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ABSTRACT

We consider how to efficiently allocate computing resourc
in order to infer the best of a finite set of simulate
systems, where best means that the system has
maximal expected performance measure. Commonly-u
frequentist procedures that are based on the indiffere
zone and ‘worst possible configuration’ tend to sugg
an inefficiently large number of replications in practic
Recent work suggests that simulating likely competitors
the ‘best’ may lead to an order of magnitude improveme
in computing effort for simulations. Much of that work
however, makes strong assumptions that might not be s
in practice, such as known variance, or the same c
of running a replication for each system. This pap
discusses the problem of allocating computer resource
identify the best simulated system while relaxing gene
conditions, including different cost per replication for ea
system, both opportunity cost (linear loss) and 0-1 lo
and known or unknown variance for populations who
samples are normally distributed.

1 INTRODUCTION

How to select the best of a finite set of simulated syste
is an important problem in discrete-event simulation (e
see Law and Kelton 1991; Goldsman and Nelson 199
Based on an initial set of simulations of each syste
a measure of evidence that a given system is bes
desired (some authors suggest P-values and the Bonfe
inequality). If the measure of evidence is insufficient,
indication of how many additional computer simulatio
replications (or data samples) is required in order
reduce the risk of potentially selecting an inferior choic
The problem is also important in medicine, phamacolo
quality engineering, business, computer design, and
number of other fields (e.g., see Bechhofer, Hayter, a
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Tamhane 1991; Gupta, Nagel, and Panchapakesan
Gupta 1965; Hsu 1996).

Commonly-used frequentist procedures (Dudewicz
Dalal 1975; Rinott 1978) based on the ‘worst poss
configuration’ are known suggest an inefficiently lar
number of additional replications in practice. So
Bayesian approaches (Gupta and Miescke 1994; G
and Miescke 1996; Chen, Chen, and Dai 1996) sug
that preferring to simulate likely competitors for the ‘be
may lead to significant improvement in computing eff
for simulations. Much of this work, however, makes stro
assumptions that might not be seen in practice, suc
known variance and the same cost of running a replica
for each system.

In this paper, we discuss the problem of allocat
computer resources to identify the best simulated sys
under much more general conditions, based on in
modeling work of Chick (1997).

Suppose that there areK different simulated stochas
tic systems, and that the system with the largest m
performance measure is to be identified. One system m
be selected immediately, or one may observe the re
of a finite number of additional independent simulat
replications xk,i (for k = 1, . . . , K; i = 1, . . . ) before
selecting the ‘best’ system. As is commonly practi
we suppose thexk,i to have joint Gaussian distributio
conditional on the mean vectorw = (w1, . . . , wK) and
precision vectorλ = (λ1, . . . , λK). This assumption is
often reasonable in the simulation context, where ou
often satisfies a central limit theorem. The mean is
sumed unknown. Common practice is to consider
case of known precision (sometimes assumed identica
each system). Here we consider both known (and po
tially unequal) and unknown precision. We also allow
different costs per replication,c = (c1, . . . , cK) for each
system, and consider for both opportunity cost (or lin
loss)
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Lo.c. (k, w) = max
j

wj − wk (1)

and the 0-1 loss

L0−1 (k, w) =
{

0 when wk ≥ maxj wj

1 otherwise
(2)

For the one-stage problem, one of theK systems is to
be selected after observingrk ≥ 0 output samplesxrk

=
(xk,1, . . . , xk,rk

) for k = 1, . . . , K. Setr = (r1, . . . , rK)
and xr = (xr1 , . . . ,xrK

).
One is interested in determining the allocation

replications,r, which minimizes the sum of the expecte
loss and the cost of observing the systems. The tw
stage problem can be expressed in this form as w
by letting the second-stage allocation use the poste
distribution after the first stage as a prior for the seco
stage. We also consider the cost-constrained alloca
problem, wherecrT = B for some computational budge
B > 0. The cost-constrained problem can be used
develop a sequential decision procedure, whereB is
spent on sampling at each step of the procedure. Altho
formally r is a vector of non-negative integers, our analy
follows a standard approximation thatr is real-valued.
For steady-state simulations, fractional observations h
a natural interpretation (e.g. simulate 5.32 years o
stochastic process). For terminating simulations,r must
be considered an approximation and rounded to integ
Throughout we write vectors in boldface, random variab
in upper case, and their values in lower case.

Gupta and Miescke (1994) show that whenK = 2;
c1 = c2; r1 + r2 = m, the optimal policy for both
Lo.c. (·,w) and L0−1 (·,w) is to minimize the absolute
difference of the posterior precision for the mean of ea
system. Gupta and Miescke (1996) discuss the gen
decision problem, and provide an optimal allocation f
a single replication for the case ofK ≥ 3, opportunity
cost, known variance, andc1 = . . . = cK . Also see Gupta
and Miescke (1988). A closed-form solution has prov
difficult to obtain for other cases.

Because closed form solutions have proven diffic
to obtain, we proceed by deriving natural upper a
lower bounds on the expected risk for selecting t
system with the highest expected mean. Motivated
an analogy with the Bonferroni inequality, we determi
an optimal asymptotic allocation to minimize the low
bound on expected risk (loss plus cost of experime
We then provide an allocation when the computer bud
for running simulation replications is constrained, and t
allocation is consistent with our asymptotic result. W
then develop a sequential procedure, where at each ste
a finite budget is allocated for sampling. Calculating the
allocations often during a sequential procedure does
pose a significant computational burden, and therefore m
670
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be an easy-to-implement efficiency improvement techniq
for selecting the best system. Our results also indica
that for K > 2, the DT condition is not optimal.

2 EXPECTED OPPORTUNITY COST

The expected opportunity cost can be expressed in ter
of the truncated linear loss function of Eq. 1. Here w
assume that the precisionλk for the output of each system
is known, and that uncertainty regarding the unknow
mean wk is expressed as a normally-distributed rando
variable with meanµk and precisionτk.

Wk ∼ N (µk, τk)

Values ofτk close to 0 indicate a high degree of uncertaint
about the value of the unknown mean. We first consid
the case of no budget constraint, with linear cost fo
systems, and then introduce a budget constraint.

Define Ψ(s) =
∫∞

s
(x − s)φ(x)dx = φ(s) − s(1 −

Φ(s)), where φ(s) and Φ(s) are the density function
and cumulative distribution function, respectively, of th
standard normal random variable. Intuitively,Ψ(s) is the
expected linear loss associated with asserting that the va
of a standard normal random variable is less thans. Note
that ∂Ψ(s)/∂s = Φ(s) − 1.

It is useful to define the permutation[i] such that
µ[1] ≥ . . . ≥ µ[K] is a non-increasing ordering of the prior

means for thewi. DefineZi
def= E[W | Xri ] = µi(Xri) to

be the unknown posterior mean, a random variable whi
depends on the number of samples,ri. Then the prior
distribution of W[i] − W[j] is N (

µ[i] − µ[j], τi,j

)
, where

τi,j =
(

τ[i]τ[j]

τ[i]+τ[j]

)
. Further, the prior predictive distribution

of Zi − Zj is

Zi − Zj = µ[i](Xri
) − µ[j](Xrj

) ∼ N (
µi − µj , τ{i,j}

)
,

whereτ{i,j} =
(

r[i]λ[i]

τ[i][τ[i]+r[i]λ[i]]
+ r[j]λ[j]

τ[j][τ[j]+r[j]λ[j]]

)−1
.

Theorem 1. Assume that thexk,i are jointly independent
with N (wk, λk) distribution, givenwk and knownλk.
Denote byζ the prior distribution ofW = (W1, . . . , WK),
withWk ∼ N (µk, τk) jointly independent. Letδk represent
the decisionwk is maximal, let the linear loss function
Lo.c. (δk, w) be as in Eq. 1, and letGr be the prior
predictive distribution of the posterior mean,Z. Let
Ak = {z | zk = maxj zj} be the event that the posterior
mean of systemk is maximal. Then:

• The optimal (Bayes) decision policyδ∗(r) is the
natural decision ruleδN (r),

δN (r) = δk, whenzk ≥ max
j

zj .
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• The expected total riskρ∗
o.c.(ζ, r),

ρ∗
o.c.(ζ, r) = crT + Eζ [maxjwj − w[1]]

−
K∑

k=2

pGr

(A[k]
)
EGr|A[k]

[z[k] − z[1]]

is bounded above by:

crT + Eζ [maxjwj − w[1]]

− max
k 6=1

{
τ{1,k}−1/2Ψ

[
τ{1,k}1/2(µ[k] − µ[1])

]}
and below by:

ρ̂∗
o.c.(ζ, r)

def
= crT + Eζ [maxjwj − w[1]]

−∑K
k=2 τ{1,k}−1/2Ψ

[
τ{1,k}1/2(µ[k] − µ[1])

]
• In the limit ck → 0 (small cost of replications), the

optimal system sizesr∗
k to minimize ρ̂∗

o.c.(ζ, r) are
asymptotically:

r̃∗
[k] =

(
φ
[
(τ1,k)1/2(µ[k] − µ[1])

]
2(τ1,k)−1/2c[k]λ[k]

)1/2

− τ[k]

λ[k]
(3)

for k 6= [1], and

r̃∗
[1] =

(
K∑

k=2

φ
[
(τ1,k)1/2(µ[k] − µ[1])

]
2(τ1,k)−1/2c[1]λ[1]

)1/2

− τ[1]

λ[1]
.

Proof. See Chick and Inoue (1998).

The lower boundρ̂∗
o.c.(ζ, r) ≤ ρ∗

o.c.(ζ, r) is obtained
by summing of expected opportunity costs for each syste
that is better than the system with highest prior mea
The upper bound is derived by looking at each pairwi
comparison individually, and taking the the most extrem
of the expected pairwise losses. Special cases of th
bounds (e.g., common known precision) were provided
Miescke (1979). The derivation of̃r∗

[k] does not require
that Eζ [maxjwj − w[1]] be calculated, as it does no
depend onr̃∗

[k]. Further the same allocation is obtaine
by attempting to minimize the surrogate function:

crT +
K∑

k=2

τ1,k
−1/2Ψ

[
τ1,k

1/2(µ[k] − µ[1])
]

−
K∑

k=2

τ{1,k}−1/2Ψ
[
τ{1,k}1/2(µ[k] − µ[1])

]
,

which has the sum of expected pairwise losses betwe
the ‘current’ best and the others. Since the Bonferro
inequality is also a sum of pairwise losses (albeit for th
671
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0-1 loss), the minimization of the lower bound for Baye
risk that leads to Eq. 3 corresponds in some sense to
Bonferroni-type optimization.

Note that our allocations account for both the prio
means of each system, as well as the precision. Wide
used techniques due to Dudewicz and Dalal (1975) a
Rinott (1978) only consider the latter.

3 PROBABILITY OF CORRECT SELECTION

The probability of correct selection P(CS) when systemk is
selected can justifiably be defined asp (wk = maxi=1,... ,K wi)
= 1 − E[L0−1 (k,w)]. Recall that the Bayes decision to
maximize P(CS) isnotδN , but we evaluate the expected los
for δN to design an appropriate budget allocation for a sim
ulation experiment. In this section it is useful to defin

τ̃1,2 =
(

1
τ[1]+r[1]λ[1]

+ 1
τ[2]+r[2]λ[2]

)−1
to be the posterior

precision ofW[1] − W[k], given x.
The case ofK = 2 systems is considered first.

Lemma 2. Represent byζ the prior distribution ofW =
(W1, W2), with Wk ∼ N (µk, τk) jointly independent;
and assume that thexk,i are jointly independent with
N (wk, λk) distribution, givenwk and a known precision
λk. Let Gr be the prior predictive distribution for the
unknown posterior meanZ, as in Theorem 1. WLOG,
assumeµ1 ≥ µ2. Consider the0 − 1 loss as in Eq. 2.
Then the expected total riskρ0−1(ζ, δN (r)) is:

crT + Φ
[
τ1,2

1/2(µ2 − µ1)
]

(4)

+ Φ
[
τ{1,2}1/2(µ2 − µ1)

]
·
(
1 − 2EGr|z2≥z1

[
Φ
[
τ̃

1/2
1,2 (z2 − z1)

]])
Proof. See Chick and Inoue (1998).

Insight from Eq. 4 can be obtained by examinin
the expected loss (excluding the cost of replication
ρ = ρ0−1(ζ, δN (r)) − crT at extremes. When there are
no additional replications (r → (0, 0)), then τ̃1,2 → τ1,2
τ{1,2} → ∞, and

ρ = Φ
[
τ1,2

1/2(µ2 − µ1)
]

+ 0(1 − 2γ)

= prior probability 2 is best

= 1 − prior P (CS),

for some γ ∈ (1/2, 1], as desired. If the number of
replications grows without bound (r → (∞,∞)), then
τ̃1,2 → ∞, τ{1,2} → τ1,2, Gr → ζ, and

ρ → Φ
[
τ1,2

1/2(µ2 − µ1)
]

+Φ
[
τ1,2

1/2(µ2 − µ1)
]
(1 − 2 · 1)

= 0,
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as expected, given the value of perfect information.

BecauseEGr|z2≥z1

[
Φ
[
τ̃

1/2
1,2 (z2 − z1)

]]
→ 1 when

the ck are small (largerk), a reasonable lower bound for
ρ0−1(ζ, δN (r)) is therefore given by

ρ̂∗
0−1(ζ, r) def= crT + Φ

[
τ1,2

1/2(µ2 − µ1)
]

−Φ
[
τ{1,2}1/2(µ2 − µ1)

]
.

To minimize this lower bound, choose:

r̃∗
k =(

τ1,2
3/2(µ2−µ1)φ[((τ1,2)1/2(µ2−µ1)]

2ckλk

)1/2

− τk

λk
.

With a budget constraintcrT = B (unconstrainedr) and
the lower bound, choose same as for linear loss:

r̃∗
k,B =

B +
∑2

j=1
cjτj

λj∑2
j=1

(
cjckλk

λj

)1/2 − τk

λk
.

These results are special cases of the following gene
theorem forK ≥ 2.

Theorem 3. Represent byζ the prior distribution of
W = (W1, . . . , WK), with Wk ∼ N (µk, τk) jointly inde-
pendent; and assume that thexk,i are jointly independent
with N (wk, λk) distribution with known precisionλk.
Consider the0−1 loss as in Eq. 2, and letGr,A[k] be as

in Theorem 1. Set̃τ1,k =
(

1
τ[1]+r[1]λ[1]

+ 1
τ[k]+r[k]λ[k]

)−1

to be the posterior precision ofW[1] − W[k], given x.
Then:

• The expected total lossρ0−1(ζ, δN (r)) of the natural
decision rule:

ρ0−1(ζ, δN (r)) = crT +
(
1 − pζ

(A[1]
))

+
K∑

k=2

{
pGr

(A[k]
)

(
1 − 2EGr|A[k]

[
Φ
[
τ̃

1/2
1,k (z[k] − z[1])

]])}

is bounded below by:

ρ̂∗
0−1(ζ, r)

def
= crT +

(
1 − pζ

(A[1]
))

(5)

−
K∑

k=2

Φ
[
τ{1,k}1/2(µ[k] − µ[1])

]

672
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• As costsck → 0, the optimal system sizesr∗
k to

minimizeρ̂∗
0−1(ζ, r) approach:

r̃∗
[k] =

(
φ
[
τ1,k

1/2(µ[1] − µ[k])
]

2c[k]λ[k]/(τ1,k
3/2(µ[1] − µ[k]))

) 1
2

− τ[k]

λ[k]
(6)

for [k] 6= [1], and

r̃∗
[1] =

(
K∑

k=2

φ
[
τ1,k

1/2(µ[1] − µ[k])
]

2c[1]λ[1]/(τ1,k
3/2(µ[1] − µ[k]))

) 1
2

− τ[1]

λ[1]
.

Proof. See Chick and Inoue (1998).

Minimizing the following surrogate function

crT +
K∑

k=2

{
Φ
[
τ1,k

1/2(µ[k] − µ[1])
]

(7)

−Φ
[
τ{1,k}1/2(µ[k] − µ[1])

]}

gives the same solutioñr∗
[k] of Eq. 6 for minimizing Eq. 5.

Neglecting the cost of replications, note that this surrogat
function represents sum of approximations of pairwise
probabilities incorrect selection, and that the Bonferron
inequality used in frequentist selection procedures is als
based upon sums of pairwise probabilities of incorrec
selection. For the special case of no replications, th
sum in Eq. 7 becomes

∑K
k=2 Φ

[
τ1,k

1/2(µ[k] − µ[1])
]
, an

upper bound on the probabilty of incorrect selection, and
is exactly the Bonferroni inequality applied to the prior
probability of correct selection.

4 UNKNOWN VARIANCE

It is typically unreasonable to assume that the precisio
of the output is known. We therefore revisit the analysis
of Sec. 3 under the assumption that both the mean an
precision of the output are unknown. In particular, we
represent uncertainty aboutw,λ by assuming thatΛk ∼
G (αk, βk); Wk ∼ N (µk, nkλk), givenλk; and the vectors
(wk, λk) for k = 1, . . . , K are assumed independent.
The gamma distribution forΛk is parameterized so that
f(λk | αk, βk) = (βk)αk

Γ(αk) λαk−1
k e−βkλk . Alternate prior

distributions can be selected, but the analytic advantag
of using conjugate prior distributions will be lost.

Given these assumptions, it is well-known (de Groo
1970) that the marginal distribution ofWk has Student-
t distribution St (µk, nkαk/βk, 2αk), where a random
variable X is said to haveSt (µ, λ, ν) distribution when
the density functionf(x | µ, λ, ν) is

f(x | µ, λ, ν) = c

[
1 +

(x − µ)tλ(x − µ)
ν

]− ν+1
2

,
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where µ = E[X], and Var[X] = λ−1ν/(ν − 2), when
these integrals exist, andc is a normalizing constant.λ is
commonly called the precision parameter.

The posterior distribution ofWk, given xk, is

St
(
µk(xk), (nk+rk)(αk+rk/2)

βxk
, 2αk + rk

)
, where µk(xk)

= nkµk+rkx̄k

nk+rk
is the posterior mean,̄xk =

∑r
i=1 xi,k/rk

is the sample mean, andβxk
= βk + ( nkrk

nk+rk
(µk − x̄k)2 +∑rk

i=1(xi,k − x̄k)2)/2. Also, the pre-posterior distribution

Gr for Z = E[W | Xr] is St
(
µ, n(n+r)α

rβ , 2α
)

.

Since we are interested in comparisons betwe
systems, the distribution of the difference of two Studen
t variables is of interest. However, the distribution o
the difference is also Student-t only when the degre
of freedom match. In particular, ifα = αi = αj ,
then the prior and preposterior precision parameters

Wi − Wj are λi,j = α
(

β[i]

n[i]
+ β[j]

n[j]

)−1
and λ{i,j} =

α
(

r[i]β[i]

n[i](n[i]+r[i])
+ r[j]β[j]

n[j](n[j]+r[j])

)−1
, respectively, and the

degrees of freedom is2α. The following theorem studies
the caseν/2 = α = α1 = . . . = αK .

Theorem 4. Assume that thexk,i are jointly independent
with N (wk, λk) distribution. Denote byζ the prior
distribution of W,Λ = (W1,Λ1, . . . , WK ,ΛK), with
Wk |λk

∼ N (µk, nkλk), Λk ∼ G (α, βk), and (wk, λk)
independent fork = 1, . . . , K. (Note that all systems
have the sameα.) Suppose that the0 − 1 loss function is
as in Eq. 2. Then:

• The total risk is bounded below by:

ρ̂∗
0−1(ζ, r) = crT + Eζ [maxjwj − w[1]]

−
K∑

k=2

Φ2α

[
λ{1,k}

1/2(µ[k] − µ[1])
]
,

and the bound is tight forK = 2.

• In the limit ck → 0 (small cost of replications), the
optimal system sizesr∗

k to minimize ρ̂∗
0−1(ζ, r) are

asymptotically:

r̃∗
[k] =
 φ2α

[
λ1,k

1/2(µ[1] − µ[k])
]

2c[k](α/β[k])/(λ1,k
3/2(µ[1] − µ[k]))




1
2

− n[k]

for [k] 6= [1], and

r̃∗
[1] =

∑

k|k 6=1 φ2α

[
λ1,k

1/2(µ[1] − µ[k])
]

2c[1](α/β[1])/(λ1,k
3/2(µ[1] − µ[k]))




1
2

− n[1]
673
r

Proof. See Chick and Inoue (1998).

Although the assumption of identicalαk seems rather
restrictive, this situation arises naturally in certain contexts
For instance, ifR0 replications for each system are taken in
phase 1 of a two-stage procedure for multiple comparison
and a reference prior (Bernardo and Smith 1994) is use
then α = (R0 − 1)/2 for all systems at the start of the
second stage. Sec. 5 discusses this point further.

When theαk are not all equal, it might be reasonable
to use some approximation formulas for the difference
of two Student-t random variables with different degrees
of freedom. For instance whenα1 6= αk, one might
approximate terms involvingφ2α, λ1,k via with φ2α̃k

, λ̃1,k

via Welsh’s approximation (e.g., see Law and Kelton 1991
or Patil’s approximation (e.g., see Box and Tiao 1973
for the Behrens-Fisher distribution. Terms such asα/β[k]
should be replaced withα[k]/β[k].

Corollary 5. The solution tomin ρ̂∗
0−1(ζ, r) subject to

crT = B for large B is approximately:

r̃∗
k,B =

B +
∑K

j=1 cjnj∑K
j=1

(
cjckβjγj,α

βkγk,α

)1/2 − nk, (8)

where

γ[k],α = λ1,k
3/2(µ[1] − µ[k])φ2α

[
λ1,k

1/2(µ[1] − µ[k])
]

for [k] 6= [1], and γ[1],α =
∑

j|j 6=[1] γj,α.

Proof. See Chick and Inoue (1998).

What happens when the constraintrk ≥ 0 is added
to the optimization problem of Corollary 5? Suppose tha
one or morer̃∗

k,B < 0, as determined by Eq. 8, and let
S = {k | r̃∗

k,B ≥ 0}. One cannot make a negative number
of replications, so we reset̃r∗

k,B = 0 for those k /∈ S.
Resetting r̃∗

k,B = 0, however, causes the total sampling
budget to exceedB, which indicates the number of systems
for other systems should decrease. Eq. 8 should therefo
be applied again to recalculatẽr∗

k,B for all k ∈ S. This,
in turn, might cause the recalculated̃r∗

k,B to be negative
for somek ∈ S. Remove suchk from S and recalculating
again is appropriate, as given by algorithm of Table 1.

Corollary 5 and the algorithm of Table 1 use the
approximation τi,j ≈ τ{i,j} (which assumes̃r∗

i , r̃∗
j are

large), via theγ[k],α. Direct calculation indicates that the
approximation also holds when one ofr̃∗

i or r̃∗
j is zero and

the other is large, which further justifies the use of this
approximation in the algorithm, even when somer̃∗

i = 0.



Chick and Inoue

t

e

r

n

r
f

If
7),
ve

ne
ed
he
et.
tt

in
e
ll
sed

ify
e
a

a

d
d

ge

ior

th
-
t
ge

),
r

Table 1: Computation of optimal allocatioñr∗
k,B to

minimize lower bound on total risk, for 0-1 loss, unknown
precision, with fixed budgetB, as in Corollary 5.
1. Determine a budgetB. Initialize S = {1, . . . , K}.

2. For all k ∈ S, calculate

r̃∗
k,B =

B +
∑

j∈S cjnj∑
j∈S

(
cjckβjγj,α

βkγk,α

)1/2 − nk.

3. Setredo to false.

4. For all k ∈ S, If r̃∗
k,B < 0 Then: (a) SetS = S\{k},

(b) Set r̃∗
k,B = 0, (c) Setredo to true.

5. If redo is true, Then go to Step 2.

6. Suggest that̃r∗
k,B systems be observed for systemk,

k = 1, . . . , K.

5 COMPARISON FOR TWO-STAGE

If we consider a special case of the above developmen
(variance is unknown, and may be different from system
to system, same cost of replications for each system, 0-1
loss), we can make a comparison with classical two-stage
indifference zone procedures. We select the procedure du
to Rinott (1978), but other procedures can be compared
similarly.

Two-stage classical procedures typically require each
of K systems to be simulated withR0 (≈ 10 to 20)
replications during the first stage. Based on the sample
mean and variance of each system, an additional numbe
n∗

k,Rin of replications during the second stage are to be
run for each system,k = 1, . . . , K. The number of
second-stage replications typically depends onK, and
indifference zone∆, and the desired levelP ∗ for the
probability of correct selection, often taken to be90 to
95%. For instance, Rinott (1978) suggests:

n∗
k,Rin = max{0,

⌈
h2S2

k

∆2

⌉
− R0} (9)

where S2
k =

∑R0
j=1(xj,k − x̄R0)

2/(R0 − 1) is the sample
variance of the first stage output of systemk, andh solves
Rinott’s integral for R0, K, and P ∗ (e.g., see Wilcox
1984).

An analagous approach based on the arguments i
the above sections would be to similarly runrk = R0
replications of each system during a first stage. The
posterior from the first stage could then be used as a prio
distribution for the second stage to determine the number o
674
additional replications, using the results of Theorem 4.
a reference prior for each system were used (Chick 199
then the appropriate prior for the second stage would ha
µk = x̄k, nk = R0, α = (R0 − 1)/2, βk = R−1

2 S2
k, and

λ1,k = R0

(
S2

[1] + S2
[k]

)−1
.

To compare the classical and present allocations, o
could evaluate the expected number of replications requir
to reach a given P(CS). Alternately, one can evaluate t
expected P(CS) obtainable for a given computer budg
We choose to do the latter. For the procedure of Rino
(1978), this requires selecting∆ so that the correct total
number of computer replications is achieved.

We simulated the 5 inventory systems described
Law and Kelton (1991) in the section on comparing mor
than two systems (p. 591) of their widely-used text. A
parameters and simulation design are identical to those u
by Law and Kelton (1991) except that different uniform
random number streams were used. The goal is to ident
the inventory policy which leads to the minimal averag
monthly cost. (This minimization is easily converted to
maximization problem, as required by Sec. 4.) Based on
first-stage withR0 = 10 replications for each system, we
obtained the output summarized in Fig. 2. Also include
in Fig. 2 are the allocations determined by the Rinott an
Bayesian approaches.

Table 2: Stage One (10 replications) Statistics and Sta
Two Allocation (B = 100) for Five (s, S) Inventory
Policies of Law and Kelton (1991)

System s S x̄k Sk Rinott Bayes
1 20 40 123.86 4.11 48 42
2 20 80 122.70 2.01 3 30
3 40 60 124.48 2.54 12 28
4 40 100 132.36 2.80 16 0
5 60 100 145.19 3.03 21 0

We ran a second stage, and observed the poster

Bonferonni P(CS) measure
∑K−1

k=1 Φ
[
τ̃

1/2
k,K(z[k] − z[K])

]
,

which measures the evidence of correct selection wi
the Bonferroni inequality and pairwise comparisons (P
value for frequentists and posterior probability of correc
selection for a Bayesian). We repeated the second sta
500 times in order to estimate

E

[
K−1∑
k=1

Φ
[
τ̃

1/2
k,K(Z[k] − Z[K])

]]
, (10)

which we call the expected posterior Bonferroni P(CS
the expectation taken from the information available prio
to running the replications.
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Table 3: Expected Bonferroni P(CS) Estimates, Usin
Allocations in Table 2

Allocation P(CS)
Prior (B = 0) 0.6307
Rinott (B = 100) 0.9687
Bayes (B = 100) 0.9993

The prior Bonferroni P(CS), and estimates of the
expected posterior Bonferroni P(CS) for both the Rinot
and Bayesian allocation are summarized in Table 3
The Bayesian allocation provides a much better measu
of evidence, in expectation, than the Rinott allocation
Additional numerical experimentation (results not shown
indicates that the Bayesian allocation with 50 second sta
replications gives an expected posterior Bonferroni P(CS
of 0.9736, somewhat higher than the Rinott with 100
replications.

6 CONCLUSIONS

In many areas of stochastic simulation, computationa
efficiency improvement has received a great deal o
attention. For instance, numerous analytic and empiric
studies for Monte Carlo integration evaluate the trade
offs between the cost of generating and the variance
independent samples that can be used to estimate
integral.

The incorporation of sampling costs for the efficient
selection of the best simulated system, however, has n
previously been studied by the standard treatments
multiple selection problems. This paper proposes to in
corporate sampling costs explicitly, and further, uses valu
of information arguments to improve the computationa
efficiency of identifying the best system. We explicitly
handle known or unknown variance, heteroscedastic sim
ulation responses, and both opportunity cost and 0-1 los
Our general approach is to (i) determine the expected tot
risk, (ii) derive a natural Bonferroni-like lower bound, (iii)
determine asymptotically optimal allocations as the cost o
replications gets arbitrarily small, (iv) establish allocations
when there are budget constraints that are asymptotica
optimal, for large budgets.

The asymptotic budget allocations may be used t
develop sequential sampling strategies for simulation ex
periments, by allocating a small budget at each stage of t
sequential design. The cost of calculating these allocatio
at each stage does not represent an onerous burden,
allocations can be determined with simple mathematica
operations (sum, multiply, square root, exponentiation
and do not need numerical root finding.
675
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