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ABSTRACT

In Gross and Juttijudata (1997) a single node, G/G/1 qu
was investigated as to the sensitivity of output performa
measures, such as the mean queue wait, to the shape 
interarrival and service distributions selected.  Gamm
Weibull, lognormal and Pearson type 5 distributions w
identical first and second moments were investigat
Significant differences in output measures were noted
low to moderate traffic intensities (offered load, ρ), in
some cases, even as high as 0.8.  We continue this typ
investigation for two types of queueing networks, nam
two versions of a two-node call center, to see if netw
mixing might reduce the sensitivity effect.

1 INTRODUCTION

Certain queueing theoretic results, as mentioned in G
and Juttijudata (1997), indicate that only the first two
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moments of interarrival and service time distributions 
drive output performance measures, such as mean 
wait.  This is certainly true for M/G/1 queues (
Pollaczek-Khintchine formula) and for queues in he
traffic (the Kingman heavy-traffic approximation and 
Kingman-Marshall upper bound).  However, in the ab
referenced study, significant differences in output mea
did occur in the G/G/1 queues studied, even for fairly 
traffic intensities.

We continue this investigation into sensitivity of m
queue wait, for a small two-node call center network to
if adding nodes changes the sensitivity to higher mom
of the input distributions (distribution shapes).  T
configurations of the call center network are show
Figure 1. In both of these configurations, there is
independent stream of arrivals for each single-server 
Arrivals can, however, be rerouted to the other node u
certain conditions, in order to decrease waiting time.
Figure 1: Two-node Call Center Networks
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Gross

Call centers are being networked together 
increasing numbers, as distributed rather than  central
configurations have advantages in emergency backup 
call coverage across time zones (Sulkin, 1995; 199
There are two basic call routing strategies for a networ
call center. The internal configuration uses a connec
line between the nodes to re-route calls. In the inter
system of interest for this research (Figure 1), a c
waiting for an agent at  one node can be routed to the o
node if the agent at the other node and the connecting
is available. The external configuration has an  exter
switch which  routes calls prior to arrival to a node. F
this research (Figure 1), a call arriving to the exter
switch is typically forwarded to its primary node. I
however, the agent  at its primary node is  busy and 
agent at its secondary node is available when the 
arrives to the external switch, the call is switched to 
secondary node. Hence, the external configuration allo
switching at arrival times only, while the interna
configuration  allows switching after arrival to the prima
node, should an agent at the other node and a  conne
line become available.

2 EXPERIMENTAL DESIGN

The networks were simulated using  GPSS/H and 
replications of 100,000 transactions were performed 
each case.  Interarrival and service-time distributions 
identical means and variances, with coefficients 
variation (CV = σ/µ) varying among 0.5, 1.0 and 2.0, an
differing only in the type of distribution (distribution
considered were gamma, lognormal, beta, and Pearson
5) – see Law and Kelton (1991). These generate a va
of shapes including hyperexponential, unimodal, a
bimodal, with a range of skewnesses and kurtoses. T
values of traffic intensity for nodes 1 and 2 (ρ1 and ρ2) of
.65 and .85 were also considered. Mean queue waits
each arrival type (Wq1 and Wq2) were compared  a
percent differences of the lognormal, beta, and Pear
type 5 from the gamma were computed.  The 9th
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percentile of the queue wait distribution for each arrival
type (denoted Wq(.95)1 and Wq(.95)2) was also
considered for both systems with CV[AT]=1 and
CV[ST]=1 at ρ=.65.

3 VALIDATION

Setting the CV equal to one for the Gamma interarrival and
service distributions (which then become exponential)
allows comparisons with theoretical queueing results. Th
stationary state probabilities for these two-node call cente
networks with exponential interarrival and service
distributions can be found numerically using matrix-
geometric techniques.  The infinitesimal generator matrice
of these  systems are quasi  birth and death processe
which are birth and death processes whose generat
matrix entries are themselves matrices. Due to this
repetitive structure, the stationary probability vectors for
the internal and external systems can be found  quit
efficiently. After solving a nonlinear matrix equation for a
rate matrix R and deriving the invariant probability vectors
x0 and x1, the normed stationary probability vector x = (x0,
x1, …) is computed using xk = x1R

k-1 (for k ≥ 2), and
normalizing. The state probabilities can be used to
compute the mean number of each arrival type in the
queue, and Wq for each arrival type then  found using
Little’s Formula.

Table 1 shows the simulated Wq for each arrival  type
95% confidence intervals for Wq, and the theoretical Wq
computed as described above.  We see that the differenc
in simulated means from theoretical are very small (al
quite a bit less than 1%) and within the confidence
intervals.

The 95% confidence interval half-width as a
percentage of the mean for Wq for each of the four inpu
distributions was also computed. Our estimates for Wq ar
quite precise, in that the confidence interval half-widths
are about 1-2% of the mean for all distributions except the
Pearson type 5 distribution,  which  is about 7% of the
mean.
al
Table 1: Validation of Simulation Results

Center 1 Center 2 Simulation: Type 1 Customers Theoretical Simulation: Type 2 Customers Theoretic
Off. Load Off. Load System Wq1 CI Lwr Bnd CI Up Bnd Wq1 Wq2 CI Lwr Bnd CI Up Bnd Wq2

0.65 0.65 External 1.042 1.032 1.052 1.050 1.050 1.041 1.059 1.050
0.85 0.85 External 3.566 3.494 3.638 3.567 3.547 3.491 3.603 3.567
0.65 0.85 External 1.479 1.467 1.491 1.485 2.167 2.135 2.199 2.170
0.65 0.65 Internal 0.833 0.827 0.839 0.835 0.835 0.829 0.841 0.835
0.85 0.85 Internal 2.739 2.695 2.783 2.739 2.737 2.701 2.773 2.739
0.65 0.85 Internal 1.273 1.263 1.283 1.281 1.498 1.482 1.514 1.499
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4 RESULTS

The main results are presented in Table 2.  Figure
(external system) and 3 (internal system) show extr
from the table in chart form.  Each figure has three cha
the first for offered loads at the nodes of ρ1 = ρ2  = .65, the
second ρ1 = .65, ρ2  = .85, and the third, ρ1 = ρ2  = .85.
Each chart has three sets of 5 pairs of values. The firs
are the sensitivities (the percent differences from 
gamma simulation) for the lognormal distribution, t
second for the Pearson type 5 distribution, and the third
the beta distribution.  The five pairs in each set differ in 
CV[AT] and CV[ST] used for the runs.  In each pair, t
solid bar represents the percent difference for Wq1, 
wait for arrivals to node one, from the gamma simulat
and the striped bar represents the percent difference
Wq2, the wait for arrivals to node two, from the gamm
simulation.  So, for example, Wq2(.5,2) is the perc
difference for the mean wait of arrivals to node tw
between its particular distribution and the gam
simulation, for a CV[AT] of .5 and a CV[ST] of 2.

We draw several conclusions from these graphs.  F
there are significant sensitivities depending on wh
distribution is chosen, even though the first two mome
are identical.  For example from Figure 2 for the exter
system, for the ρ1 = ρ2  = .65 case, where CV[AT] = 2 an
CV[ST] = .5, the lognormal  waits are approximately 50
lower than  those for the gamma, the Pearson type 5 w
are approximately 80% lower than those for the gam
while the beta waits are about 60% higher!  T
sensitivities are about the same for each arrival type 
solid and striped bars in each pair are roughly simila
magnitude).  Also, the sensitivities go down as the tra
intensities increase (as we would expect from heavy-tra
theory), but even for the ρ1 = ρ2  = .85 case, there ar
significant percentage differences from gamm
Sensitivities seem greatest for large CV[AT] and sm
CV[ST], the worst cases being the fifth of the set of fi
(CV[AT] = 2, CV[ST] = .5) and the next worst the thir
631
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(CV[AT] = 2, CV[ST] = 2).  The least sensitive cases wer
the fourth (CV[AT] = .5, CV[ST] = 2) and the first
(CV[AT] = .5, CV[ST] = .5) of the sets of five.  In general,
CV[AT] seems to have a greater impact than CV[ST]. No
that only five of the nine possible combinations of CV[AT
and CV[ST] were tried, but the evidence certainly indicate
that the foregoing conclusions are valid.

We see further, comparing Figures 2 and 3, th
sensitivities are about the same for both systems, with 
internal being possibly slightly less sensitive (but no
significantly or consistently so). Previous results (Mas
1998) indicated that the internal system had bett
performance than the external system with exponent
interarrival and service distributions as demonstrated 
the expected total number of customers in the system.

Some of the results for the two-node case under stu
here can be compared with results obtained for the sing
node G/G/1 system studied in Gross and Juttijudata (199
Table 3  shows percent differences from gamma f
lognormal and Pearson type 5 distributions, and compa
cases for “similar” offered loads with CV[AT] = 1 and
CV[ST] = 1.  These sensitivity percentages for the two
node networks for ρ1 = ρ2  = .65 and ρ1 = ρ2  = .85 are
compared to the G/G/1 cases for ρ = .6 and .7 and ρ = .8
and .9 respectively.  We see that the network is certain
not less sensitive than the single-node, G/G/1.

In the single-node, G/G/1 system (Gross an
Juttijudata, 1997), the 95th  percentile of the waiting-time
distribution was also observed, and found to have sligh
less sensitivity to distribution shape than the mean.  W
computed the 95th percentile value for the two-node,
external and internal systems, for the case of offered loa
of .65 at both nodes, and CV[AT] = CV[ST] = 1, with the
results shown in Table 4.  The results seem to also indic
that the 95th  percentile value is somewhat less sensitive 
distribution shape, but not dramatically.
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Table 2: Sensitivity of Wq to Input Distributions

Center 1 Center 2   Arr/Service External System Internal System
Off. Load Off. Load CV[AT] CV[ST] Distribution Wq1 Wq2 %Diff Wq1 %Diff Wq2 Wq1 Wq2 %Diff Wq1 %Diff Wq2

0.65 0.65 0.5 0.5 Gamma 0.205 0.205 0.200 0.199
LN 0.191 0.191 -6.829 -6.829 0.187 0.187 -6.500 -6.030
Beta 0.212 0.212 3.415 3.415 0.205 0.205 2.500 3.015
PT5 0.176 0.176 -14.146 -14.146 0.174 0.174 -13.000 -12.563

0.65 0.65 1 1 Gamma 1.042 1.050 0.833 0.835
LN 0.872 0.872 -16.315 -16.952 0.710 0.705 -14.766 -15.569
Beta 1.150 1.148 10.365 9.333 0.896 0.895 7.563 7.186
PT5 0.704 0.713 -32.438 -32.095 0.573 0.576 -31.212 -31.018

0.65 0.65 2 2 Gamma 5.440 5.420 3.786 3.790
LN 3.757 3.795 -30.938 -29.982 2.817 2.795 -25.594 -26.253
Beta 6.938 7.009 27.537 29.317 4.440 4.424 17.274 16.728
PT5 1.877 2.018 -65.496 -62.768 1.403 1.663 -62.942 -56.121

0.65 0.65 0.5 2 Gamma 1.994 1.990 1.627 1.629
LN 1.909 1.929 -4.263 -3.065 1.459 1.484 -10.326 -8.901
Beta 2.001 1.985 0.351 -0.251 1.682 1.685 3.380 3.438
PT5 1.317 1.467 -33.952 -26.281 0.924 1.127 -43.208 -30.816

0.65 0.65 2 0.5 Gamma 3.152 3.121 2.094 2.093
LN 1.460 1.462 -53.680 -53.156 1.117 1.118 -46.657 -46.584
Beta 5.021 5.058 59.296 62.063 3.059 3.070 46.084 46.679
PT5 0.520 0.519 -83.503 -83.371 0.445 0.445 -78.749 -78.739

0.85 0.85 0.5 0.5 Gamma 0.815 0.817 0.691 0.695
LN 0.793 0.791 -2.699 -3.182 0.678 0.678 -1.881 -2.446
Beta 0.830 0.827 1.840 1.224 0.706 0.705 2.171 1.439
PT5 0.765 0.769 -6.135 -5.875 0.655 0.658 -5.210 -5.324

0.85 0.85 1 1 Gamma 3.566 3.547 2.739 2.737
LN 3.257 3.230 -8.665 -8.937 2.556 2.542 -6.681 -7.125
Beta 3.686 3.735 3.365 5.300 2.833 2.825 3.432 3.215
PT5 2.802 2.864 -21.425 -19.256 2.249 2.235 -17.890 -18.341

0.85 0.85 2 2 Gamma 16.918 16.302 11.548 11.289
LN 13.198 13.081 -21.988 -19.758 9.686 9.736 -16.124 -13.757
Beta 17.992 18.198 6.348 11.630 12.199 12.001 5.637 6.307
PT5 7.217 7.618 -57.341 -53.270 5.420 5.859 -53.065 -48.100

0.85 0.85 0.5 2 Gamma 7.101 7.193 5.609 5.597
LN 6.913 6.876 -2.648 -4.407 5.427 5.351 -3.245 -4.395
Beta 7.212 7.138 1.563 -0.765 5.723 5.728 2.032 2.341
PT5 4.837 5.169 -31.883 -28.138 3.783 4.047 -32.555 -27.693

0.85 0.85 2 0.5 Gamma 9.228 9.069 6.178 6.073
LN 5.959 5.999 -35.425 -33.852 4.494 4.464 -27.258 -26.494
Beta 11.084 10.950 20.113 20.741 6.966 6.931 12.755 14.128
PT5 2.619 2.627 -71.619 -71.033 2.129 2.146 -65.539 -64.663

0.65 0.85 0.5 0.5 Gamma 0.345 0.438 0.355 0.344
LN 0.329 0.417 -4.638 -4.795 0.344 0.326 -3.099 -5.233
Beta 0.352 0.447 2.029 2.055 0.362 0.349 1.972 1.453
PT5 0.316 0.397 -8.406 -9.361 0.333 0.308 -6.197 -10.465

0.65 0.85 1 1 Gamma 1.479 2.167 1.273 1.498
LN 1.283 1.866 -13.252 -13.890 1.140 1.339 -10.448 -10.614
Beta 1.591 2.279 7.573 5.168 1.360 1.558 6.834 4.005
PT5 1.096 1.595 -25.896 -26.396 1.002 1.112 -21.288 -25.768

0.65 0.85 2 2 Gamma 6.945 11.148 5.496 6.594
LN 5.253 8.311 -24.363 -25.449 4.342 5.246 -20.997 -20.443
Beta 8.290 12.937 19.366 16.048 6.068 6.938 10.408 5.217
PT5 2.830 4.427 -59.251 -60.289 2.489 2.881 -54.713 -56.309

0.65 0.85 0.5 2 Gamma 2.957 4.165 2.607 3.005
LN 2.926 3.918 -1.048 -5.930 2.530 2.816 -2.954 -6.290
Beta 2.954 4.194 -0.101 0.696 2.648 3.053 1.573 1.597
PT5 2.063 2.899 -30.233 -30.396 1.786 1.978 -31.492 -34.176

0.65 0.85 2 0.5 Gamma 3.894 6.428 2.894 3.620
LN 2.030 3.634 -47.869 -43.466 1.685 2.363 -41.776 -34.724
Beta 5.631 8.531 44.607 32.716 3.942 4.305 36.213 18.923
PT5 0.814 1.385 -79.096 -78.454 0.754 0.994 -73.946 -72.541
632
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Figure 2: External System
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Figure 3: Internal System
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 rhos = .65 at each node

-100

-80

-60

-40

-20

0

20

40

60

80

LN(.65,.65) PT(.65,.65) BT(.65,.65)

Distribution Type

P
er

ce
nt

 D
iff

er
en

ce

Wq1(.5,.5)

Wq2(.5,.5)

Wq1(1,1)

Wq2(1,1)

Wq1(2,2)

Wq2(2,2)

Wq1(.5,2)

Wq2(.5,2)

Wq1(2,.5)

Wq2(2,.5)

Percent Differences of Wq for Each Arrival Type From Gamma,
 rho at node 1 = .65, rho at node 2 = .85

-100

-80

-60

-40

-20

0

20

40

60

80

LN(.65,.85) PT(.65,.85) BT(.65,.85)

Model

P
er

ce
nt

 D
iff

er
en

ce

Wq1(.5,.5)

Wq2(.5,.5)

Wq1(1,1)

Wq2(1,1)

Wq1(2,2)

Wq2(2,2)

Wq1(.5,2)

Wq2(.5,2)

Wq1(2,.5)

Wq2(2,.5)

Percent Differences of Wq for Each Arrival Type From Gamma,
 rhos = .85 at Each Node

-100

-80

-60

-40

-20

0

20

40

60

80

LN(.85,.85) PT(.85,.85) BT(.85,.85)

Model

P
er

ce
nt

 D
iff

er
en

ce

Wq1(.5,.5)

Wq2(.5,.5)

Wq1(1,1)

Wq2(1,1)

Wq1(2,2)

Wq2(2,2)

Wq1(.5,2)

Wq2(.5,2)

Wq1(2,.5)

Wq2(2,.5)
634



Sensitivity of Output Performance Measures to Input Distributions in Queueing Network Modeling
Table 4: Comparison of Sensitivity of the 95th Percentile of Wq to Wq
Offered Loads at  Both Nodes of .65, CV[AT] = CV[ST] = 1

   Table 3: Comparison of Sensitivity of the Two-Node Networks to the Single Node Case

% Diff in Wq's from Gamma/Gamma Distributions for CV[AT] = 1 and CV[ST] = 1

Model                    G/G/1      Exterior Network      Interior Network
Type 1 Type 2 Type 1 Type 2

rho 0.6 0.7 0.65 0.65 0.65 0.65
LN -14.39 -10.04 -16.32 -16.95 -14.77 -15.57
PT5 -31.17 -25.26 -32.44 -32.1 -31.21 -31.02

rho 0.8 0.9 0.85 0.85 0.85 0.85
LN -6.7 -1.65 -8.67 -8.94 -6.68 -7.13
PT5 -17.87 -13.3 -21.43 -19.26 -17.89 -18.34

 External System  Internal System
Arr/Serv %  Diff %  Diff %  Diff %  Diff %  Diff %  Diff %  Diff %  Diff
Dist. Wq(.95)1 Wq(.95)2 Wq(.95)1 Wq(.95)2Wq1 Wq2 Wq(.95)1 Wq(.95)2 Wq(.95)1 Wq(.95)2Wq1 Wq2
Gamma 4.934 4.968 3.773 3.775
LN 4.451 4.446 -9.79 -10.51 -16.31 -16.95 3.431 3.410 -9.07 -9.66 -14.77 -15.57
Beta 5.267 5.256 6.75 5.80 10.36 9.33 3.925 3.916 4.02 3.75 7.56 7.19
PT5 3.509 3.536 -28.87 -28.82 -32.44 -32.10 2.732 2.755 -27.58 -27.00 -31.21 -31.02
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5 CONCLUSIONS

Two moments are not enough, in general, to capture
essence of a particular  probability distribution with resp
to output performance measures.  Since most distribu
fitting software consider classic statistical distributio
which are, for the most  part, families of two-parame
distributions, and each has their own sophistica
formulas for fitting the data, they often give differe
recommendations as to the particular type of distribut
Even if the resulting means and variances agree, u
different distribution families can produce quite la
differences in output performance measures.  As seen
it therefore would seem quite necessary for analysts t
sensitivity analysis as to distribution shape.
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