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ABSTRACT

Heuristics are an increasingly popular solution method f
combinatorial optimization problems. Heuristic use ofte
frees the modeler from some of the restrictions placed
classical optimization methods required to constrain pro
lem complexity. As a result, modelers are using heuristi
to tackle problems previously considered unsolvable, im
prove performance over classical optimization method
and open new avenues of empirical study. Research
should fully understand key test problem attributes a
sources of variation to produce efficient and effective o
timization studies. These problem attributes and sourc
of variation are reviewed. Problem correlation structu
significantly effects algorithm performance but is ofte
overlooked or ignored in empirical studies. This pap
analyzes the correlation structure among a set of stand
multidimensional knapsack problems and recommends
improved approach to synthetic, or randomly generat
optimization problems for the empirical study of solutio
algorithms for combinatorial optimization problems.

1 INTRODUCTION

Increasingly researchers are using heuristics to so
combinatorial optimization problems across a diverse ran
of applications. A fundamental aspect of research into a
application of heuristics is empirically testing heuristi
performance across a representative range of proble
This range of problems is a focus of this paper. I
particular, we address the primary issues to consider wh
adopting or generating test problems.

Why the concern about test problem generation? A
inadequate set of test problems does not provide
full range of heuristic performance information availabl
from adequate test sets. A properly designed industr
experiment, simulation study, or survey would neve
ignore influential factors. However, we contend tha
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many empirical tests of algorithms and heuristics ar
unknowingly guilty of such an omission due to a reliance
on standard problem sets and “legacy” problem generatio
methods. This reliance on test sets and legacy generat
methods overlooks the influence of problem correlatio
structure on algorithmic performance.

To defend this assertion, this paper is organized a
follows. §2 addresses why heuristics are important t
modelers.§3 discusses testing of algorithms and heuristic
while §4 discusses the characteristics of adequate te
problems.§5 develops the experimental design and source
of variation. §6 presents the results of recent analysis int
the correlation structure of accepted standard problem se
while §7 discusses and compares alternative approach
to generating optimization problems.§8 presents our
conclusions. Throughout this paper, algorithm is used a
a general term to include heuristics.

2 WHY HEURISTICS?

There has always been a symbiotic relationship betwee
computer science and operations research. This is e
pecially true in the increasing use of modern heuristic
to solve combinatorial optimization problems. In fact,
combined simulation and heuristic codes are helping t
solve incredibly complex problems previously considere
beyond the realm of classical optimization approaches.

Heuristics do not guarantee optimal solutions. How
ever, a wealth of empirical evidence suggests that,
general, properly implemented heuristics provide reaso
able answers quickly. More importantly, these heuristic
allow the formulation and solution of more complex,
reality-based problems. Therein lies the true contributio
of heuristic solution procedures; they provide modelers th
ability to address the harder, yet more interesting problem

This paper is about heuristics and the test problem
employed to evaluate heuristics. In particular, this pape
lays out what one should consider when generating te
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problems for empirical testing. Our fundamental thesis
that current heuristic testing is too narrow in scope and th
lacks the empirical basis for theoretically comprehendin
the general applicability of heuristics.

3 TESTING ALGORITHMS AND HEURISTICS

We test and implement algorithms for at least three reaso
One is to find a feasible solution to a previously unsolvab
problem. Past reliance on classical optimization techniqu
prevented consideration of certain problem attributes
reduce problem complexity. Essentially, we made sim
plifying assumptions for computational tractability. Thus
we found exact solutions to approximate problems. Th
aircraft loading problem is an example. Prior cargo loadin
systems employed classical techniques to obtain feasi
cargo loads (and thus airlift requirements) based primari
on cargo weight and volume restrictions. These system
avoided 3-dimensional aspects, aircraft center-of-gravit
or even aircraft floor-loading considerations because t
problems became too complex, even nonlinear. Howev
with new algorithms, such considerations are now practic
as demonstrated by Chocolaad’s application of tabu sea
to the Air Force’s Airlift Loading Model (ALM) (1998).

Another reason is to improve performance over ex
isting methods. We need to briefly define “improved
performance.” For a given problem, a heuristic solutio
approximates the optimal solution, but obtains this appro
imation much quicker than a pure optimization algorithm
Thus, performance is partially defined as time to solu
tion. However, because heuristics can accommodate m
complex problems, performance must consider obtainin
solutions to more realistic problems. This is an importan
consideration when embedding combinatorial sub-problem
within operational systems or within a simulation, or whe
conducting a series of time sensitive analyses within som
analytical setting. Consider the Uninhabited Aerial Vehicl
(UAV) routing problem (i.e., the traveling salesman prob
lem). UAVs offer long flight times, extended dwell times
over a target, multiple targeting and flexible re-targeting
Pre-mission and in-mission route planning requires rapid
obtaining reasonable solutions to the routing problem
Charlton (1995), Sisson (1997) and Ryan (1998) inves
gate the performance of tabu search techniques on su
routing problems and report favorable results. Such resu
offer promise for both off-line analyses and embedde
route-planning software applications.

The third reason is to compare competing algorithm
performance and develop an understanding of how a
gorithms (and heuristics) perform on various classes
problems (see for instance Zanakis (1977) and Hill (1996
Much research has been done in this area. However, m
needs to be done and should be done with adequate set
610
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test problems. The rationale for this statement is discuss
in the remainder of this paper.

4 TEST PROBLEM CHARACTERISTICS

Test problems are the basis for empirically examining
algorithms. Test problems can be drawn from practica
settings, from libraries of “standard” problems, or randomly
generated (Barr,et al., 1995). Greenberg (1990) calls the
last two sourceslibrary analysis and statistical analysis,
respectively. Each source has benefits and drawbacks.

Practical test problems can provide realism to the
study (Golden, et al., 1986). Conjectures regarding
algorithm applicability are straightforward but limited to the
range covered by these “real” applications. Such problem
also provide benchmarks to compare studies and algorith
performance. However, such problems are generally limite
in number and availability, and performance conjectures a
limited to the set of problems examined (Lin and Rardin
1980). Coefficient perturbation methods can expand th
limited set of problems, but the validity of the perturbation
method is difficult to assess. Further, it is often impractica
or impossible to control the values of various attributes o
the test problems. Controlling problem parameterizatio
is important for empirical experiment design.

Standard problem sets, available via the internet, striv
to overcome the availability problem. Some standar
problems are based on real applications while others a
synthetic (i.e., randomly generated) but widely employe
and accepted. Such problem sets provide benchma
capabilities but again yield conjectures limited to the
range of problems defined by the set of problems. Barr,et
al. (1995) suggestall computational studies of heuristics
employ standard problem sets to promote comparison
across experiments. While this is sound practical advice
the experimenter should consider all problem attribute
in these test sets. This is addressed below and conce
are demonstrated using the multi-dimensional knapsac
problems (MKP) available from Beasley (1998).

A third approach is to randomly generate test problems
creating a set of “synthetic” optimization problems. Result
from synthetic problems are random variables so statistic
analysis techniques are appropriate (Golden,et al., 1986).
Problem generation procedures can mimic “real world
problem attributes if known. Good problem generation
procedures can control a variety of problem attributes
Some common problem attributes are the:

1. number of variables,

2. number of constraints,

3. marginal distributions of objective and constraint
coefficients,
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4. method of setting right-hand side values,

5. non-zero entries in constraint coefficient matrix,

6. relationship between objective function values a
constraint sums, or

7. correlation structure among objective function a
each constraint.

Further, clearly defined problem generation procedu
provide an efficient means for distributing and reproduc
problems (Barr,et al., 1995). Some drawbacks includ
generating problem instances harder (or easier) t
seen in practical application, some possibly unrealis
problem instances generated in a comprehensive study
the sometimes tenuous definition of real-world proble
attributes.

5 EXPERIMENTAL DESIGN AND SOURCES OF
VARIATION

Synthetic optimization problems for empirical investig
tions facilitate experimental design. Lin and Rardin (198
and Golden,et al. (1986) discuss experimental design a
statistical analysis of heuristic results. Each probl
characteristic listed above is a potential experimental f
tor. Properly constructed problem generators can cre
the problem instances called for in specific experimen
designs. As noted by Lin and Rardin (1980), proper exp
imental design and statistical analyses produce inferen
valid for all problems produced by the particular pro
lem generator. By extension, defining problem genera
parameters corresponding to real-world problem attribu
extends those inferences to all real-world instances.

In any statistical experiment, error and variatio
are present. Designed experiments reduce the erro
controlling the experimental factors of interest (Lin a
Rardin, 1980). Naturally, not all sources of variation a
controllable. However, those sources or factors impart
a significant influence should be controlled.

Lin and Rardin (1980) discuss sources of variati
in experiments involving integer programming algorithm
They list:

1. variation among algorithms,

2. variation among levels of factors,

3. variation among the problems generated, and

4. measurement error.

The variation among algorithms and levels of facto
is good variation. This variation drives the inference
emanating from the empirical study; some algorith
611
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outperform others, and some factors are more influentia
on algorithm performance than others. The variation
between the problems generated and measurement er
has received less attention and may involve significan
“oversight error.”

Variation between problems is not unusual. Sampling
error is a well-known phenomena in random variate
generation. Techniques such as control variates ca
reduce the effects of sampling error but are rarely, if
ever, applied in optimization studies. Lack of random
number synchronization is another source of variation
and empirical studies do sometimes synchronize random
variables in test problem generators.

Measurement error is another significant source o
variation. For instance, measuring processing time o
an algorithm must account for imprecision in clock
sampling, internal representation, and alternate activitie
of the processor (e.g., multiprocessing systems, automat
backups, etc.)

We define and classifyoversight erroras a component
of measurement error for one reason; the researcher may n
be aware of a significant factor. For instance, Hill (1996)
showed the significant influence of correlation structure
on solution procedures for the two-dimensional knapsac
problem. His experiment employed synthetic optimization
problems, controlling the number of variables, number o
constraints, tightness of right-hand side values, problem
correlation structure, and type of correlation induced
Correlation structure is often overlooked in empirical
studies of optimization algorithms, but it is present in all
test problems.

This correlation structure presence leads to the ques
tions, “What type of correlation structure exists in standard
optimization problem sets?” and “Is this correlation struc-
ture a significant, yet unaccounted for, performance factor?
The MKP sets from Beasley are used to demonstrate ou
concerns.

6 STRUCTURE OF SOME STANDARD TEST
PROBLEMS

Beasley’s standard test problems are available via th
internet (1998). Data available for each MKP problem
includes the number of variables, number of constraints
constraint tightness values, best feasible solution value, an
the value of the LP relaxation. Correlation structures were
calculated for each problem, with the results summarize
in Figures 1 through 4.

Beasley offers 270 synthetic problems distributed in 9
files. Figure 1 displays the range of objective function to
constraint correlation values across the 30 test problem
in each of the nine files referenced along the Y-axis. The
graph depicts correlation value ranges from just below
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Correlation Values

mknapcb1

mknapcb2

mknapcb3

mknapcb4

mknapcb5

mknapcb6

mknapcb7

mknapcb8

mknapcb9

-1 -0.5 0 0.5 1

Figure 1: Range of Correlation Values Between Objecti
Function and Constraint Coefficients in the Nine MK
Problem Files Available From Beasley Website

zero to approximately 0.5. These ranges are narr
with respect to the entire range of feasible correlati
values, so are insufficient to provide real insight regardi
algorithm performance as a function of problem correlati
structure. However, the range is probably wide enou
to influence algorithm performance. Figure 2 summariz
the interconstraint correlation values for the same 2
test problems. These ranges are tighter than in Figur
and clustered on the positive side of zero correlation,
uncorrelated. Notice the minimum values of the rang
in Figures 1 and 2 rarely attain negative values, a
even then, these values are essentially zero (uncorrelat
Hill (1996) demonstrated the significant effect of negativ
correlation values between objective function and constra
coefficients on algorithm performance.

Beasley also provides a file containing 48 test pro
lems drawn from the literature (file MKNAP1.TXT). The
correlation structures for these problems are summari
in Figures 3 and 4. Figure 3 summarizes the range
objective function to constraint correlation values for ea
of the 48 test problems. The average correlation va
is also indicated. There are more instances of nega
correlation and the ranges appear centered around the
correlation value versus skewing to the positive side
seen in Figures 1 and 2. Again these ranges are sufficie
wide to likely influence algorithm performance, but no
variable enough to draw general conclusions regard
correlation effects on algorithm performance.
612
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Correlation Values

mknapcb1

mknapcb2

mknapcb3

mknapcb4

mknapcb5

mknapcb6

mknapcb7

mknapcb8

mknapcb9

-1 -0.5 0 0.5 1

Figure 2: Range of Correlation Values Between Constrain
Coefficients in the Nine MKP Problem Files Available
From Beasley Website
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Figure 3: Range of Objective Function to Constraint
Coefficient Correlation for 48 Problem From Literature
Available From Beasley Website
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Correlation Values

Problem

Number

1

12

24

36

48

-1 -0.5 0 0.5 1

Figure 4: Range of Inter-Constraint Coefficient Correlatio
for 48 Problem From Literature Available From Beasle
Website

Figure 4 summarizes the interconstraint correlatio
values for the same 48 test problems. Overall, the ran
of correlation values is centered at zero and are narr
with respect to the entire range of feasible correlati
values. As with the previous data displayed, these ran
are insufficient to provide real insight regarding algorith
performance as a function of problem correlation structu
However, once again the range of values provided by th
problems is probably wide enough to influence algorith
performance.

Figures 3 and 4 demonstrate two artifacts of th
problem set. First, since many problems vary only b
the right-hand side values of the constraints, we see m
repeated correlation structures. Second, nine problems
two constraints (i.e., a single interconstraint correlatio
value) that were essentially uncorrelated.

The message of Figures 1 through 4 is test proble
have a correlation structure which can affect algorith
performance. Failure to consider correlation effec
can lead to oversight error. Empirical studies usin
these problems should consider the correlation struct
attributes and supplement these problems with synthe
problems involving a wider range of correlation structure
Thus, an empirical experiment should consider correlati
structure as a experimental factor in the analysis of resu
613
s

y
d

.

Symbol Key
f

c

q

= ρCA1

= ρCA2

= ρA1A2

Design

Setting

1

12

24

36

45

Correlation Values

-1 -0.5 0 0.5 1

fcq
fc q

fc q
fc q

fc q
f cq

fcq
fcq

f cq
fc q

fc q
f c q

fc q
fc q

f c q
fc q

f cq
fcq

f cq
f cq

fcq
fcq

fcq
f cq

f cq
fc q

fc q
fc q

fc q
f cq

f cq
f cq

f cq
fcq

fcq
fcq

fcq
fcq

fcq
fc q

f cq
f cq

fcq
fcq

fcq

Figure 5: Correlation Values Employed in Experimental
Design in Hill (1996)

Fortunately, experimental design and problem generatio
techniques make this a straightforward task.

Figure 5 plots the correlation values employed in the
experimental design used by Hill (1996) to examine algo
rithm performance of two-dimensional knapsack problems
In Figure 5,ρCA1 represents the objective function to first
constraint correlation value,ρCA2 represents the objective
function to second constraint correlation value, andρA1A2

represents the interconstraint correlation value. The Y-axi
of Figure 5 represents each of the 45 correlation structur
design settings used in the experimental design. Not
ρCA1 , ρCA2 , and ρA1A2 vary across their entire range
of feasible correlation values. Such a design facilitates
insight regarding the effect of correlation structure on
algorithm performance. A key to obtaining such an exper
imental design is choosing a proper problem generatio
methodology.

7 SYNTHETIC OPTIMIZATION PROBLEM
GENERATION APPROACHES

We close by discussing three general approaches to te
problem generation, the last being our recommende
approach. Since test problem generation is essential
a multivariate sampling problem, we focus on generating
random samples. This presentation is terse as detai
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are available in Cario,et al. (1995), Hill (1996), and
Reilly (1997).

One approach is simply generating all coefficients
independently. This approach is easy to implement an
the marginal distributions selected are easy to maintai
However, the problem correlation structure is not controlle
and as the number of variables in the problem increase, t
correlation values will converge to zero, i.e., uncorrelated

A second, and quite popular approach, is to us
implicit correlation induction. Moore and Reilly (1995)
define an implicit correlation induction method as a
multivariate sampling approach in which some populatio
correlation level is implied by the specification of the
parameters for the problem generation method. There a
two benefits of such an approach. First, it is easy t
implement and second it has been used extensively in pa
research. However, this method has crucial shortcoming
The marginal distributions and the correlation levels
induced are dependent, thus confounding analysis of th
effects of problem parameters on algorithm performanc
Furthermore, due to the typically linear nature of the
problem generation scheme, the range of coefficient value
for a given correlation value, are quite limited.

A preferred approach is to use explicit correlation
induction, wherein one defines the univariate marginal dis
tributions, selects the target population correlation structur
and then samples from the resulting multivariate distribu
tion. This approach has real benefits. For one, selectin
correlation structures directly facilitates experimental de
sign. Then, independence of marginal distributions with
selected correlation structure facilitates statistical analysi
Finally, a wider range of coefficient values are realized
since sampling is based on a joint distribution versus som
functional form of a marginal distribution. A drawback
is determining the technique for sampling from the ap
propriate joint distribution, though multivariate sampling
techniques such as Iman and Conover’s (1982) or Hill an
Reilly (1994) are two examples applicable to test problem
generation.

8 CONCLUSIONS

Heuristics and algorithms for combinatorial problems ar
an active area of research and application. This pap
focused on the issues associated with the testing of su
algorithms and heuristics, namely what problem attribute
effect algorithm performance and what are the sources
variation within a set of test problems. Specifically, this
paper calls attention to the sometimes overlooked effect
problem correlation structure on algorithm performance
Demonstration of our concern rested on the unknow
correlation structure resident within “standard” problem
sets routinely employed within empirical optimization
614
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studies. This paper presented the results of computin
those correlation structures. The correlation structure
computed have a range of values sufficient enough t
likely affect algorithm performance, but really insufficient
to draw meaningful conclusions regarding the effect o
correlation structure on algorithm performance.

As a statistical experiment, empirical optimization
studies should undergo the same rigorous experiment
design employed in other empirical settings. This echoe
the work of Lin and Rardin (1980) and Golden,et al.(1986).
Properly choosing a test problem generation procedur
facilitates implementation of the resultant experimenta
design. Since test problem generation is an applicatio
of multivariate sampling, explicit correlation induction
schemes are the logical choice for a problem generatio
mechanism. In other words, the experimenter should sele
a generation method in which the form of the margina
distributions are unaffected by the correlation structure
specified. Coupled with better experimental designs
researchers can learn more about the applicability an
utility of algorithms and heuristics for solving increasingly
complex problems.
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