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ABSTRACT Tamhane 1991; Gupta, Nagel, and Panchapakesan 1979;
Gupta 1965; Hsu 1996).
We consider how to efficiently allocate computing resources Commonly-used frequentist procedures (Dudewicz and

in order to infer the best of a finite set of simulated palal 1975; Rinott 1978) based on the ‘worst possible
systems, where best means that the system has theconfiguration’ are known suggest an inefficiently large
maximal expected performance measure. Commonly-used nymper of additional replications in practice. Some
frequentist procedures that are based on the indifference Bayesian approaches (Gupta and Miescke 1994; Gupta
zone and ‘worst possible configuration’ tend to suggest gnd Miescke 1996; Chen, Chen, and Dai 1996) suggest
an inefficiently large number of replications in practice. that preferring to simulate likely competitors for the ‘best’
Recent work suggests that simulating likely competitors for may lead to significant improvement in computing effort
the ‘best’ may lead to an order of magnitude improvement for simulations. Much of this work, however, makes strong
in computing effort for simulations. Much of that work,  assumptions that might not be seen in practice, such as

however, makes strong assumptions that might not be seenknown variance and the same cost of running a replication
in practice, such as known variance, or the same cost for each system.

of running a replication for each system. This paper

%lscu_sseﬁ ths proplerr: of dallocatlng Cﬁ.TPUtFr resources tlo computer resources to identify the best simulated system
: endt!f_yt e EIStd,S'mlé_?fte system while lrle a?qngf gener? under much more general conditions, based on initial
conditions, including different cost per replication for eac modeling work of Chick (1997).

system, both opportunity cost (linear loss) and 0-1 loss,
and known or unknown variance for populations whose
samples are normally distributed.

In this paper, we discuss the problem of allocating

Suppose that there ai€ different simulated stochas-
tic systems, and that the system with the largest mean
performance measure is to be identified. One system might
be selected immediately, or one may observe the results
1 INTRODUCTION of a finite number of additional independent simulation

replications z; ; (for £k = 1,... ,K;i = 1,...) before
How to select the best of a finite set of simulated systems selecting the ‘best’ system. As is commonly practice,
is an important problem in discrete-event simulation (e.g., we suppose they,; to have joint Gaussian distribution,
see Law and Kelton 1991; Goldsman and Nelson 1994). conditional on the mean vectox = (wq,... ,wg) and
Based on an initial set of simulations of each system, precision vector\ = (\q,...,Ax). This assumption is
a measure of evidence that a given system is best is often reasonable in the simulation context, where output
desired (some authors suggest P-values and the Bonferronioften satisfies a central limit theorem. The mean is as-
inequality). If the measure of evidence is insufficient, an sumed unknown. Common practice is to consider the
indication of how many additional computer simulation case of known precision (sometimes assumed identical for
replications (or data samples) is required in order to each system). Here we consider both known (and poten-
reduce the risk of potentially selecting an inferior choice. tially unequal) and unknown precision. We also allow for
The problem is also important in medicine, phamacology, different costs per replicatiors = (¢4, ... ,ck) for each
quality engineering, business, computer design, and a system, and consider for both opportunity cost (or linear
number of other fields (e.g., see Bechhofer, Hayter, and loss)
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£o.c4 (k, w) = maxw; — Wk (1)
J
and the 0-1 loss
[ 0 whenw; > max; w;
Lo-1 (k,w) = { 1 otherwise @)

For the one-stage problem, one of thesystems is to
be selected after observing > 0 output samples,.,
(Tk1,-- &) fork=1,... | K. Setr = (r1,... ,7x)
andx, = (Xpy, .-y Xpg )

One is interested in determining the allocation of
replications,r, which minimizes the sum of the expected
loss and the cost of observing the systems. The two-
stage problem can be expressed in this form as well

be an easy-to-implement efficiency improvement technique
for selecting the best system. Our results also indicate
that for K > 2, the DT condition is not optimal.

2 EXPECTED OPPORTUNITY COST

The expected opportunity cost can be expressed in terms
of the truncated linear loss function of Eq. 1. Here we
assume that the precision, for the output of each system

is known, and that uncertainty regarding the unknown
mean wy, is expressed as a normally-distributed random
variable with meanu; and precisionry.

Wi ~ N (e, )

by letting the second-stage allocation use the posterior Values ofr; close to 0 indicate a high degree of uncertainty

distribution after the first stage as a prior for the second
stage.
problem, wherecr” = B for some computational budget
B > 0. The cost-constrained problem can be used to
develop a sequential decision procedure, whéteis

about the value of the unknown mean. We first consider

We also consider the cost-constrained allocation the case of no budget constraint, with linear cost for

systems, and then introduce a budget constraint.
Define W(s) = [ (z — s)p(a)dz = ¢(s) — s(1 —
®(s)), where ¢(s) and ®(s) are the density function

spent on sampling at each step of the procedure. Although and cumulative distribution function, respectively, of the

formally r is a vector of non-negative integers, our analysis
follows a standard approximation that is real-valued.

standard normal random variable. Intuitivelly(s) is the
expected linear loss associated with asserting that the value

For steady-state simulations, fractional observations have of a standard normal random variable is less thalNote

a natural interpretation (e.g. simulate 5.32 years of a
stochastic process). For terminating simulationgnust

be considered an approximation and rounded to integers.

Throughout we write vectors in boldface, random variables
in upper case, and their values in lower case.

Gupta and Miescke (1994) show that whéh= 2;
cp = ¢, 11+ T2 m, the optimal policy for both
Loec (,w) and Lo_1 (-, w) is to minimize the absolute
difference of the posterior precision for the mean of each

that 00 (s)/0s = ®(s) — 1.
It is useful to define the permutatiofi] such that
K1) = --- > pik) IS @ non-increasing ordering of the prior

means for thev;. DefineZ; dZEfE[W | X, ] = wi(X,,) to

be the unknown posterior mean, a random variable which

depends on the number of samples, Then the prior

distribution of W[i] — W[j] is N (/L[,'] - u[j],nyj), where

( ) T5)
i)+ 7()

Tij = ) Further, the prior predictive distribution

system. Gupta and Miescke (1996) discuss the general of Z;, — Z; is

decision problem, and provide an optimal allocation for
a single replication for the case df > 3, opportunity
cost, known variance, and = ... = ci. Also see Gupta
and Miescke (1988). A closed-form solution has proven
difficult to obtain for other cases.

Because closed form solutions have proven difficult
to obtain, we proceed by deriving natural upper and
lower bounds on the expected risk for selecting the
system with the highest expected mean. Motivated by
an analogy with the Bonferroni inequality, we determine
an optimal asymptotic allocation to minimize the lower
bound on expected risk (loss plus cost of experiment).
We then provide an allocation when the computer budget
for running simulation replications is constrained, and the
allocation is consistent with our asymptotic result. We

then develop a sequential procedure, where at each step of

a finite budget is allocated for sampling. Calculating these

allocations often during a sequential procedure does not
pose a significant computational burden, and therefore may
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Zi — Zj = ) (X)) — ) (KXo, ) ~ N (i = 15, 7,5 )

") TEIAG) ) !
malma e Al Tl A '
Theorem 1. Assume that the;, ; are jointly independent
with A (wy, Ax) distribution, givenw, and known \.
Denote by the prior distribution of W = (W1, ... , Wg),
with Wy ~ N (ux, 1) jointly independent. Lef;, represent
the decisionw; is maximal, let the linear loss function
Lo (6k,w) be as in Eq. 1, and leGG, be the prior
predictive distribution of the posterior mearZ. Let
A, = {z | zx = max; z;} be the event that the posterior
mean of systemt is maximal. Then:

wherey; j, = (

e The optimal (Bayes) decision polic§*(r) is the
natural decision rules™ (r),

6N (r) = &), when z; > max 2;.
J
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e The expected total risk’ . (¢, ), 0-1 loss), the minimization of the lower bound for Bayes
risk that leads to Eqg. 3 corresponds in some sense to a
poc(Cr) = e’ + E¢[mazjw; — wyy] Bonferroni-type optimization.
Note that our allocations account for both the prior
Zp(; 1) Ec, 1A 218 — 2] means of each system, as well as the precision. Widely-

used techniques due to Dudewicz and Dalal (1975) and

is bounded above by: Rinott (1978) only consider the latter.

cr’ + E;[mazjw; — wiy] 3 PROBABILITY OF CORRECT SELECTION
- fgj{‘ {T{Lk}_m‘lf [T{l,k}l/z(ﬂ[k] - Mm)} } The probability of correct selection P(CS) when sysfein
selected canjustifiably be definedggv, = max;=1. x w;)
and below by: = 1— E[Lo-1 (k,w)]. Recall that the Bayes decision to
maximize P(CS) isioté", but we evaluate the expected loss
pE (¢, ) = cr + E¢[mazjw; — wy] for 6V to design an appropriate budget allocation for a sim-
1/2 12 ulation experiment. In this section it is useful to define
= Xie oy [ (e — )] (. L\ o be th i
7.2 . .(Tm”mNU + T[zﬁf{zM[zJ) to be the posterior
e In the limit ¢, — 0 (small cost of replications), the  precision of Wy, — Wy, given X. _ .
optimal system sizes; to minimize p} . (¢,r) are The case ofK = 2 systems is considered first.
asymptotically: Lemma 2. Represent by the prior distribution of W =

(W, Wy), with Wy, ~ N (ug,7) jointly independent;

1/2
P [(Tl,k)1/2(,u[k] —um)] _ Tik] 3) and assume that the; are jointly independent with
"k = 2(716) Y2 Ar) Ak N (wg, \x) distribution, givenw;, and a known precision
Ax. Let Gr be the prior predictive distribution for the
for k # [1], and unknown posterior meaiZ, as in Theorem 1. WLOG,
o assumepu; > ps. Consider the0 — 1 loss as in Eq. 2.
o K o [(T1,k)1/2(u[k] — )] / M Then the expected total risky_1(¢, 6% (r)) is:
U\E 2T ey A ol 4@ [ (s )| (4)
Proof. See Chick and Inoue (1998). O + @ {7{1,2}1/2@2 - M1)}
The lower boundp} . (¢,r) < p’ . (¢,r) is obtained . (1 —2Eq, 252, {(I) [%117/22(;:2 — zﬂ“)
by summing of expected opportunity costs for each system
y g P PP y y Proof. See Chick and Inoue (1998). O

that is better than the system with highest prior mean.

The upper bound is derived by looking at each pairwise Insight from Eq. 4 can be obtained by examining
comparison individually, and taking the the most extreme the expected loss (excluding the cost of replications)
of the expected pairwise losses. Special cases of these, — (¢, 6V (r)) — cr” at extremes. When there are
bounds (e.g., common known precision) were provided by no additional replicationsr(— (0,0)), then 75 — 715
Miescke (1979). The derivation af), does not require {12y — 00, and

that E¢[mazjw; — wp] be caIcuIated as it does not '

depend oni,;. Further the same allocation is obtained p = @ [71,21/2(1@ — )| +0(1—27)

by attempting to minimize the surrogate function: — prior probability 2 is best

= 1— prior P(CS),

1/2 1/2
Zﬁk ‘P[ (b — “[1])} for some~ € (1/2,1], as desired. If the number of
. replications grows without boundr (— (0o, 00)), then
_ Ti9 — 00, T — 719, Gy — (, and
— ZT{l,k} 12y [7{1,k}1/2(ﬂ[k} —Mm)}, 2 2y = 2 Gr =6
h=2 p — @ {71,21/2(/12 - Ml)}
which has the sum of expected pairwise losses between ® 1/2 1—9.1
the ‘current’ best and the others. Since the Bonferroni + [7172 (u2 _“1)}( —2-1)
inequality is also a sum of pairwise losses (albeit for the = 0,
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as expected, given the value of perfect information.

Because Eg, |.,>, [(I) {%f/f(zQ - zl)H — 1 when
the ¢, are small (large;), a reasonable lower bound for
po—1(¢, 6N (r)) is therefore given by

f
CI‘T + (I) [TLQI/Q(,U,Q — /,Ll):|

o {7{172}1/2(142 - Ml)}-

P cr) %

To minimize this lower bound, choose:
~*
'r'k =

7'1,23/2(11«2*#1)¢[((Tl,2)1/2(“27“1)] V2 _ Tk
2¢k Ak )\k.

With a budget constraintr” = B (unconstrained:) and
the lower bound, choose same as for linear loss:

2 CjTj
B+ Zj:l X; T
22 CjCkAk 1/2 )\k
J=L A

~k

Tk,B =

e As costsc, — 0, the optimal system sizes, to
minimize p§_, ({,r) approach:

oo & [ (g — 1)) : _ T ()
k] 2¢i Ak / (T3 () — 1k) Alk]
for [k] # [1], and
_— EK: ¢ [T () — )] : ]
W\ & 2ew A/ (2 (g — pi) Anj
Proof. See Chick and Inoue (1998). O
Minimizing the following surrogate function
K
cr’ + Z {‘1) [71,1@1/2(/%] - /‘[1])} (7
k=2

- [T{1,k}1/2(ﬂ[k] - N[l])}}

gives the same solutioﬁkk] of Eqg. 6 for minimizing Eq. 5.
Neglecting the cost of replications, note that this surrogate

These results are special cases of the following general function represents sum of approximations of pairwise

theorem forK > 2.

Theorem 3. Represent by( the prior distribution of
W = (Wy,... ,Wg), with Wy, ~ N (ug, 7x) jointly inde-
pendent; and assume that thg ; are jointly independent
with A (wg, Ag) distribution with known precision\;.
Consider thed — 1 loss as in Eq. 2, and letr;, A, be as
—1
in Theorem 1. S_efl’k - _(7[11+T1[1M[11 + T[k1+’”1[k]/_\m>
to be the posterior precision of¥;; — Wy, given x.
Then:

e The expected total loss_1(¢, 6V (r)) of the natural
decision rule:

po-1(¢, 8™ (r)) = er” + (1 = pc (Ap))
+> {pGr (Am)

(1 —2Eq, |y, [(I) [i—if(z[k] - ZM)”) }

is bounded below by:

. def
po—1(¢,r) = e’ + (1 e (A[l])) ®)
K
-> @ [T{l,k}l/z)(u[k] - Mm)]
k=2
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probabilities incorrect selection, and that the Bonferroni
inequality used in frequentist selection procedures is also
based upon sums of pairwise probabilities of incorrect
selection. For the special case of no replications, the
sum in Eq. 7 become§ ;- , & 7142 (upy — ppy)], an
upper bound on the probabilty of incorrect selection, and
is exactly the Bonferroni inequality applied to the prior
probability of correct selection.

4 UNKNOWN VARIANCE

It is typically unreasonable to assume that the precision
of the output is known. We therefore revisit the analysis
of Sec. 3 under the assumption that both the mean and
precision of the output are unknown. In particular, we
represent uncertainty abowst, A by assuming that\; ~

G (ag, Br); Wi ~ N (ug, ngAx), given)y; and the vectors
(wg,\g) for kK = 1,... K are assumed independent.
The gamma distribution for\; is parameterized so that

FOw | ar, Be) = (ﬁ(";:; A¢r~le=BAk - Alternate prior
distributions can be selected, but the analytic advantage
of using conjugate prior distributions will be lost.

Given these assumptions, it is well-known (de Groot
1970) that the marginal distribution d¥/;, has Student-
t distribution St (ug, ngar/Bk, 2ax), where a random
variable X is said to haveSt (i, A\, v) distribution when

the density functionf(x | u, A, v) is

fla | A v)=c RGN CEDN |

14
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where = E[X], and VafX] = A\~'v/(v — 2), when
these integrals exist, andis a normalizing constant) is
commonly called the precision parameter.

The posterior distribution ofWW,, given xg, is

St (,Uk(xk) w , 20, + m) where pu,(xx)

xk:
= nebelTEXL s the posterior meanky = Y1 ik /7%
is t,he sample mean, angl, = Sy, + (;47% (s — X5,)* +
Sk (wi — xi)?) /2. Also, the pre-posterior distribution

Gy for Z = E[W | X,] is St (1, "5 2a

Since we are interested in comparisons between
systems, the distribution of the difference of two Student-
t variables is of interest. However, the distribution of
the difference is also Student-t only when the degrees
of freedom match. In particular, v = o; = «,

then the prior and preposterior precision parameters for
: . - Bra 4 Bul)
Wl — W] are )\’L,j (0% (m + Wj])

-1
1311 15180) i
@ (n[i](n[i]ﬂ,[i]) + - (rj jr, )> , re_spectlvely, and t_he
degrees of freedom |Sa The following theorem studies

the casev/2 =a=a; =... = ak.

1
a.nd )\{7,J} ==

Theorem 4. Assume that the, ; are jointly independent
with A (wy, \x) distribution. Denote by¢ the prior
distribution of W, A = (Wy,Aq,... ,Wgk,Ak), with
Wi xe~ N (e Ar), A ~ G (o, Br), and (wg, \g)
independent fork = 1,... K. (Note that all systems
have the same..) Suppose that theé — 1 loss function is
as in Eq. 2. Then:

e The total risk is bounded below by:

po-1(Cr)

cr’ + E¢[mazjw; — wiy]

K
D Do P‘{l,k}l/z(ﬂ[k] = p) |
c=2

and the bound is tight forX = 2.

e In the limit ¢z — 0 (small cost of replications), the
optimal system sizes; to minimize g§_,(¢,r) are
asymptotically:

ik =

=

20 >\1,k1/2(u[1] — [k)

2t (of Bu)/ Ok () — ) | i
for [k] # [1], and
) =
S ket G20 (A" (g — ﬂ[k])} ’ "
- 1

w(a/ Bp) /O™ () — 1))
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Proof. See Chick and Inoue (1998). O

Although the assumption of identical, seems rather
restrictive, this situation arises naturally in certain contexts.
For instance, ifR replications for each system are taken in
phase 1 of a two-stage procedure for multiple comparisons,
and a reference prior (Bernardo and Smith 1994) is used,
then o = (Ry — 1)/2 for all systems at the start of the
second stage. Sec. 5 discusses this point further.

When theay, are not all equal, it might be reasonable
to use some approximation formulas for the difference
of two Student-t random variables with different degrees
of freedom. For instance when; # aj, one might
approximate terms involvingaq, A1 5 via with ¢a4, , 5\17k
via Welsh’s approximation (e.g., see Law and Kelton 1991)
or Patil's approximation (e.g., see Box and Tiao 1973)
for the Behrens-Fisher distribution. Terms suchog$,
should be replaced with; /G-

Corollary 5. The solution tomin g§_;(¢{,r) subject to
= B for large B is approximately:

K
L, B+ ¢jn;

Tk,B =
; 1/2
ZK cierBirie
j=1 BrVk, o

(8)

— Nk,

Bi1) — Hik)) P20 P\l,kl/z(um — [ik])

for [k] # [1], and Tl = Zj|j¢[1] Vi,

Proof. See Chick and Inoue (1998). O

What happens when the constraint > 0 is added
to the optimization problem of Corollary 5? Suppose that
one or morer; p < 0, as determined by Eq. 8, and let
S ={k |7} 5 >0} One cannot make a negative number
of replications, so we reset; ; = 0 for thosek ¢ S.
Resetting7; ; = 0, however, causes the total sampling
budget to exceed, which indicates the number of systems
for other systems should decrease. Eq. 8 should therefore
be applied again to recalculatg ; for all k € S. This,
in turn, might cause the recalculategB to be negative
for somek € S. Remove suclt from S and recalculating
again is appropriate, as given by algorithm of Table 1.

Corollary 5 and the algorithm of Table 1 use the
approximation; ; ~ 7; ;3 (which assumes?;,7; are
large), via theyy, .. Direct calculation indicates that the
approximation also holds when onegf or 75 is zero and
the other is large, which further justifies the use of this
approximation in the algorithm, even when sofije= 0.
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Table 1: Computation of optimal allocation ; to
minimize lower bound on total risk, for 0-1 loss, unknown
precision, with fixed budgeB, as in Corollary 5.

1. Determine a budgeB. Initialize S = {1,... ,K}.
2. For allk € S, calculate

e . B + ZjGS Cing n

k,B — 1/2 - k-

cickBivVi.a
ZjES( Bern )
3. Setredo to false.
4. Forallke S, If 7y 5 <0 Then: (a) SetS = S\{k},
(b) Set7; 5 =0, (c) Setredo to true.

5. If redo is true, Then go to Step 2.
6. Suggest thaf; ; systems be observed for systdm

k=1,...,K.

5 COMPARISON FOR TWO-STAGE

If we consider a special case of the above development
(variance is unknown, and may be different from system
to system, same cost of replications for each system, 0-1
loss), we can make a comparison with classical two-stage

Inoue

additional replications, using the results of Theorem 4. If
a reference prior for each system were used (Chick 1997),
then the appropriate prior for the second stage would have
Wi = X, N = Ry, a = (Ro — 1)/2, ﬁk = %Sg, and

Ak = Ro (S3)+ 53))

To compare the classical and present allocations, one
could evaluate the expected number of replications required
to reach a given P(CS). Alternately, one can evaluate the
expected P(CS) obtainable for a given computer budget.
We choose to do the latter. For the procedure of Rinott
(1978), this requires selecting so that the correct total
number of computer replications is achieved.

We simulated the 5 inventory systems described in
Law and Kelton (1991) in the section on comparing more
than two systems (p. 591) of their widely-used text. All
parameters and simulation design are identical to those used
by Law and Kelton (1991) except that different uniform
random number streams were used. The goal is to identify
the inventory policy which leads to the minimal average
monthly cost. (This minimization is easily converted to a
maximization problem, as required by Sec. 4.) Based on a
first-stage withRy, = 10 replications for each system, we
obtained the output summarized in Fig. 2. Also included
in Fig. 2 are the allocations determined by the Rinott and
Bayesian approaches.

indifference zone procedures. We select the procedure due 1able 2: Stage One (10 replications) Statistics and Stage

to Rinott (1978), but other procedures can be compared
similarly.

Two-stage classical procedures typically require each
of K systems to be simulated witlR; (=~ 10 to 20)
replications during the first stage. Based on the sample
mean and variance of each system, an additional humber
ny. rin Of replications during the second stage are to be
run for each systemi = 1,...,K. The number of
second-stage replications typically depends &n and
indifference zoneA, and the desired leveP* for the
probability of correct selection, often taken to bé to
95%. For instance, Rinott (1978) suggests:

1282
A?

| -0 ©)

*
nk,Rin = maX{O? ’7

where S2 = 31 (2, — %p,)?/(Ro — 1) is the sample
variance of the first stage output of systémandh solves
Rinott’s integral for Ry, K, and P* (e.g., see Wilcox
1984).

An analagous approach based on the arguments in
the above sections would be to similarly rup = Ry
replications of each system during a first stage. The
posterior from the first stage could then be used as a prior
distribution for the second stage to determine the number of
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Two Allocation (B = 100) for Five (s,S) Inventory
Policies of Law and Kelton (1991)

System s S X Sr Rinott Bayes
1 20 40 123.86 4.11 48 42
2 20 80 122.70 2.01 3 30
3 40 60 124.48 254 12 28
4 40 100 132.36 2.80 16 0
5 60 100 145.19 3.03 21 0

We ran a second stage, and observed the posterior
Bonferonni P(CS) measur®;_,' ® [%,i/ﬁ(z[k] - z[K])},
which measures the evidence of correct selection with
the Bonferroni inequality and pairwise comparisons (P-
value for frequentists and posterior probability of correct
selection for a Bayesian). We repeated the second stage
500 times in order to estimate

K-1

> @ 7R 2 — Zu)|

k=1

E , (10)

which we call the expected posterior Bonferroni P(CS),
the expectation taken from the information available prior
to running the replications.
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