from statex. Also, let
µk be the conditional distribution ofX at the time when
Z crossesLk, given that this happens beforeZ returns to
0. Finally, let Sk be a random variable with distribution
µk. Then, obviously

Epk(Sk) = pk, k = 1, . . . , m.

Now, consider the estimator (3) for the FE method. A
every stagek ∈ {1, . . . , m} we have

ERk = rk Epk(Sk) = rk pk.

Consequently, by first conditioning onRm, then onRm−1,
etc., we find that also in this case (3) is an unbiase
estimator forγ. For the FS method we can prove similarly
that (7) is an unbiased estimator forγ.

To investigate the variance of̂γ = p̂1 · · · p̂m, let us
assume that the total simulation effort in every stage i
large, so that̂pk is approximately distributed aspk +σkVk,
whereσk is the (small) standard deviation of̂pk and Vk

has a standard normal distribution. Because theσk ’s are
assumed to be small, we have

Var
m∏

k=1

(pk + σkVk) ≈ Varγ
m∑

k=1

σkVk

pk
= γ2 Var

m∑
k=1

p̂k

pk
.

Let Yi denote the total number of paths that hit leve
Lk of all the paths that start from theith initial state,
i = 1, . . . , Rk−1. The {Yi} and also{(Yi, Yj)}i 6=j are
identically distributed. We can show that

Var p̂k =
pk(1 − pk)

rk

+
E
{

Rk−1(Rk−1 − 1)
(
Y1 Y2 − ( Rk

Rk−1
)2
)}

r2
k

3 RESTART IMPLEMENTATIONS

In this section we have a closer look at the implementatio
issues concerning RESTART. In the previous section w
have already encountered two different implementations
the FE method, which fixes the the effort per stage, an
the FS method, which fixed the number of splits pe
reached state in a stage. Also parameter optimization,
discussed in the previous section, is in some sense
implementation issue. It seems reasonable to choose t
parameters of any implementation such as suggested



A Comparison of Restart Implementations

n
x

.

e

h

n
e

s,
h

i
e

e
e
d

a
o
e
e
e
f

e
e

p
n
l.

in
in
s
e
o
.

ge

cal
.

d
se

d

g

es
Sections 2.1 and 2.2, even if the runs are not independe
Numerical experiments, based on the models of the ne
section, support this idea.

In what follows, we use the terminology of Section 2.3
The wordssaved state, entrance stateand starting state
are used interchangeably.

3.1 Single Step vs. Global Step

In any simulation experiment involving RESTART we
have two choices: either we simulate “stage–by–stag
or “root–by–root”. In the first case we complete all the
paths starting from a certain stage before we move to t
next one. This is called theSingle Stepapproach. In
the second case, we generate all the offspring originati
from a single root before we move to the next root. W
call this theGlobal Stepapproach.

Although the “classical” Global Step approach use
in general, less memory than the Single Step approac
the latter method offers more flexibility in controlling the
variance of the estimator. This was also demonstrated
Schreiber et al. (1996). We will therefore mainly use th
Single Step approach in our experiments.

3.2 Fixed Effort vs. Fixed Splitting

In theFixed Splitting(FS) method we create at every stag
a fixed number of offspring from each saved state. In th
Fixed Effort (FE) method we create at every stage a fixe
total number of offspring.

We expect the FS method to perform less than optim
in multistage simulations, because the total number
simulations for each stage is uncontrollable. When th
number of splits per stage is too small, we will see th
simulation paths "die-out"; when on the other hand th
number of splits per stage is too high the number o
simulation paths will "explode". In the first case the
variance in the estimator will become too large, in th
second case the time spent on simulation will becom
too large. It is therefore of utmost importance to kee
the underlying branching process "critical". Glasserma
et al. have tried this principle in Glasserman et a
(1996a) byrandomizingthe number of splits in order to
ensure the critical nature of the simulation. This aga
has disadvantages as it needs a pilot run to determ
the distribution for the generator of the number of split
pf each stage. The Fixed Effort method avoids thes
problems in a much better way because the number
simulations we will perform per stage is fixed in advance

3.3 Fixed Assignment vs. Random Assignment

In stagek of the simulation we have to distribute therk

sample paths we need to simulate over the givenRk−1
605
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entrance states (created by the successful hits of sta
k − 1). We could draw an entrance staterandomly each
time we need to generate a sample path in stagek. This
seems sensible because we are then using the empiri
entrance distribution into stage k for the starting states
We will call this theRandom Assignmentmethod.

An alternative approach is to distribute theRk−1
starting states evenly (deterministically) amongst therk

runs. We call this theFixed Assignmentmethod.
We will analyse the variance generated in the secon

stage in a two-stage situation for both methods. Suppo
we haveR1 starting statesS1, . . . , SR1 . R1 is assumed
here to befixed. We wish to start a total ofr2 := n2R1
new runs, wheren2 ≥ 1 is some fixed integer. The
success probability from some states will be denoted
by p2(s). Let Yi be the number of successful runs (that
reach the next level) starting from stateSi. Since we have
only one intermediate stage, theSi’s are independent and
identically distributed samples of the entrance state, an
Ep2(Si) = p2. Consequently,

p̂2 :=
1
r2

R1∑
i=1

Yi

is an unbiased estimator forp2.
Fixed Assignment: From each starting state we startn2
independent paths. Then,given the vector of starting
statesS := (S1, . . . , SR1), Yi has a Binomial distribution
of size n2 and success probabilityp2(Si). Let us denote
conditional expectation and variance with respect toS by
ES and VarS , respectively. We have

Var p̂2 =
1
r2

{p2(1 − p2) + (n2 − 1)Varp2(S1)} .

Random Assignment: We distribute theR1 starting states
completely randomly amongst ther2 = n2R1 new runs.
Let Ki denote the number of runs that start from stateSi.
Then, the vectorK := (K1, . . . , KR1) has a multinomial
distribution of sizer2 and with equal success probabilities
1/R1. Notice that theYi are identically distributed, but not
independent. Also, each pair(Yi, Yj), i 6= j has the same
distribution. Moreover, givenK, theYi’s are independent;
and givenK and S, eachYi has a Binomial distribution
with size Ki and success probabilityp2(Si). Finally, K
and S are independent. By conditioning onK ad S
and using the independencies we arrive at the followin
equation for the variance ofp2:

Var p̂2 =
1
r2

{
p2(1 − p2) +

(r2 − 1)Varp2(S1)
R1

}
.

When we compare this with the variance for the Fixed
Assignment case we see that the last formula always giv
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a higher variance, irrespective of the unknown consta
Varp2(S1). This is a perhaps surprising result, which ha
been verified empirically also to hold for the multileve
case, see Section 4.

4 NUMERICAL EXPERIMENTS

To analyse the behaviour of the different RESTART imple
mentations we conduct a series of simulation experime
using two different models. In particular, we compare th
FS and FE implementations, both as Single Step metho
Also, the FE implementation will be evaluated in bot
the Random Assignment (RA) and the Fixed Assignme
(FA) case.

The RESTART parameters (e.g.,m, L1, . . . , Lm, etc.)
are chosen in accordance with the values suggested
Sections 2.1 and 2.2. For example, we try to choose
levels such that success probabilities (of hitting the ne
level) are near the “optimal” valuee−2. Also, we have
used a truncation procedure to discard unpromising tria
as in Glasserman et al. (1996a).

In all tablesγ denotes the rare event probability o
interest. The estimate ofγ is given by γ̂. For eachγ̂
the corresponding estimate of theRelative Error (RE) is
included. As a measure of the efficiency of the estimatorγ̂
we use theRelative Time Variance product(RTV), which
we define as the simulation time (in seconds of CPU tim
used on a Sun Ultra 2 using Sun CC 2.1 with optimizatio
level 5) multiplied by the squared (estimate of the) relativ
error of γ̂. Notice that the RTV is equivalent to the
“work-balanced variance” used in Glynn et al. (1992
Once a stable estimate of the variance is reached,
RTV becomes constant. This constant is smaller for mo
efficient simulation schemes. Practically, if scheme
gives a RTV which is half that of scheme 2, it would tak
twice as long to estimateγ within a certain accuracy via
scheme 2 than via scheme 1.

4.1 Tandem queue

The first model is a 2-node tandem queue. Custom
arrive at the first queue according to a Poisson proce
with rate λ. The service time of a customer at the firs
queue is exponential with rateµ1, independent of the input
process and the service time at the second node. T
output process of the first queue forms the input proce
of the second queue. The service time of customer at
second queue is exponential with rateµ2, also independent
of every thing else. This model has received conside
able attention in rare event probability estimation, e.g.,
Glasserman et al. (1996b) and Parekh et al. (1989).
wish to estimate the probabilityγ of the event that the
number of customers in the the second queue reaches s
606
t

-
ts

s.

t

in
e
t

s,

e
n

.
he
e

rs
ss

he
ss
e

r-
n
e

me

(high) level L, before the system empties, starting from
an empty system. See Figure 1 for a graphical illustration.

Queue 1 Queue 2
λ

µ µ1 2

Figure 1: Tandem model

Let Yt and Zt be number of clients in the first and
the second queue at timet, respectively (including the
customers in service). ThenX := (Yt, Zt, t ≥ 0) is
the underlying Markov process in the general set-up of
Section 2.

Remark 1 Notice that γ is defined as the probability
of overflow beforeboth buffers become empty, not just
the second buffer. We therefore have a slightly different
setting than described in Section 2. However, the RESTART
procedure is easily adapted for this case.

We compare the FE approach with the FS approach
of Glasserman et al. (1996a); and we do this for two
different cases. In the first case the second buffer has
the highest load, and in the second case the first buffer.
As service rates we useµ1 = 4, µ2 = 2, in the first
case, andµ2 = 4/3, µ2 = 2, in the second case. In
both casesλ = 1. Two different levels are considered:
L = 20 and 60. The intermediate levels will be chosen
as multiples of 2, hence,Lk := 2k, k = 0, 1 . . . , m − 1,
where m is 10 and 30, respectively. The number of
samples were chosen asrk = 106,∀k for the FE method
and n1 = 5 · 106, n2 = 2, nk = 4,∀k ≥ 3 for the FS
method to optimize comparability between the simulation
methods. As in Glasserman et al. (1996a), a cut-off
technique has been used to reduce simulation time. The
idea is to discard unpromising paths which lead back to
zero, since a lot of time is being spent simulating paths
back to the empty system state. The simulation results
for this model are found in Table 1, along with the exact
probabilities which were obtained from Glasserman et al.
(1996a). For each estimate ofγ we have simulated long
enough to obtain relative errors of about 3%.

We conclude that also in this case the FE method is
more efficient than the FS method. Note that, as observed
in Glasserman et al. (1996a), in the second case, where
the first buffer is the bottleneck the RTV is much higher
(for both the FE and FS implementation) than in the first
case. The RTV seems to grow quadratically withL.
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Table 1: Results for the tandem queue. Parameters
(λ, µ1, µ2) = (1, 4, 2) in top and(1, 4

3 , 2) in bottom half

L γ̂ RE sec RTV
Exact 20 1.27e-6
FE 20 1.256e-6 6.4e-3 418 1.7e-2
FS 20 1.256e-6 9.6e-3 281 2.6e-2
Exact 60 1.16e-18
FE 60 1.179e-18 1.2e-2 2195 3.0e-1
FS 60 1.128e-18 1.9e-2 1450 5.4e-1

Exact 20 3.82e-6
FE 20 3.812e-6 3.6e-3 1521 1.9e-2
FS 20 3.811e-6 9.6e-3 1418 1.3e-1
Exact 60 3.47e-18
FE 60 3.440e-18 9.4e-3 1817 1.6e-1
FS 60 3.398e-18 3.0e-1 4909 4.3e0

4.2 Flow line

The second model deals with a continuous flow lin
consisting of three machines and two intermediate buffe
Machine i ∈ {1, 2, 3} can process the continuous flow
products at some maximum rateνi, called themachine
speed. Moreover, the machines are prone to failure. Th
life and repair times of the machinei are exponentially
distributed with parametersλi and µi, respectively, and
are independent of each other. The buffer capacities
C1 and C2. The system is depicted in Figure 2 .

M1 B1 M2 B2 M3
ν ν1 2 ν3

C C21

Figure 2: Flow line model

This model has been studied in Kroese et al. (1998
where an Importance Sampling procedure was describ
for the efficient estimation of the overflow probabilityγ
in the second bufferB2 (defined as the probability that
buffer B2 reaches levelL := C2 before it empties again,
starting from an empty system). The translation into th
RESTART set-up is the following. LetYt and Zt be the
level of the first and second buffer at timet, respectively;
and letMt ∈ {0, 1}3 denote the state of the machines a
time t. Then obviouslyX := (Mt, Yt, Zt, t ≥ 0) is the
basic Markov process of Section 2.

We wish to compare the performance of differen
RESTART methods with that of the Importance Samplin
(IS) method in Kroese et al. (1998).

The model parameters areν1 = 3 , ν2 = 2 , ν3 = 1;
λ1 = 5 , λ2 = 2; µ1 = 1 µ2 = 1 and C1 = 1. The third
machine is assumed to be perfectly reliable. In Kroe
et al. (1998), a uniformization-based approach is us
607
to implement the IS estimator. A uniformization rate of
70 was found to give the most accurate results and th
number of cycles (runs) is105. The overflow levelL is
taken to be 3; The intermediate levels for the RESTART
methods areLk := k/2, k = 1, . . . , 6. The number of
runs is1.5 ·106 for the first stage and106 for the following
stages. The total simulation time for each experiment is
about one minute. See Table 2 for simulation results.

Table 2: Results for the flow line model
γ̂ RE sec RTV

SS 8.20e-6 0.110 61 0.7408
IS 7.95e-6 0.0149 63 0.0140
RS,FA 7.85e-6 0.0070 62 0.0031
RS,RA 7.79e-6 0.0077 65 0.0038

Comparing the RTV’s we observe that the RESTART
method compares very well with IS. It is not safe to
conclude that in general the RESTART method outperform
IS, since this would require a more careful consideration o
their respective implementations. We found the RESTART
method easier to implement, and requiring less critica
optimization parameters, and thus a more robust estimato

5 CONCLUSIONS

We have compared several implementations of the RESTAR
method and have found that the original RESTART imple-
mentation (which we call the Fixed Splitting (FS) imple-
mentation), in which each path is split into a fixed number
of copies, is in general not the most efficient one. It is
better to fix the total simulation effort for each stage of the
simulation (we call this the Fixed Effort (FE) implemen-
tation). In this way the number of paths that hit the next
level will remain approximately the same, irrespective of
how we chose the RESTART parameters. On the contrar
the FS implementation is very sensitive to the choice o
the RESTART parameters; if we do not choose thes
parameters exactly right, the paths will either “die-out”
or “explode”, leading to excessive simulation time. For
both methods (FE and FS) the “optimal” parameters are
determined by making the success probabilities in eac
stage approximatelye−2, and the number of trials in each
phase equal.

We also find that, if we use the FE method, it is
better, for a given total effort per stage, to restart an equa
number of times from each saved state, rather than t
restart each time from a randomly (in this case uniformly)
chosen saved state.

We note that if the entrance distribution is (approxi-
mately) known, we should sample from this (approximate)
distribution, thus rendering the samples independent an
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reducing the variance of the estimator. The advantage
such an approach is currently being investigated. Anoth
direction for future research is the estimation ofstation-
ary probabilities rather than overflow probabilities via the
RESTART method.
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