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ABSTRACT and the relationship between the rate function and the

mean-value function is
We formulate and evaluate weighted and ordinary least .
squares procedures for estimating the parametric ra_te E[N(t)]:/ A(z)dz for all t>0.
function of a nonhomogeneous Poisson process. Special 0
emphasis is given to processes having an exponential rate o ) _
function, where the exponent may include a polynomial The probabilistic behavior of the NHPP is completely
component or some trigonometric components or both. defined by the rate or mean-value functions. The literature
Theoretical and experimental evidence is provided to in this area incIu.des'both parametric and nonparametric
explain some surprising problems with the weighted least Methods for estimating the NHPP rate function. To
squares procedure. The ordinary least squares procedure ignodel arrival processes having several periodic effects or
based on a square root transformation of the “detrended” @ long-term trend (or both), Kuhl, Wilson, and Johnson
event times; and the results of an extensive Monte (1997) utilized an NHPP whose rate function is of the
Carlo study are summarized to show the advantages andtype exponential-polynomial-trigonometric with multiple

disadvantages of this procedure. periodicities (EPTMP). . o
The principle of least squares is a method for estimating

the parameters of a statistical model fitted to sample data
1 INTRODUCTION by minimizing an appropriate sum of squared estimation

errors. In this paper we investigate least squares methods
In this paper we focus on arrival (counting) processes, and for fitting NHPPs to arrival processes having parametric

more particularly, arrival processes that can be classified as rate functions such as an EPTMP-type rate function of the
nonstationary point processes. For such processes we areorm
able to observe each arrival time exactly, and in general
the arrival intensity (rate) changes over time. Under A(t) = exp{h(t;m,p,®)}, t€]0,9], @)
certain assumptions a nonstationary arrival process can be
represented as a nonhomogeneous Poisson process (NHPPWyith
(Cinlar, 1975). Using NHPPs, we can accurately represent . »
a large class of arrival processes encountered in practice. . _ i .

An NHPP {N(#) : t > 0} given by h(t;m,p, ©) ; it + ;% sin(wit + éx),

N(t) = # of arrivals in[0,¢] forall ¢t>0 where

is a generalization of the Poisson process in which the © = [ag, a1,. .., Qm, Y153 Yps P1s ooy Ppy W, - -+ W)
instantaneous arrival rat&(t) at time ¢ is a nonnegative
integrable function of time. The mean-value function of is the vector of continuous parameters. The least squares

the NHPP is defined by procedure will be used to fit the mean-value functjg(n)
to N(t), the observed cumulative number of arrivals at
p(t) = E[N(¢)] for all t>0; time ¢t € [0, 5].
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Least squares has been widely used to fit distribution
functions to observed data. For example, Swain, Venka-
traman, and Wilson (1988) successfully used least squares¢
procedures to estimate the parameters of cumulative dis-
tribution functions (c.d.f’s) from the univariate Johnson 75 | :
translation system of distributions based on observed data. :
Similarly, Wagner and Wilson (1996) found least squares .«
to be an effective and computationally efficient method for
fitting a univariate Bzier c.d.f. to sample data. Fitting a 73 [« :
mean-value function and a c.d.f. are similar in that both :
are increasing functions which are fitted to the (possibly
rescaled) cumulative frequency of occurrence of relevant 2*
sample data. Since certain variants of least squares havél
proven to be advantageous methods for fitting distribution

functions, we are motivated to develop appropriate least T s T4 Th Te
squares procedures for estimating the mean-value function Figure 1: Relationship between Original and Detrended
of an NHPP. Arrival Times

2 METHODOLOGY
for i = 1,2,... constitute a Poisson process with rate 1

2.1 Setup for Least Squares Estimation of NHPPs (Cinlar 1975). Figure 1 illustrates this relationship.

For an NHPP{N(¢) : t > 0} in the interval [0, 5], let Since the detrend(_ad arrival time§, 75, . .. come from .
{r;:i=1,2,...,N(S)} denote the corresponding arrival & Poisson process with rate 1, the detrended interarrival
times. Throughout this paper, we Iét; : i = 1,2,...} times

denote a sequence of random arrival times; and a realization

of this process (that is, an observed sequence of specific X — T, if i=1,

arrival times) we will write as{t; : i = 1,2,...}. |f T rr -y, if 0=2,3,. ..

we know the functional form of the mean-value function

u(t; ©), then we have the relationship are i.i.d. exponential random variables with mean 1; and

W(7:0) = Blu(r:©)] + & fori—=1,2,... ?) Ii Sgatsh:tm stage Erlang distribution with scale parameter
wheree; is the random error, i.e. the statistical variation

around the mean, andlfe;] = 0. If the errors {e; : E[rf] =i for i=1,2,.... (3)
i=1,2,...} were independent and identically distributed

(i.i.d.), then we could calculate the ordinary least squares
estimates of the parameters, deno&g s, by minimizing

the error sum of squares

Furthermore, the variance af’ is equal toi, and the
covariance between’ and T fori<jis

N(S)

~ ~ ~ 2 7 J
S%:(©) = Z} {u(n;Q) - E[u(m@]} Cov[r},7}] = Cov lz X;,ZX;‘] = i. @)
1= k=1 =1
over all values o® so that we tak@)OLS = arg mirb S&
((:)) (Seber and Wild 1989). Since the expected value @f{7;; ®) is the constant
In the case of an NHPP, the errofs; : i = 1,2,...} i, the covariance structure of the errdes : i =1,2,...}

in (2) are neither independent nor identically distributed N (2) will coincide with the covariance structure of the
— in particular, an NHPP has the following probability ~detrended arrival times given in (4). To exploit the known
structure. Given an NHPRN(t) : ¢t > 0} with rate covariance structure of the “idealized” estimation errors
function A(t) and mean-value function(t), the sequence  {€i i =1,2,...}, we developed a weighted least squares
of arrival epochsry, 75, ... are event times of this NHPP ~ (WLS) procedure for estimating the mean-value function

if and only if the “detrended” arrival epochs of an NHPP as well as an ordinary least squares (OLS)
procedure. These methods are examined in the following
7 = pu(r;; ©) subsections.
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2.2 Weighted Least Squares Estimation of NHPPs NHPP. In this example, the empirical mean-value function
represents the arrival of patients at a kidney-transplant
center in the United States over the time period January
1, 1991 — December 31, 1995. The divergence between
1 the fitted and empirical mean-value functions provides a

It can be shown that the variance-covariance matfixof
the idealized residualéz;} in (2) has inverse given by

2 -1 0 ... 0 0 O - i . S
1 9 1 0 o0 0 striking example of the way in which the WLS estimation
0 -1 9 0 0 o0 procedure can fail in practice.
vV != : : : : : :
0 0 0 ... 2 -1 0 500
0 0 o ... -1 2 -1
. 0 0 0 ... 0 -1 1| 4007

w

o

o
1

(Kuhl, Damerdji, and Wilson 1998). In the WLS approach
to estimating the mean-value function of a target NHPP,
the error sum of squares to be minimized isg88)

= eT(®)V~1¢(®) over all values of®, where the
ith element of the vectoe(®) of actual residuals is 1007

~ ~ ~

£:(0®) = p(1:;0) — Elu(r;©)] for i = 1,2,...,N(9).

A ~ 0

Cumulative Arrivals
N
o
o
1

In terms of the vecton(®) = V~1/2¢(®) of transformed 0 365 73',0_ 1095 1460 1825
residuals, the WLS estimate of the NHPP parameter vector Time (Days)
© is given b . . .
g y Figure 2. Weighted Least Squares Estimate of the Mean-
N(S) Value Function (Smooth Curve) versus the Empirical Mean-
Ows = argmin Z u2(©), Value Function of Kidney Transplant Center 103 (Step
e =1 Function).
where theith transformed residual is
u(©) = M(Ti;(:))\/ ol /L(Ti+1;(:))\/1%1 (5) 2.3 Ordinary Least Squares Estimation of NHPPs
for i =1,2,...,N(S) — 1; and the last element ai is Because of the fundamental problems that we encountered

in using the WLS procedure for estimating NHPPs, we
developed an alternative approach based on a variance-
stabilizing transformation together with an OLS estimation
procedure. When building a statistical model for which the
variance of the original response variable is proportional
to its mean (as in (3) and (4)), a standard variance-
stabilizing transformation is to work with the square root
of the original response (Box, Hunter, and Hunter 1978).
Therefore, we have implemented the following square root
transformation to “normalize” and “stabilize the variance”
of the dependent variable in our statistical model of the
detrended arrival epochs so that the associated idealized
residuals have the following form

un(s)(©) = 6] {M(TN(Sﬁ e) - N(TN(S))} )

It is clear from (5) and (6) that all information
about the discrepancy between the empirical mean-value
function N(-) and the fitted mean-value functigi(-; ©)
has been completely eliminated from the fif§{S) — 1
elements ofu, and only the last element ai contains
any information about the discrepancy between these
two functions. It follows that even in the idealized
situation in which the weighted least squares estimation
procedure starts with perfect (error-free) initial estimates
of the unknown parameters so th& = ©, the value
of the objective functiorBSg(®) contains relatively little
information about how closely the current estimate of & = Vu1i;©) _E[ “(Ti?@))} (7)
the mean-value function approximates the empirical mean-
value function. Therefore it should not be surprising if fori=1,2,....
situations arise in which the final WLS estimate of the In Kuhl, Damerdji, and Wilson (1998) we show that
mean-value function bears almost no reasonable relation g5 ; — oo, E[\/u(7:;©)] is asymptotic to,/: —i and
to the empirical mean-value function.

Figure 2 shows an example of the anomalous behavior
that can result from using the WLS procedure to fit an form \/u(7;;©) — /i — 1 converge in distribution to a

Var[/p(7i; ©)] — 1; moreover idealized residuals of the
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normal distribution with mean zero and varian§e parameters of an EPTMP-type rate function. To determine
the degreem of the polynomial, the user can specify
(75 ©) — /i_i the minimum and maximum degree of the pglynomial
to be fitted. For each degree of the polynomial, let
©,, denote the initial estimate of the parameter vector
Thus, we see that the square root transformation does in ® based on the procedure of Kuhl, Wilson, and Johnson
fact stabilize the variance of the idealized residugds} (1997). We use the likelihood ratio test of Lee, Wilson
in (7); and we obtain the variance stabilized—ordinary least and Crawford (1991) to determine the final estimaterof
squares estimate for the parameter ve@oas Suppose a sequence ofevents is observed at the epochs

t1 <ty <--- <ty in a fixed time intervall0, S| as a
2
(Vuw® - fi-3) . @

realization of an NHPP with a rate function of the form
(1). For each trial degree:, we letL,, (@,n‘n,t> denote

The next step is to identify an appropriate numerical

procedure for minimizing the sum of squared errors on

the right-hand side of (8).

D
—

11— 00

N (0, 1),

N(S)
OpLs = argmin Z
5] i=1

the corresponding log-likelihood function evaluated®sf,,
given N(S) =n andt = (t1,t2,...,t,). Under the null
hypothesis that the current value of is the true degree
of the trend component of the underlying EPTMP-type
rate function, the test statistic

n7t) . ((:)m’mtﬂ

Given an EPTMP-type rate function of the form (1), has approximately the chi-squared distribution with one
we must determine the degree of the polynomial degree of freedom providel andn are sufficiently large.
component of the exponent and least squares estimates ofThus we exploit (9) to assess the importance of successive
the parameters o®. To determinem, we will use a increments of the likelihood function as the degree of the
sequential model selection procedure. Based on the initial estimated trend component is repeatedly incremented by
estimates of the parameters, we perform a likelihood ratio one. The degree of the fitted EPTMP-type rate function
test to determine the appropriate degr@e Then we is determined to be the smallest valueroffor which the
condition the estimation of the parameters on a fixed value difference (9) is not significant at a prespecified level of
of m and compute the final least squares estimate of the significance. The corresponding vectér,, provides the
parameter vecto®. initial parameter estimates for the Nelder-Mead simplex
_ The procedure for obtaining the least squares estimate search procedure to compute the final least squares estimate
®,, conditioned on a fixed value of involves a numerical ©,, of the parameter vecto®.

search procedure over the relevant parameter space. We

have .investigated several numerical search prqcedures4 EXPERIMENTAL PERFORMANCE

including the Levenberg-Marquardt procedure, which is a EVALUATION

specialized search gradient-search method for least squares

problem_s (Kennedy and Gentle 1980), and the Nelder- 4.1 Generation of Experimental Data

Mead simplex search procedure (Barton 1996, Olsson

1974, Olsson and Nelson 1975), which is a general direct- To evaluate the procedure for fitting an EPTMP-type rate
search method for unconstrained optimization of continuous function to a nonhomogeneous Poisson process having
response functions that may be nondifferentiable. We chose multiple cyclic effects, we chose seven NHPPs which

3 PARAMETER ESTIMATION

PROCEDURE 2[Lons1 (O )

the Nelder-Mead simplex search procedure to perform this
numerical optimization because of its ability to handle
weighted least squares formulations of our problem.
Moreover in the case of least squares estimation of the
mean-value function for an NHPP having an EPTMP-
type rate function, we found that the performance and
computational efficiency of the Nelder-Mead procedure
is approximately equivalent to that of the Levenberg-
Marquardt procedure.

The initial parameter estimates are based on meth-
ods by Kuhl, Wilson, and Johnson (1997) for rapidly
approximating the maximum likelihood estimates of the
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represent processes having up to four cyclic components
or a general trend over time or both. These cases were
chosen based on the set of experimental cases used by
Kuhl, Wilson, and Johnson (1997) to evaluate a maximum
likelihood estimation procedure for NHPPs with EPTMP-
type rate functions. Case 1 is a EPTMP-type rate function
with one periodic component. Cases 2 through 4 consist of
exponential rate functions with two periodic components.
Cases 1 and 2 do not contain a general trend over
time. Cases 3, 4, and 5 contain general trends which
are represented by polynomials of degree 1, 2, and 3,
respectively. Rate functions of type EPTMP with three
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Table 1: Parameters of NHPPs Used in the Experimental Evaluation

Case

Parameter 1 2 3 4 5 6 7
Qo 3.6269 3.6269 3.6269 3.6269 45197 3.6269 3.6269
Qg — — 0.1000 -0.1000 -0.4743 — —
Qo — — — 0.0200 0.0873 — —
as — — — — —-0.0041 — —
T 1.0592 1.0592 1.0592 1.0592 1.0592 1.0592 1.0592
01 —0.6193 -0.6193 —-0.6193 -0.6193 -0.6193 —-0.6193 -0.6193
w1 6.2831 6.2831 6.2831 6.2831 6.2831 6.2831 6.2831
Yo — 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
103, — 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
wo — 125664 125664 12.5664 12.5664 12.5664 12.5664
v3 — — — — — 0.2500 0.2500
o3 — — — — — 0.2500 0.2500
w3 — — — — — 25.1327 25.1327
V4 — — — — — — 0.7500
o — — — — — — 0.7000
w4y — — — — — — 3.1416

and four periodic components and no long-term trend are
utilized in Cases 6 and 7, respectively.

The parameters of the rate function for each case
are shown in Table 1. The frequencies used in the
experimentation are expressed in radians per unit time
such thatw; = 27w, wy = 47w, w3 = 87, andwy = 7
radians per unit time. If the unit of time is taken to be one

year, then these frequencies represent annual, semiannual

quarterly, and biennial effects, respectively.

components increases, the approximate likelihood ratio
test based on these initial parameter estimates also begins
to fail as the number of periodic components increases.
In running these experiments, we found that when the
number of periodic components was greater than or equal
to four, the performance of the test (9) was unacceptable.
Therefore, in Case 7 the true maximum likelihood estimates
were used in the test statistic (9). The minimum degree

of the fitted polynomial was set to zero and the maximum
degree of the fitted polynomial was set to six on every

Realizations of the selected NHPPs were generated application of the OLS estimation procedure.

over the interval0, S] using the progranmp3sim (Kuhl,
Wilson, and Johnson 1997). For each casg,= 100
independent replications were simulated over the interval
[0,12]; and the resulting event-count samples were used
first to verify the correct operation of the piecewise in-
version scheme implemented mp3sim. Then on each
replication of each case, an EPTMP-type rate function was
fitted to the observed series of event times. For all of the
applications of the estimation procedure, the frequencies
of the periodic effects are considered to be known. The
user-specified significance level for the approximate like-
lihood ratio test (9) to determine the appropriate degree
of the polynomial was set equal to 0.05. In each case
with the exception of Case 7, the initial parameter esti-

4.2 Formulation of Performance Measures

To evaluate the performance of the OLS estimation
procedure, we used both visual-subjective and numerical
goodness-of-fit criteria. These numerical performance
measures were utilized by Kuhl, Wilson, and Johnson
(1997) to evaluate the maximum likelihood estimation
procedure for fitting an EPTMP-type rate function. These
include absolute measures of error for each experiment
and relative performance measures that can be compared
across the different experiments. For replicatiorof a
given case £k =1, ..., K), the estimated rate function is

denoted bek(t) and the estimated mean-value function

mates specified in Section 3 were used in the approximate is denoted by (t).

likelihood ratio test (9). Since the quality of the initial

As defined in Kuhl, Wilson, and Johnson (1997),

parameter estimates degrades as the number of periodicwe let 6, and¢;, respectively denote the average absolute
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Table 2: Statistics Describing the Errors in Estimatix@) and u(t), ¢ € [0, 12]

Case
1 2 3 4 5 6 7
w(S) 586 588 1126 967 968 599 714
8 10.0 11.4 16.0 12.2 14.4 14.4 12.6
Vs 0.65 0.47 0.36 0.27 0.62 0.40 0.36
Qs 0.21 0.23 0.17 0.15 0.18 0.29 0.21
&* 23.7 29.4 65.5 80.3 56.3 40.7 525
Vi 0.60 047 0.42 0.32 0.57 0.48 0.37
Qs 0.48 0.60 0.70 1.00 0.70 0.82 0.88
A 12.4 12.8 15.6 12.9 16.1 11.0 11.6
Va 0.84 0.73 0.70 0.59 0.63 0.82 0.59
Qa 0.043 0.043 0.033 0.038 0.036 0.037 0.031
A* 25.1 254 37.4 33.3 34.7 23.4 24.3
Vax 0.74 0.64 0.65 0.52 0.54 0.73 0.53
Qa~ 0.087 0.086 0.081 0.097 0.077 0.078 0.065

error and maximum absolute error that occur in estimating
the rate function\(¢) on the kth replication of the target
NHPP over the time interval0, S]. Similarly, we let
Ay and A}, respectively denote the average absolute error
and maximum absolute error that occur in estimating the
mean-value functiori(t) on the kth replication of the
target NHPP over the time intervdd, S|]. The sample
mean of the observations;, : k =1,..., K} is denoted
by 6; and Vs denotes corresponding sample coefficient of
variation. The statistic6* and V- are computed similarly
from the observationgs; : k =1,...,K}. The sample
statistics A, Va, A*, and Va- are defined in the same
fashion. As in Kuhl, Wilson, and Johnson (1997), we
also report the “normalized” statisti@@s, Qs+, Qa, and
Qa~ to facilitate comparison of results for different rate
functions.

In addition to performance measures that indicate the
ability of the least squares procedure to fit an EPTMP-type

mean-value) function. Kuhl, Wilson, and Johnson (1997)
provide a detailed description of the method used to
construct these tolerance bands.

4.3 Presentation of Results

The statistical results on the estimation Xft) and p(t)

for each experimental case are shown in Table 2. These
statistics describe the errors in estimating the underlying
theoretical rate and mean-value functions. Table 3 shows
the frequency distribution of the fitted degree of the
polynomial trend taken ovei00 replications for each
case. Figures 4.3 through 4.3 contain the graphs of
90% tolerance bands for the rate function and mean-value
function for cases 1, 5, and 7.

4.4  Analysis of Results

rate and mean-value function to the rate and mean-value The statistical results in Table 2 seem to be reasonable
function of the underlying NHPP, we have formulated for the selected measures of performance. Since these
performance measures that indicate the ability of the experimental cases are based on those of Kuhl, Wilson,
least squares procedure to fit the observed arrival process.and Johnson (1997), we will use their statistical results as
Space limitations preclude elaboration of these performance a benchmark for evaluating the performance of our least
measures in this paper. For a detailed discussion of thesesquares estimation procedure.
statistics and their application in the present Monte Carlo In general, the performance measures in Table 2 that
study, see Kuhl, Damerdji, and Wilson (1998). describe the estimation errors in fitting the underlying rate
Beyond the numerical performance measures of good- function (those involving) are higher (worse) for the least
ness of fit to the underlying arrival process or to a squares estimation procedure than the corresponding results
realization of that process, graphical methods are used reported for maximum likelihood estimation. However, the
to provide a visual means of determining the quality of performance measures that describe the errors in fitting the
the estimates. For each case, the underlying theoretical underlying mean-value function (those involviny) are
rate (respectively, mean-value) function is graphed along approximately the same for the two estimation methods.
with a tolerance band for the estimated rate (respectively, The larger rate-function estimation errors that were obtained
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with the least squares procedure may be due to the fact that The plots of the90% tolerance bands about the
the objective function for the least squares procedure is mean-value function also indicate that the least squares
based on the discrepancies between the fitted mean-valueprocedure consistently provides reasonable estimates of the

function and the empirical mean-value function. Thus a
good fit to the mean-value function does not necessarily
guarantee that the fit to its derivative, the rate function, will
be good. The difference between the quality of the fits for
the two methods is also evident in the plots of the rate and
mean-value functions. Also, we observe that the errors in
estimating the underlying rate and mean-value functions
tend to increase as the degreeof the long-term trend and
the numbep of periodic components increase. One reason
for this may be that as the number of periodic components
increases, the initial estimates of the parameters begin to

degrade, which may cause the numerical search procedure

to start too far from the optimum. Poor starting values for
the parameter estimates may result in the procedure finding
a local minimum least squares estimate and stopping at a
suboptimal solution.

Table 3 indicates the ability of the fitting procedure to
determine the degree of the exponential-polynomial trend
present in the underlying NHPP rate function. These
results indicate that the likelihood ratio test based on the
initial estimates for the maximum likelihood estimation
procedure works well in general for rate functions having
up to three periodic components. With more than three
periodic components, we were able to achieve similarly
good results but at the cost of computing the final maximum
likelihood estimates to be used in the likelihood ratio test.

Table 3: Frequency of Fitted Polynomial Degree for
K =100 Realizations

True Fitted Degree
Case Degree O 1 2 3 4 5 6
1 0 98 7 0 O 0 0 O
2 0 87 13 0 O0 O O O
3 1 0 94 6 0 0 0 O
4 2 0O O 8 13 0 0 O
5 3 3 0 1 9% 1 0 O
6 0 100 0 O O O O O
7 0 949 6 0 0 0 0 O

The plots of the90% tolerance bands about the
rate functions indicate that the least squares estimation
procedure is consistently able to fit a reasonable EPTMP-
type rate function to the underlying NHPP. Similar to the
results reported by Kuhl, Wilson, and Johnson (1997)
for maximum likelihood estimation, the plots of the
tolerance bands for least squares estimation are widest
at the peaks and valleys of the arrival rate. In addition,
the tolerance bands tend to be wider as the number of
periodic components increases.
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underlying NHPP. Also from the plots of the tolerance
bands, one can observe that the widths of the tolerance
bands increase over time. This behavior is expected.
Because the error is cumulative over time, the estimation
error increases as the mean-value function increases.

5 CONCLUSION

In this paper we have developed a least squares method for
estimating the parameters of an NHPP having an EPTMP-
type rate function. This procedure has been implemented
in the public domain computer softwamgp3ls . Using this
software, we have performed an experimental evaluation
of our least squares procedure. The results of this study
indicate that the least squares estimation method does a
good job of doing what it was designed to do. Namely, the
procedure is capable of accurately tracking the empirical
mean-value function of an NHPP. In addition, we have
developed a weighted least squares formulation of this
problem, and have shown theoretically why weighted least
squares fails when applied to an estimation problem with
a first- and second-order moment structure such as that
arising in estimation of the mean-value function for an
NHPP.
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