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ABSTRACT

In simulation modeling and analysis, there are two situatio
where there is uncertainty about the number of parame
needed to specify a model. The first is in input modeli
where real data is being used to fit a finite mixtu
model and where there is uncertainty about the numbe
components in the mixture. Secondly, at the output analy
stage, it may be that a regression model is to be fit
to the simulation output, where the number of terms, a
hence the number of parameters, is unknown. In statist
terms, such problems are non-standard and require sp
handling. One way is to use a Bayesian Markov Ch
Monte Carlo (MCMC) analysis. Such a method h
been suggested by George and McCulloch(1993) us
a hierarchical Bayesian model. This method is flexib
but does introduce many additional parameters. T
tends to make the modelling look rather complicated.
this paper we adopt a classical Bayesian approach
is essentially equivalent to the George and McCullo
technique, but that has a much less elaborate structure
which renders model interpretation much simpler. T
method is illustrated by a regression metamodel exam

1 INTRODUCTION

In computer simulation experiments ever more elabor
models can be used both at the input modelling stage,
at the output analysis stage. We consider the case w
we have a parametric model for which there is uncertai
about the number of parameters that there should be
the model. We give two examples.

Cheng, Holland and Hughes (1996) consider model
the service times of vehicles using a toll booth.
reasonable assumption is that the service times of vehi
of different types, e.g. private cars, light vans, heavy goo
vehicles, will have different distributions. A plausibl
model is therefore to use afinite mixturedistribution for
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the service time,X, with density

h(x,θ) =
k∑

i=1

βif(x, ϕi) (1)

with θ = (βi, ϕi, i = 1, 2, ..., k), where theβi ≥ 0,
i = 1, 2, ..., k, are weights summing to unity

k∑
i=1

βi = 1,

and thef(x, ϕi) are the densities of thek components
of h(x, θ). For simplicity we have assumed that the
component densities all have the same form, though the
parameter values can be different.

The vector of parameters,θ, is assumed not known
and will have to be estimated from data obtained from
the real system. There may well be uncertainty aboutk
itself. Estimation ofk is a non-standardproblem. This is
the case that we consider in this paper.

A second example occurs in the output analysis of a
simulation experiment. Suppose we conductr simulation
runs of a queueing model with each run conducted at
different traffic intensity. For thejth run, let the traffic
intensity bexj and letyj be the average customer waiting
time, say, obtained from this run. We may fit a regression
metamodel to examine the dependence ofy on x. Thus
we assume

yj = η(xj ,θ) + zj , j = 1, 2, ..., r (2)

where z is a ’noise’ variable modelling the chance
variability of the simulation output, andη(x,θ) is the
regression function of actual interest. We may well be
uncertain about the precise form ofη(x,θ) in which case
we might take it to be similar in form to (1), that is

η(x, θ) =
k∑

i=1

βifi(x, ϕi). (3)
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Here theβi are simply coefficients and so are not necessar
positive and do not have to sum to unity. Thefi(x, ϕi) are
suitably selected basis functions. If for example they a
polynomials, not dependent on unknown parametersϕi,
then we have a standard polynomial regression proble
However, the case wherek is unknown and where unknown
parameters,ϕi, appear in the basis functions, is non
standard and again this is the case of interest in t
paper.

The reason why the case of unknownk is non-standard
is as follows. Suppose that a particular component,
term, βifi(x, ϕi), has been included in the model, but i
actually not needed. Then the estimate ofβi will be zero
or near zero. This renders estimation of the correspond
ϕi meaningless and we encounter numerical instability
we do try to estimateϕi in this situation. There is a large
literature concerning this problem (see Cheng and Tray
1995, for a review).

One of the earliest attempts, in the regression ca
at a Bayesian formulation was made by Young (1977
who obtained limited theoretical results for the norm
model. More recent approaches to the problem (Geo
and McCulloch (1993), Green (1995) and Richardso
and Green (1997) ), have focused on MCMC simulatio
methods, and have adopted models of variable dimens
in the sense that the unknownk is treated explicitly
as a parameter, with a prior distribution; and where th
main problem is to calculate the posterior distribution ofk.
These approaches require the formulation of a valid Mark
process which includesk as one of the state variables
including a careful definition of the way transitions ca
take place between the different possible values ofk.

The method proposed by George and McCulloc
(1993) uses a hierarchical Bayesian method incorporat
additional latent variableswhich in effect act as indica-
tor variables of whether particular components should
included or not. The method proposed by Green (199
and Richardson and Green (1997) uses a reversible ju
Markov representation for moving about parameter spac
of different dimensions. Of the two methods, the one pr
posed by George and McCulloch appears more transpa
and easier to implement and interpret. Nevertheless
hierarchical structure is somewhat elaborate.

In this paper we propose a classical Bayesian formu
tion in which we calculate what we call aderived posterior
distribution for k. We call the corresponding numerica
MCMC method thederived chain method. The method
is essentially equivalent to George and McCulloch’s late
variable method, but is arguably easier to implement a
interpret.

In Section 2 we introduce the derived distributio
method and compare it with the latent variable metho
in an elementary example for which a theoretical analys
654
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is possible. In Section 3 we describe the correspondi
derived MCMC method, and in Section 4 we apply it to
a simple regression problem and also report results for
simulation experiment where the problem is to select a
appropriate regression metamodel that attempts to quan
how the delay experienced by packets in a computer PA
network depends on the traffic intensity.

2 BAYESIAN ANALYSIS

2.1 Derived Posterior Distribution

Let z denote the sample data (in our case these are
observations obtained from simulation runs). The da
depends on a vector of parametersθ which are unknown
and which we wish to estimate.

In the Bayesian framework, we start by supposin
that there is a prior distribution of possible values forθ.
Let π(θ) denote the density of this prior. This prior is
then updated by incorporating the data to give a poster
distribution with densityπ(θ|z), that reflects the best
information we have about the distribution ofθ given
the dataz. Our central aim is therefore to calculate this
posterior density. By Bayes Theorem this has form

π(θ|z) =
p(z|θ)π(θ)∫
p(z|θ)π(θ)dθ

. (4)

This formula usually assumes that the dimension ofθ
is known. We are however interested in the situation whe
the precise number of parameters,s say, is not known.
We deal with this by initially not explicitly assuming that
s has a prior, but instead that there is a maximal mod
containings0 parameters that is definitely adequate. Thu
whatever the ’true’ value ofs, this value is less thans0.
The priorπ(θ) and the likelihoodp(z|θ) is well - defined
for this maximal model so that the posterior distributio
p(θ|z) can be calculated from (4). Now let

Sδ(θ) = number of components
for which |θi| > δ at θ.

We can now calculate the followingderived posterior
distribution for s :

pδ(s = j|z) =
∫

Sδ( )=j

p(θ|z)dθ, j = 1, 2, ..., s0.

This derived distribution is very simple to calculate usin
the Markov Chain Monte Carlo method. We shall show
how to do this, but we first give an explicit example
illustrating why this derived method is essentially th
standard Bayesian version of the latent variable method
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2.2 A Theoretical Example

To illustrate the derived posterior distribution method, w
consider an example concerning fitting a simple mixtu
model. Let U(0, b) denote the continuous distributio
with density

u(x | b) = b−1, 0 ≤ x ≤ b
= 0, otherwise

Let x = (x1, x2, ..., xn) be a random sample drawn from
U(0, 1), but suppose that we do not know this. Inste
we assume that

x ∼ aU(0, 1) + (1 − a)U(0, b)

whereb is a known fixed constant greater than unity, to
explicit we might letb = 2. The other parameter,a, is not
known, but has to be estimated. Adopting the Bayes
approach we supposea has prior distribution

π(a) = u(x | 1). (5)

Thus the correct model is obtained ifa = 1. Because the
xi ∼ UID(0, 1) by assumption, the likelihood takes th
simple form

p(x| a) = [a + (1 − a)b−1]n. (6)

Hence

p(x) =
∫

p(x| a)π(a)da

=
∫ 1
0 [a + (1 − a)b−1]nda

= [1 − b−n−1]/[(n + 1)(1 − b−1].
(7)

Using the derived indicator model approach we take
model to be (the correct)U(0, 1) if a > 1 − δ, where δ
is some suitably chosen small number. If we define
indicator variable

β = 0 if 0 ≤ a < 1 − δ
= 1 if 1 − δ ≤ a ≤ 1 (8)

we select the correct model with probability

pδ(β = 1 | x) =
∫ 1

1−δ

p(x| a)π(a)da/p(x).

Using (5), (6), and (7) we find

pδ(β = 1 | x) =
1 − [1 − (1 − b−1)δ]n+1

1 − b−n−1 . (9)

This tends to1 geometrically asn → ∞, for fixed b > 1
and any smallδ > 0.

We show that the above is a special formulation
the hierarchical approach; in this case we assume

a = γv1 + (1 − γ)v2,
655
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where γ, v1 and v2 are all unknown parameters with
carefully selected priors. The hierarchical Bayesian
formulation is:

x ∼ p(x | a), a ∼ π1(a | γ, v1, v2),
(γ, v1, v2) ∼ π2( γ, v1, v2)

with the second level priorπ2 chosen as follows. The
parameterγ is the latent variable with Bernoulli prior

γ = 0 with probability 1 − p
= 1 with probability p

The priors of the other two parameters can be chosen
more flexibly. We assume, for example, that

v1 ∼ U(1 − δ, 1), v2 ∼ U(0, 1 − δ).

We can recover the standard Bayesian formulation

x ∼ p(x | a), a ∼ π(a )

by integrating out the secondary variables

π(a) =
∫

π1(a|γ, v1, v2)π2(γ, v1, v2)dγdv1dv2.

In our case this gives

π(a) = (1 − p)/(1 − δ) if 0 ≤ a < 1 − δ
= p/δ if 1 − δ ≤ a ≤ 1 (10)

The indicator variable (8) is thus precisely the latent
variable in this case and we have

pδ(β = 1 | x) =
p1

p0 + p1
(11)

where

p0 = [(1−p)/(1− δ)]{[1− (1− b−1)δ]n+1 − b−n−1(p/δ)}
and

p1 = (p/δ){1 − [1 − (1 − b−1)δ]n+1}.

The U(0, 1) prior (5) of our original standard formulation
is recovered simply by setting

p = δ.

3 NUMERICAL CALCULATION

3.1 Markov Chain Monte Carlo

The posterior distribution (4) is not usually obtainable
in closed form because we cannot easily calculate the
denominator, even by classical numerical quadrature. The
MCMC method is a sampling method for overcoming
this problem. We regardθ as the state of a certain



Cheng

n

y

t

r

r

-

s

e
r

l

r

t

Markov Chain, defined in such a way that the equilibrium
distribution is precisely the required posterior distributio
with density π(θ | z). If the Markov Chain can then be
simulated and the simulation run made sufficiently long s
that equilibrium is reached, then the sample distributio
of the observedθ′s will converge to the required form
with densityπ(θ | z).

Let θ0, θ1, ..., θt, ... denote the successive states o
the chain. The following general Monte Carlo method i
known as theMetropolis - Hastings(MH) algorithm.

The state,θt+1, at time pointt + 1 is obtained from
the previous state,θt, by generating a candidate valueϕ
from a candidate distribution with densityq(ϕ|θt). The
notation indicates the possibility that this distribution ma
depend onθt. The value is only accepted with probability

α(θt,ϕ) = min
(

1,
π(ϕ|z)q(θt|ϕ)
π(θt|z)q(ϕ|θt)

)
(12)

when θt+1 = ϕ. Otherwise the state remains unchange
with θt+1 = θt.

The MH algorithm thus has the form:
Initialise θ0, t := 0
Repeat
{

Generateϕ ˜ q(.|θt), U ˜ U(0, 1)
If U ≤ α(θt,ϕ) Set θt+1 := ϕ

Else Setθt+1 := θt

Set t := t + 1
}
In theory there is considerable flexibility in the choice

of the candidate densityq(ϕ|θ). We shall use the so-
called independence samplerwhich is the case where the
candidate density does not depend on the current state,
that

q(ϕ|θ) = q(ϕ). (13)

In the case where there is great prior uncertainty abo
the value ofθ it is usual to use areference priorfor π(θ),
that is a prior that remains essentially constant over th
region where the likelihoodp(θ|z) is appreciable. The
posterior density is then proportional to the likelihood,

π(θ|z) ∝ p(θ|z),

and the acceptance probability, using the independen
sampler, reduces to:

α(θ,ϕ) = min
(

1,
p(ϕ|z)q(θ)
p(θ|z)q(ϕ)

)
. (14)
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3.2 Regression Metamodelling

We now describe the MCMC method for regression
metamodelling, for the case

yj =
k∑

i=1

βifi(xj) + zj , j = 1, 2, ..., r (15)

wherez has distribution with cdfF (·, µ, σ), whereµ is
the mean ofF, and σ is some measure of the dispersion.

In this formulation we have absorbed the usual constan
term of the right-hand side into the distribution ofz. Thus
the standard normal model

y =
k∑

i=0

βifi(x) + z, z ˜ N(0, σ2)

is included in the formulation (15) if we set

µ = β0f0(x), (16)

provided f0(x) is a constant independent ofx. The
formulation also allows non-normal, typically skew, errors.
Lack of space prevents discussion of this possibility furthe
here.

We now make the key assumption thatk is unknown.
To clarify the discussion, we define more precisely ou
interpretation of what constitutes a ’correct’ truek.

One definition is to assume that the non-zero coeffi
cients comprise the set{βi | i ∈ I} with βj = 0 for j 6∈ I,
and define the truek to be the largesti amongst alli ∈ I.
Thus for example ifβ1 and β3 are non zero, andβ2 =
βj = 0, for all j ≥ 4, then I = {1, 3} and k = 3.

An alternative definition is the subset selection version
where one wishes to identify the set of non-zero coefficient
precisely; that is, to find the set{βi | i ∈ I}. In our example
we would therefore wish to identifyI as being the set
{1, 3}. Our method will handle either definition of this
’correct’ k.

The main requirement in identifyingk, is that the
Markov process should have a stationary distribution which
possesses a high posterior probability for the correct valu
of k. The model being fitted actually makes this a rathe
subtle requirement. The critical difficulty is the hierarchical
nature of the model, in the sense that if the correct mode
hask = kT , then any model with k > kT will be equally
good if not better. An undemanding formulation might
not exhibit a preference fork = kT over k > kT and
consequently would then not necessarily yield a posterio
probability for kT that was larger than for anyk > kT .
If an MCMC Bayesian method is to correctly identifyk
whilst allowingk to vary, then it must include a mechanism
for preferring smallerk to larger k, provided the fit is
adequate. Without such a preference, the MCMC will no
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Bayesian Model Selection When

necessarily produce a posterior distribution with a lar
probability located at the correctk.

George and McCulloch (1993) handle this difficult
by proposing a hierarchical framework. However the
hierarchical definition uses a fairly elaborate distribution
structure. A more general methodology has been develo
by Green (1995) and Richardson and Green (1997) usin
reversible jump process to model state spaces with varia
dimension. It is not immediately clear that the proce
will necessarily identify the correctk. The above methods
seem quite elaborate to set up involving a large numb
of parameters and requiring some sophistication in t
interpretation of results. In contrast the derived poster
distribution is easily calculated. The method is describ
in the next sub-section.

3.3 Derived Chain MCMC Method

The derived chain MCMC method is as follows.
1. We use a locally uniform reference prior and a

independence sampler of the form (13), so thatα takes
the simple form (14).

2. We now assume thatk0 is a known upper bound
on unknown truek. (The precise value fork0 is relatively
unimportant. In practice it can be arbitrarily large, the ma
limitation being that there should be sufficient degrees
freedom left to estimateµ andσ.) The unknown parameters
are therefore

θ = (β1, β2, ..., βk0
, µ, σ).

We assume that these have prior distribution with dens

π(θ) = π(β1)π(β2)...π(βk0
)π(µ)π(σ).

The dataz = (z1, z2, ..., zr)T in the Bayes formula (4)
is calculated from (15) using

zj = yj −
k0∑

i=1

βifi(xj), j = 1, 2, ..., r.

For an appropriately selected candidate distribution,q(θ)
(to be discussed in the next sub-section), the MH algorith
reduces to

Initialise θ0, t := 0
Repeat
{

Generateϕ ˜ q(.), U ˜ U(0, 1)
If U ≤ min

(
1,

[
p(ϕ|z)q(θt)

]
/

[
p(θt|z)q(ϕ)

])
Set θt+1 := ϕ

Else Setθt+1 := θt

Set t := t + 1
}
The MCMC simulation does not identify the correc

value of k explicitly. However if the true value ofk is
657
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less thank0, then we can expect that for most of theθt,
the componentsθt

j will be near zero forj = k +1, k +2,
..., k0. Thus if we selectδ > 0 and considerθi to be
zero for practical purposes, ifθi < δ, then we construct a
derived chain{k̃t, t = 0, 1, 2, ...} corresponding to{θt,
t = 0, 1, 2, ...} simply by settingk̃t equal to the largest
i for which ∣∣θt

i

∣∣ > δ. (17)

The distribution of the values ofk in the sequencẽkt can
thus be used to estimate the posterior distribution ofk.

3.4 Candidate Distribution

For the candidate distribution in our proposed methods w
recommend use of an estimate of the asymptotic norm
distribution of the maximum likelihood estimates of the
parameters (Kendall and Stuart, 1979). The asymptot
distribution has to be estimated because it depends on t
unknown parameters themselves, which therefore have
be estimated. As we are using an independence samp
the candidate distribution is obtained prior to the simulation
and is not altered subsequently. The main requirement
the form of the candidate should have the characteristic
known to be desirable (see Gilks et al 1996, page 10
In the examples, below we use a method based on lea
squares which is precisely the maximum likelihood metho
when the model is normal, and is only approximately so
when the model is not normal.

We illustrate application of the above to two simple
models.

4 APPLICATIONS

4.1 Normal Model

To be explicit we suppose the data has the form:

yj =
k∑

i=0

βifi(xj) + zj , j = 1, ..., n,

wherezj ∼ N(0, σ2), and that the basis functionsfi are
orthonormal, that is:

∑n
l=1 fi(xl) = 0 i = 1, 2, ..., k∑n

l=1 fi(xl)fj(xl) = δij i, j = 0, 2, ..., k.

In our numerical example, eachfi(.) was a polynomial
of degreei. In matrix form

y = Aβ + z,

whereATA = I, so that the estimates forβ and σ2 are

β̂ = ATy
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s2 = ν−1(y − Aβ̂)T(y − Aβ̂)

with distributions

β̂ ∼ N(β, σ2I),

and
νs2 ∼ σ2χ2

ν ,

whereν = n − k (see for example, Box and Tiao, 1973).
For the candidate distributionqk(θ) we therefore assume

β ∼ N(β̂, σ2I) and σ2 ∼ s2χ2
ν/ν.

In this simple model we actually know the correct
result. For the correctk :

β ∼ N(β̂, σ2I) and σ2 ∼ νs2χ−2
ν . (18)

Thus the candidate distribution is precisely the posterio
for β, but not forσ2. A possible alternative is to use this
correct version (18) as the candidate distribution, thoug
we do not follow this possibility here.

Figure 1 gives results for the model:

yjh = 3xj + zjh,
xj = j

}
j = 1, ..., 5, h = 1, 2, ..., 10,

where
zjh ∼ N(1, 12).

In terms of orthonormal basis functions this gives

β0 = 70.71 β1 = 30.0 βj = 0, j ≥ 2.

The MCMC usedT = 50, 000. Let K = k + 1 be the
total number ofβ coefficients, withk0 = 4, K0 = 5. The
correct value isK = 2, so that the correct distribution
for K is p1 = 0, p2 = 1, p3 = p4 = p5 = 0. In Figure
1, the first six plots give the candidate densities for the
parametersβ0, β1, ..., β4, σ (smooth curves) together with
the histogram of their posterior distributions estimated from
the MCMC run. The last two graphs give the posterior
distributions of K and the derived version,̃K. For the
unadjusted posterior distribution ofK, the probability is
incorrectly concentrated atK = 5. In contrast the posterior
distribution of the derivedK̃ process withδ = 3s in (17),
yielded a value forp(K̃ = 2) = 0.9978 that is very
close to unity, the next highest values being already smal
p(K̃ = 4) = 0.0010 and p(K̃ = 5) = 0.0009.

4.2 PAD Queue Example

Cheng and Kleijnen (1997) describe the fitting of a
regression metamodel in an experiment investigating how
the delay in processing characters in a PAD queue depen
658
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Figure 1: Conditional and Posterior Distributions o
Parameters in the Regression Model
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on traffic intensity. The behaviour is non-monotonic an
required fitting a polynomial of order five or six before
a satisfactory fit is obtained. The above Bayesian deriv
chain method the posterior distribution for the degree
the polynomial gave very similar results. Lack of spac
prevents a full discussion of this example here, but it
hoped to report on this example elsewhere.

5 SUMMARY

We have given what we consider to be a very simple a
direct way of handling the difficult problem of estimating
the unknown number of components of a finite mixtur
model or the unknown number of terms in a regressio
model, using a simple adaptation of the Bayesian MCM
approach. In limited experiments, two of which ar
reported here, the proposed method appears quite rob
For example, very similar results were obtained in th
above normal regrssion model when the proposed t
candidate distributions for the coefficientsβ have twice
the variance of the estimated asymptotic distribution us
in the MCMC simulation of Figure 1.
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