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ABSTRACT the service time X, with density

In simulation modeling and analysis, there are two situations B

where there is uncertainty about the number of parameters h(z,0) = Zﬂif(’r’ i) @
needed to specify a model. The first is in input modeling =t

where real data is being used to fit a finite mixture with 8 = (3,, ¢,, i = 1,2, ..., k), where theg, > 0,

model and where there is uncertainty about the number of : = 1,2, ..., k, are weights summing to unity

components in the mixture. Secondly, at the output analysis

stage, it may be that a regression model is to be fitted ul

to the simulation output, where the number of terms, and Zﬁi =1

hence the number of parameters, is unknown. In statistical =t

terms, such problems are non-standard and require specialand the f(z, ¢,) are the densities of thé components
handling. One way is to use a Bayesian Markov Chain of h(z, 8). For simplicity we have assumed that the
Monte Carlo (MCMC) analysis. Such a method has component densities all have the same form, though their
been suggested by George and McCulloch(1993) using parameter values can be different.

a hierarchical Bayesian model. This method is flexible, The vector of parameterd), is assumed not known
but does introduce many additional parameters. This and will have to be estimated from data obtained from
tends to make the modelling look rather complicated. In the real system. There may well be uncertainty about
this paper we adopt a classical Bayesian approach thatitself. Estimation ofk is a non-standardproblem. This is

is essentially equivalent to the George and McCulloch the case that we consider in this paper.

technique, but that has a much less elaborate structure and A second example occurs in the output analysis of a
which renders model interpretation much simpler. The simulation experiment. Suppose we conduciimulation
method is illustrated by a regression metamodel example. runs of a queueing model with each run conducted at a
different traffic intensity. For theith run, let the traffic
intensity bex; and lety; be the average customer waiting
time, say, obtained from this run. We may fit a regression
metamodel to examine the dependenceyobn z. Thus

we assume

1 INTRODUCTION

In computer simulation experiments ever more elaborate

models can be used both at the input modelling stage, and

at the output analysjs stage. We c_onsider tr_le case where yi =n(z;,0) + 2z, j=1, 2,

we have a parametric model for which there is uncertainty

about the number of parameters that there should be in where z is a ’'noise’ variable modelling the chance

the model. We give two examples. variability of the simulation output, and(x,0) is the
Cheng, Holland and Hughes (1996) consider modeling regression function of actual interest. We may well be

the service times of vehicles using a toll booth. A uncertain about the precise form gfz, ) in which case

reasonable assumption is that the service times of vehicles we might take it to be similar in form to (1), that is

of different types, e.g. private cars, light vans, heavy goods A

vehicles, will have different distributions. A plausible n(z, 9) :Zﬁifi(xv ®,). 3)

1=1

r (@)

ceey

model is therefore to use finite mixturedistribution for
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Here thegs, are simply coefficients and so are not necessarily is possible. In Section 3 we describe the corresponding

positive and do not have to sum to unity. Théx, ¢,) are derived MCMC method, and in Section 4 we apply it to
suitably selected basis functions. If for example they are a simple regression problem and also report results for a
polynomials, not dependent on unknown parametgfs simulation experiment where the problem is to select an

then we have a standard polynomial regression problem. appropriate regression metamodel that attempts to quantify
However, the case wheteis unknown and where unknown  how the delay experienced by packets in a computer PAD
parameters,p,;, appear in the basis functions, is non- network depends on the traffic intensity.
standard and again this is the case of interest in this
paper.

The reason why the case of unknowis non-standard
is as follows. Suppose that a particular component, or ) ) o
term, 3, fi(z, ,), has been included in the model, but is 2-1 Derived Posterior Distribution
actually not needed. Then the estimatedpfwill be zero
or near zero. This renders estimation of the corresponding
; meaningless and we encounter numerical instability if
we do try to estimatep, in this situation. There is a large
literature concerning this problem (see Cheng and Traylor
1995, for a review).

One of the earliest attempts, in the regression case
at a Bayesian formulation was made by Young (1977)
who obtained limited theoretical results for the normal
model. More recent approaches to the problem (George
and McCulloch (1993), Green (1995) and Richardson
and Green (1997) ), have focused on MCMC simulation
methods, and have adopted models of variable dimension
in the sense that the unknowh is treated explicitly

: aindiuhes __ p(2|0)7(0)

as a parameter, with a prior distribution; and where the m(0lz) = —— -
main problem is to calculate the posterior distributiorkof J p(z|0)n(6)d6
These approaches require the formulation of a valid Markov
process which includeg as one of the state variables,
including a careful definition of the way transitions can
take place between the different possible valueg:.of

The method proposed by George and McCulloch
(1993) uses a hierarchical Bayesian method incorporating
additional latent variableswhich in effect act as indica-
tor variables of whether particular components should be
included or not. The method proposed by Green (1995)
and Richardson and Green (1997) uses a reversible jump
Markov representation for moving about parameter spaces
of different dimensions. Of the two methods, the one pro-
posed by George and McCulloch appears more transparent
and easier to implement and interpret. Nevertheless the
hlerarchllcal structure is somewhat glaborate. ) We can now calculate the followinglerived posterior

In this paper we propose a classical Bayesian formula- istripution for s :
tion in which we calculate what we callderived posterior
distribution for k. We call the corresponding numerical , )
MCMC method thederived chain method The method po(s = Jlz) = /SE( )sz(9|z)d97 J=52 50
is essentially equivalent to George and McCulloch’s latent
variable method, but is arguably easier to implement and This derived distribution is very simple to calculate using
interpret. the Markov Chain Monte Carlo method. We shall show

In Section 2 we introduce the derived distribution how to do this, but we first give an explicit example
method and compare it with the latent variable method illustrating why this derived method is essentially the
in an elementary example for which a theoretical analysis standard Bayesian version of the latent variable method.

2 BAYESIAN ANALYSIS

Let z denote the sample data (in our case these are the
observations obtained from simulation runs). The data
depends on a vector of parametésvhich are unknown
and which we wish to estimate.

In the Bayesian framework, we start by supposing
that there is a prior distribution of possible values &br
' Let w(0) denote the density of this prior. This prior is
' then updated by incorporating the data to give a posterior
distribution with density«(6|z), that reflects the best
information we have about the distribution &f given
the dataz. Our central aim is therefore to calculate this
posterior density. By Bayes Theorem this has form

(4)

This formula usually assumes that the dimensio of
is known. We are however interested in the situation where
the precise number of parameterssay, is not known.
We deal with this by initially not explicitly assuming that
s has a prior, but instead that there is a maximal model
containingsy parameters that is definitely adequate. Thus,
whatever the 'true’ value of, this value is less than,.
The prior7(0) and the likelihoodp(z|0) is well - defined
for this maximal model so that the posterior distribution
p(8|z) can be calculated from (4). Now let

Ss(0) = number of components

for which 60;| > 6 at 6.
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2.2 A Theoretical Example

To illustrate the derived posterior distribution method, we
consider an example concerning fitting a simple mixture
model. LetU (0, b) denote the continuous distribution
with density

wxz |b) =b"1 0<z<b

=0, otherwise

Let x = (x1, xo, ..., x,) be a random sample drawn from
U(0, 1), but suppose that we do not know this. Instead
we assume that

x~alU(0,1)+ (1 —a)U(0,b)

whereb is a known fixed constant greater than unity, to be
explicit we might letb = 2. The other parametes, is not
known, but has to be estimated. Adopting the Bayesian
approach we suppose has prior distribution

m(a) =u(z | 1). (5)

Thus the correct model is obtaineddf= 1. Because the
x; ~ UID(0, 1) by assumption, the likelihood takes the
simple form

p(x| a) =[a+ (1 —a)d™]". (6)
Hence
p(x) = [px] a)r(a)da
= [/la+ (1 —a)b~'|"da )

=[1-bo"""1/[(n+1)(1—-b"1].

Using the derived indicator model approach we take the
model to be (the correcty/(0,1) if a > 1 — 6, whereé

is some suitably chosen small number. If we define the
indicator variable

B =0if 0<a<1-6 ®)
=1if 1-6<a<1
we select the correct model with probability
1
po(A=11%)= [ plx| a)e(ayda/p(x).
1—
Using (5), (6), and (7) we find
1—[1—(1—=b"tg*!
polp=1] %) = TN )

This tends tol geometrically as» — oo, for fixed b > 1
and any smalb > 0.

We show that the above is a special formulation of
the hierarchical approach; in this case we assume

a=v; + (1 —7)va,
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where v, v; and v, are all unknown parameters with
carefully selected priors. The hierarchical Bayesian
formulation is:

a N7T1(0, | 77’Ulav2)a
(’Y,’Ulﬂiz) N7T2( ’Y,Ul,vz)

€T~ p(.]? | a)a
with the second level priotry chosen as follows. The
parametery is the latent variable with Bernoulli prior

v =0 with probability 1—1p
=1 with probability p

The priors of the other two parameters can be chosen
more flexibly. We assume, for example, that

’UlNU(l—(S, 1), U2NU(O7 1—5).
We can recover the standard Bayesian formulation

x~px|a), a~nla)

by integrating out the secondary variables

m(a) :/7T1(Q|%1)17U2)7T2(%Ul7vz)d’7dvldvz~

In our case this gives

ma) =1-p)/(1-=6)if 0<a<l—=9¢

=p/é ifl1-6<a<l1

The indicator variable (8) is thus precisely the latent
variable in this case and we have

(10)

(n_ x) = P1
ps(f=11x) Po + D1 (1)
where
po = [(1=p)/(A=8){[1 = (1=b"H)s]" " """ (p/6)}
and

pr=(p/8){1=[1— (1 —b7")6" 1}

The U (0, 1) prior (5) of our original standard formulation
is recovered simply by setting

p=24.

3 NUMERICAL CALCULATION

3.1 Markov Chain Monte Carlo

The posterior distribution (4) is not usually obtainable
in closed form because we cannot easily calculate the
denominator, even by classical numerical quadrature. The
MCMC method is a sampling method for overcoming
this problem. We regard® as the state of a certain



Cheng

Markov Chain, defined in such a way that the equilibrium
distribution is precisely the required posterior distribution
with density 7 (0 | z). If the Markov Chain can then be
simulated and the simulation run made sufficiently long so
that equilibrium is reached, then the sample distribution
of the observed’s will converge to the required form
with density (6 | z).

Let 6°, @', ..., 6°,... denote the successive states of
the chain. The following general Monte Carlo method is
known as theMetropolis - HastinggMH) algorithm.

The state#'™!, at time pointt + 1 is obtained from
the previous statef’, by generating a candidate valge
from a candidate distribution with density|0"). The
notation indicates the possibility that this distribution may
depend orf’. The value is only accepted with probability

t
(6", ) = min (1, W) (12)
7(0"[z)q(¢|6")

when 8"™! = . Otherwise the state remains unchanged
with 8"t = "
The MH algorithm thus has the form:
Initialise 6°, ¢ := 0
Repeat
{
Generatep ~ ¢(.|6"), U ~ U(0,1)
If U< a8, ¢) Setd'™ = ¢
Else Setg'™! .= @'
Sett:=t+1

}

In theory there is considerable flexibility in the choice
of the candidate density(p|0). We shall use the so-
calledindependence samplevhich is the case where the

3.2 Regression Metamodelling

We now describe the MCMC method for regression
metamodelling, for the case

k
v =D Bifilw)) +2, j=1,2 ..r (15)

i=1

where 2z has distribution with cdfF'(-, u, o), wherey is

the mean ofF, and o is some measure of the dispersion.
In this formulation we have absorbed the usual constant

term of the right-hand side into the distribution af Thus

the standard normal model

k
Y= Zﬂzfz(x) +z, z~ N(07 02)
=0

is included in the formulation (15) if we set

H= 50f0(1‘)7

provided fo(z) is a constant independent af. The
formulation also allows non-normal, typically skew, errors.
Lack of space prevents discussion of this possibility further
here.

We now make the key assumption thats unknown.
To clarify the discussion, we define more precisely our
interpretation of what constitutes a ’'correct’ trise

One definition is to assume that the non-zero coeffi-
cients comprise the s¢3; | i € I} with 3; =0 for j & I,
and define the trué to be the largest amongst all € I.
Thus for example if3; and 83 are non zero, ang, =
B; =0, for all j >4, thenI = {1,3} andk = 3.

An alternative definition is the subset selection version
where one wishes to identify the set of non-zero coefficients
precisely; thatis, to find the sé6, | i € I'}. In our example

(16)

candidate density does not depend on the current state, soe would therefore wish to identify as being the set

that

q(¢|0) = q(). (13)

{1,3}. Our method will handle either definition of this
‘correct’ k.
The main requirement in identifying, is that the

In the case where there is great prior uncertainty about Markov process should have a stationary distribution which

the value off it is usual to use aeference priorfor 7 (),

possesses a high posterior probability for the correct value

that is a prior that remains essentially constant over the Of k- The model being fitted actually makes this a rather

region where the likelihoog(0|z) is appreciable. The
posterior density is then proportional to the likelihood,

(8]z) o p(0|z),

and the acceptance probability, using the independence

sampler, reduces to:
(0, ) = min <1, (14)
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subtle requirement. The critical difficulty is the hierarchical
nature of the model, in the sense that if the correct model
hask = kr, thenany model with & > k7 will be equally
good if not better. An undemanding formulation might
not exhibit a preference fok = kr over k > kr and
consequently would then not necessarily yield a posterior
probability for k7 that was larger than for any > kr.

If an MCMC Bayesian method is to correctly identify
whilst allowing & to vary, then it must include a mechanism
for preferring smallerk to larger k, provided the fit is
adequate. Without such a preference, the MCMC will not
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necessarily produce a posterior distribution with a large less thank,, then we can expect that for most of tHé,

probability located at the correét

George and McCulloch (1993) handle this difficulty
by proposing a hierarchical framework. However their

the component§§- will be near zero forj = k+1, k42,
, ko. Thus if we selectd > 0 and considerg; to be
zero for practical purposes, #f; < §, then we construct a

hierarchical definition uses a fairly elaborate distributional derived chain{l?:t, t=0,1,2, ..} corresponding to[Bt,
structure. A more general methodology has been developedt = 0, 1, 2, ...} simply by settingk! equal to the largest
by Green (1995) and Richardson and Green (1997) using a ¢ for which

reversible jump process to model state spaces with variable
dimension. It is not immediately clear that the process

will necessarily identify the corredt. The above methods

6| > 6. 17)

The distribution of the values of in the sequencé’ can
thus be used to estimate the posterior distributiork of

seem quite elaborate to set up involving a large number
of parameters and requiring some sophistication in the
interpretation of results. In contrast the derived posterior 3.4 Candidate Distribution

distribution is easily calculated. The method is described

in the next sub-section.

3.3 Derived Chain MCMC Method

The derived chain MCMC method is as follows.

1. We use a locally uniform reference prior and an

independence sampler of the form (13), so thatakes
the simple form (14).

2. We now assume thadty is a known upper bound
on unknown truek. (The precise value fok is relatively

unimportant. In practice it can be arbitrarily large, the main
limitation being that there should be sufficient degrees of
freedom left to estimatg ando.) The unknown parameters

are therefore

9:(611ﬁ27'“aﬁk0a /1/1 0)'

We assume that these have prior distribution with density

m(0) = 7(B1)m(B2) ... 7 (By, ) ()7 (0)-

The dataz = (z1, 22, ..., z)T in the Bayes formula (4)
is calculated from (15) using

ko
SR, =12 e
=1

For an appropriately selected candidate distributig(#))

(to be discussed in the next sub-section), the MH algorithm

reduces to
Initialise 6°, ¢ := 0
Repeat
{
Generatep ~ ¢(.), U ~U(0,1)
If U <min(1, [plelz)e(8")]/ [p(6'|2)a()])
Seto' .=
Else Setp’™! .= @'
Sett:=¢t+1

The MCMC simulation does not identify the correct

value of & explicitly. However if the true value of is
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For the candidate distribution in our proposed methods we
recommend use of an estimate of the asymptotic normal
distribution of the maximum likelihood estimates of the
parameters (Kendall and Stuart, 1979). The asymptotic
distribution has to be estimated because it depends on the
unknown parameters themselves, which therefore have to
be estimated. As we are using an independence sample,
the candidate distribution is obtained prior to the simulation
and is not altered subsequently. The main requirement is
the form of the candidate should have the characteristics
known to be desirable (see Gilks et al 1996, page 10).
In the examples, below we use a method based on least-
squares which is precisely the maximum likelihood method
when the model is normal, and is only approximately so
when the model is not normal.

We illustrate application of the above to two simple
models.

4 APPLICATIONS

4.1 Normal Model
To be explicit we suppose the data has the form:
k
Yi = Zﬁifi(%‘) +zj, j=1,...,n,
=0

where z; ~ N(0,0?%), and that the basis functiong are
orthonormal, that is:

Sy filz)=01i=1,2,...k
Sy filw) fi(x) =655 i, 5=0,2,... k.

In our numerical example, eacfi(.) was a polynomial
of degreei. In matrix form

y=AB+z,

where ATA =1, so that the estimates fg and o2 are
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and

B ~ N(Bv 021)7 v T T r !

and

vs? ~ a’x2, e

e

wherev = n — k (see for example, Box and Tiao, 1973). |f,
0 u T T T T

For the candidate distributiog(6) we therefore assume

B~ N(B,o1) and o*~ s*x%/v. 0

In this simple model we actually know the correct zo
result. For the correck : o

B~ N(B,o’I) and o* ~vs?x;>. (18)

Thus the candidate distribution is precisely the posterior
for 3, but not foro2. A possible alternative is to use this
correct version (18) as the candidate distribution, though
we do not follow this possibility here.

Figure 1 gives results for the model:

yjh = 31’j + Zjh,

} j=1,...5, h=1,2,..,10,

Ty =17 ‘ ; 2 : j : : : )
b
where p
zjn ~ N(1, 17). i
In terms of orthonormal basis functions this gives f
R
By ="70.71 B, =30.0 8; =0, j=>2. s

The MCMC usedI’ = 50,000. Let K = k+1 be the “
total number ofg coefficients, withky = 4, Ky = 5. The
correct value isK = 2, so that the correct distribution
for K is pr =0, p2 =1, p3 = ps = ps = 0. In Figure ) : : : : : : ;
1, the first six plots give the candidate densities for the Kioe)
parameters,, 34, ..., 84, 0 (Smooth curves) together with o
the histogram of their posterior distributions estimated from |
the MCMC run. The last two graphs give the posterior |:.
distributions of K and the derived versionk. For the o
unadjusted posterior distribution df, the probability is ) : 2 : .
incorrectly concentrated & = 5. In contrast the posterior e
distribution of the deriveds process withd = 3s in (17),
yielded a value forp(K = 2) = 0.9978 that is very
close to unity, the next highest values being already small:

p(K =4) = 0.0010 and p(K = 5) = 0.0009.

-

4.2 PAD Queue Example
. _ - Figure 1. Conditional and Posterior Distributions of
Cheng and Kleijnen (1997) describe the fitting of a pgrameters in the Regression Model

regression metamodel in an experiment investigating how
the delay in processing characters in a PAD queue depends
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on traffic intensity. The behaviour is non-monotonic and Green, P.J. (1995). Reversible jump Markov chain monte
required fitting a polynomial of order five or six before Carlo computation and Bayesian model determination.
a satisfactory fit is obtained. The above Bayesian derived Biometrikg 82, 711-732.

chain method the posterior distribution for the degree of , )
the polynomial gave very similar results. Lack of space ~ Richardson, S. and Green, P.J. (1997) On Bayesian
prevents a full discussion of this example here, but it is analysis of mixtures with an unknown number of

hoped to report on this example elsewhere. components.J. Roy. Statist. Sed, 59. pp 000-000.
Young, A.S. (1977). A Bayesian approach to prediction
5 SUMMARY using polynomials.Biometrikg 64, 309-317.

We have given what we consider to be a very simple and AUTHOR BIOGRAPHIES
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