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ABSTRACT

We present a new technique (RIIPS) for solving roster
problems in the presence of service uncertainty. RI
stands for “Rostering by I terating Integer Programming
and Simulation”. RIIPS allows great complexity of th
stochastic system being rostered. This modelling f
dom comes at a price, as the approach can be extre
computationally intensive. Therefore any reduction
computational effort using, for example, efficiency i
provement techniques, is of great interest. We spe
several ways in which these may be applied.

1 INTRODUCTION

In rostering applications, one wishes to minimise
costs of staffing, subject to the constraint of maintain
reasonable customer service. The prototypical exam
is the call centre. In these systems, customers di
number, possibly join a queue of waiting customers,
then receive service from a service agent. The qua
of a customer’s service is usually defined in terms
a measure called “customer grade of service” (CGO
which typically depends on the customer’s waiting time
a queue. Some form of averaging may then take plac
obtain an overall grade of service (GOS) for a given
of customers. The staffing problem is then to minim
staffing costs while ensuring some minimum average G
is achieved during the rostering period. Other qua
measures may drive the rostering problem. For exam
when processing passengers at an airport (Mason, R
and Panton 1998), management typically require that s
percentage of the passengers on each aircraft be proc
within some stated time.

For the purposes of explanation, we shall assume
the staffing period is a day, although the typical staffi
677
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period is more likely to be a week or a month. Thi
assumption is merely one of convenience and scale, a
makes no substantial difference to the RIIPS approach

Since customer loads can vary considerably over t
day, and staffing decisions can typically only be made
discrete times, the day is broken up into several period
Rostering decisions may only be made at the start of the
periods.

Rostering problems with uncertain service require
ments are typically solved in two phases (Mehrotra 1997
In the first phase, staffing requirements for each period
the day are determined using queueing models and/or sim
lation. If one assumes that the system reaches steady-s
quickly, then within each period, steady-state queuei
models provide excellent approximations to the number
service agents required. Unfortunately, fast convergen
to steady-state is not typical for these systems. A seco
approach is to attempt to numerically calculate, or a
proximate, the time varying distribution of GOS. Strongl
related ideas are discussed in, for example, Jennings
al. (1997). This approach has, at least to date, only be
applicable to a restricted class of models. A third approa
is to use simulation to obtain a required number of agen
in each period of the day. This approach is taken in, f
example, Eitzen (1994).

In the second phase, one attempts to build staff rost
that “cover” these staffing requirements using integ
programming formulations of set covering problems. Th
two phase procedure, while an improvement over heuris
rostering, is not entirely satisfactory.

The two phase approach specifies a minimum numb
si say, of staff required to be on duty during time interva
i in order to meet customer performance requiremen
It is possible that by slightly modifying the staffing
requirements, say by increasingsi by one, and decreasing
si+1 by one, that the same degree of customer satisfact
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is achieved. The modified solution may be “easier”
roster, in the sense that less staff are needed to fulfill
staffing requirements, or that the resulting roster is o
higher quality. However, because we specify a single
of staffing requirements in the first stage, such flexibil
in rostering solutions is not achievable in the two pha
approach.

The primary difficulty with this two phase approac
is that it doesn’t capture thelinkage between adjacen
time periods. A recent two-phase approach that attem
to capture some of this linkage is Thomson (1998). T
approach is to use steady-state models to determine
performance of the system. The steady-state results
modified using heuristics to obtain approximations for tim
dependent quantities. The staffing levels are obtained
solving a dynamic program with a heuristic cost structu
designed to obtain staffing levels that are “easy” to ros
to. The approach captures at leastsomeof the linkage
between time periods, but requires a tractable stocha
model of call centre operation so that the steady-s
distributions can be computed. The RIIPS approach d
not suffer from such a restriction, since simulation is us
to obtain customer performance measures. It works
follows.

Suppose that the rostering period is broken up i
p time intervals (periods)1, 2, . . . , p. The start of these
periods correspond to times when staffing decisions m
be made, such as bringing extra servers on, or remo
servers.

We begin by solving an integer program (IP) th
provides the initial roster. Server allocations{ri : i =
1, . . . , p} may be easily derived from the roster. Here,ri

is the number of available servers in periodi.
Next, theri’s are passed to a simulation, the day’s o

eration is simulated (perhaps many times), and appropr
statistics are obtained. These results are translated in
GOS (or some equivalent measure) for each period. O
or more “cuts” (additional constraints) are developed fro
the simulation output, and passed back to the rostering
The development of the cut(s) requires the knowledge
derivative information. This might be obtained using gra
ent estimation techniques such as likelihood ratio meth
(Glynn and L’Ecuyer 1995) or Infinitesimal Perturbatio
Analysis (Fu and Hu 1997). Alternatively, one might u
finite differencing to generate cuts. Finite differencin
requires greater simulation effort than the above metho
but is more robust in that it applies to a larger class
models.

The rostering IP is then re-solved, and the proc
iterates (simulate—solve the IP—simulate—solve the
· · ·) until some convergence criteria are satisfied. Typica
the algorithm will conclude when the difference betwe
upper and lower bounds on the objective is less than s
678
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tolerance. We do not enter into a discussion on how the
bounds might be generated in this paper.

The RIIPS procedure allows great complexity in the
simulation, as will be seen in Section 3, where we discus
how the cuts are generated. In particular, the primar
assumption of the algorithm is that GOS in periodi is
a concave function of the available serversr1, . . . , ri up
until period i. To see why this is reasonable, first note
that the GOS should be an increasing function in eac
of the ri’s because, presumably, the addition of staff ca
only improve customer service. Next note that one woul
expect diminishing marginal returns as additional staff ar
added, so that the GOS should be a concave functio
of each individualrj (holding other staffing levels fixed).
Although this is not sufficient for the concavity we assume
it is certainly strong motivation for the assumption. In
the case where GOS is not a concave function of sta
allocations, the cuts generated by RIIPS are no long
necessarily valid. In this case the approach might b
viewed as a heuristic that should be used with a degre
of caution.

We remark that the essence of our approach is th
proposal of a roster by an IP, the evaluation of the roste
by some means, and the identification of an appropria
cut to pass back to the IP. It is not necessary that th
evaluation be performed by the simulation. For instance
one could envisage the numerical solution of a partia
differential equation at this step! In terms of defining a
cut, the cuts proposed in this paper are not the only on
that might be considered. Other cuts might be identified
depending on the application at hand. In particular, if GO
is not necessarily a concave function of staff allocations
it may be possible to identify alternative cuts that mus
be satisfied by optimal solutions.

The remainder of this paper is organised as follows
In Section 2 we describe the problem in more detail in th
context of call centre operation. In particular, we discus
GOS measures and requirements, and integer programm
techniques for solving rostering problems. In Section
we explain how the cuts are generated, and present t
RIIPS algorithm in more detail. Obviously, RIIPS is a
heavy user of simulation, and so Section 4 discusses t
use of efficiency improvement techniques to reduce th
computational workload. Even a small simulation saving
could make a large difference in run times.

In this paper we make no attempt to rigourously
establish results, since our main goal is to convey th
ideas underlying the approach. A forthcoming paper wi
describe the algorithm in more detail, and establish th
required results.

To conclude this section, we would like to emphasize
that the RIIPS approach is not limited to call centre
staffing, although this is the application that motivated it
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development. Of course, this generality means that a g
deal of work may be needed to tailor the approach to
given application, but nevertheless, the overall methodolo
remains the same.

2 BACKGROUND

In a typical call centre, a customer calls a number and
a server is available, is connected to the server. The se
then completes the service of the customer and conclu
the call. If a server is unavailable, the customer is plac
in a queue of calls until a server becomes available.

There are many factors that can complicate t
deceivingly simple description of a call centre. F
example:

• The arrival rate of calls varies throughout the day.

• Customers may balk if they are informed of the
expected time till service.

• Customers may abandon (renege) if they are k
waiting too long.

• Not all customers are equal! Typically, one wish
to assign priorities to incoming calls, and answ
high-priority calls first.

• Calls may be of multiple types, and therefore ne
to be assigned (if possible) to a particular sub
of agents. For example, calls could be of a sal
technical support, or general enquiry nature. W
would prefer the sales call to be handled by a sa
agent, but if no sales agents are available, the
might be handled by a technical support agent.

• The number of available agents varies through the d
due to staffing decisions, breaks, staff absence etc

Call centre managers typically want to minimiz
operating costs, subject to the constraint of maintain
customer service. While operating costs are relatively e
to measure, the degree of customer service is not. F
a customer’s point of view, perhaps the major meas
of service is waiting time in the queue before bein
connected to a server. We can model this using uti
curves, reflecting the effect of different waiting times in th
queue on the customer’s satisfaction. These utility cur
can vary from customer to customer, and indeed, with
customer’s mood! Therefore, we choose a single uti
curve that we believe is representative, and attempt
minimize some statistic associated with customer utiliti
The utility curve is called a CGOS. Customers receive
CGOS corresponding to their waiting times.
679
at
a
y

f
er
es
d

t

t
,

s
ll

y

y
m
e

s
e

o
.

Example: Customers may receive a CGOS for their
waiting time (W ) according to the following table.

Waiting Time (sec) CGOS
W = 0 100

0 < W ≤ 20 95
20 < W ≤ 60 80

60 < W ≤ 300 70
300 < W 50

If a customer abandons before receiving service, they mig
receive a 0 CGOS. Hence, in this example the CGOS
is a function of whether the customer abandons, and th
customer waiting time.

Various customer service requirements may be spec
fied. For example:

• CGOS should exceed 50 for all customers.

• 95% of customers must receive a CGOS> 80.

• In any 2 hour window, the average customer CGOS
should exceed 80.

• During peak times, the average CGOS should excee
50, while at other times it should exceed 80.

• The expected CGOS for a customer arriving at an
time throughout the day should exceed 80.

Because of the random nature of call centre operation, fo
any given day these requirements (with the exception o
the last one) can only be met with a certain probability.

Our requirements on the GOS measure are that

1. customer service must be computable on a period b
period basis.

2. customer service is monotone (increasing) and conca
in the service agent allocations (the vectorr in the
introduction), and

3. any period of substandard customer service may b
improved to a satisfactory level by adding service
agents either during the substandard period, or i
some period(s) before the substandard period begin
(to reduce congestion at the start of the period).

In the introduction we mentioned a problem involving
the processing of passengers arriving at an airport. I
this problem (Mason, Ryan and Panton 1998), least-co
rosters are required that ensure 80% of the passengers
each aircraft will be processed within 60 minutes of the
plane touching down. Each periodi receives a GOS of
either 0 (fail) or 1 (succeed), where a 1 is awarded unless
some flight fails to meet its 80% target during the period
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The requirements listed above are sufficiently flexible
incorporate this staffing problem.

To conclude this section, we introduce an integ
programming approach for solving rostering problems. O
intention is primarily to demonstrate that such an appro
is feasible. For more detail than can be presented h
see Ryan (1992).

The first step is to create many “lines of work” (
tours of duty). A line of work is a pattern of work that a
employee may follow during the rostering period. A lin
of work is represented as a column of 0’s and 1’s, w
a 1 appearing in rowj if the employee is available t
serve customers in time periodj. The lines of work may
be generated to comply with union regulations and ot
restrictions on employee work patterns (lunch breaks e

Let L be the matrix consisting of the line of wor
columns, andxi be the number of employees followin
line i. Let ci be the cost of theith line of work. Let
x and c be the vectors consisting of thexi’s and ci’s
respectively. Lets be a vector of employee requiremen
(e.g.,s1 = 3 if at least 3 employees are required in peri
1). In the two phase approach to solving these proble
s is a parameter that is predetermined, but we will tr
it as a vector of variables. The required IP is therefor

minimize cT x

subject to Lx − s ≥ 0 (1)

As ≥ b

x, s ≥ 0 and integer.

Observe thatr = Lx is the vector of the number of sta
available in each of the periods. The constraintsLx ≥ s
therefore ensure the roster maintains the minimum num
required in each period. In the two phase approach to th
problems we might takeA = I, the identity matrix, andb
to be the per-period service agent numbers required,
we might restrict the variabless to be lower bounded by
b. In the RIIPS approach, the structure ofA andb is more
complicated, and changes as the algorithm progresse
particular, each row ofA reflects a cut as determined b
the simulation, so that as the algorithm progresses, r
will be added to the matrixA.

3 THE ALGORITHM

The RIIPS approach begins by obtaining a lower bound
the service requirementss in (1). This lower bound could
be taken to be 0, but it is almost certainly more efficien
determine more reasonable lower bounds first. One wa
achieve more reasonable lower bounds is as follows. E
period i is simulated assuming the system is empty at
start of the period. This is the “best” that one could ho
for in terms of work passed over from the previous peri
680
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A number of simulations of the period are performed while
adjusting the number of servers available in periodi until
the GOS in periodi, Qi, is “just” acceptable, i.e., we
choosesi so thatQi is acceptable, but ifsi were one less,
Qi would be unacceptable. The presence of extra work a
the beginning of periodi can only degrade performance
in period i, and so the value obtained is a lower bound.

Next, we solve the IP (1). This gives an initial roster,
and from the roster, we can determine the number o
service agents available during each period of the da
r = Lx.

The vectorr is now passed to the simulation. The
simulation uses this vector of information to simulate the
system and compute estimates of system performance ov
the periods of the day.

Recall that we are assuming thatQi is a concave
function of r1, . . . , ri, so that we may writeQi = gi(r),
where gi is a function only ofr1, . . . , ri. Further, the
concavity ofgi implies that

Qi(r̃) ≤ gi(r) + vT
i (r̃ − r), (2)

where r̃ is an alternative to the vectorr, and vi is
a supergradient ofgi at r. (We use the terminology
“supergradient” as the analogue of a subgradient fo
convex functions; see Bazaraa, Sherali and Shetty 199
p. 85 for subgradient definitions etc.) But we require tha
Qi be above some minimum thresholdmi say, so that (2)
gives

vT
i r̃ ≥ vT

i r + mi − gi(r),

or, in the notation of our IP,

vT
i s ≥ vT

i r + mi − gi(r). (3)

Observe that (3) defines a cut on thes variables of the IP.
Since i was arbitrary, if we can obtain supergradients for
each of the periods, we will obtain a cut for each of the
periods. The IP may be augmented by some subset of the
cuts (or possibly a combination of them), and resolved
The entire process then iterates (simulate—add cuts—
simulate—add cuts) until some measure of convergence
achieved.

The RIIPS algorithm may be summarised as follows.

Algorithm 1 (RIIPS)
1. Determine the initial lower boundsb on s.
2. SetA = I.
3. Solve the rostering IP,

obtainingr = Lx.
4. Passr to the simulation and simulate to

obtain the quality measuresQ1, Q2, . . . , Qp.
5. If convergence criteria are satisfied
6. Stop and reportx and theQi’s.
7. else
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8. Determine one or more cuts as above.
10. Add the cut(s) to the rostering IP,

i.e., augmentA and b.
11. Go to Step 3.
12. end if

The question remains as to how to obtain the s
pergradientsvi. These might be obtained using gradien
estimation techniques such as the likelihood ratio meth
(Glynn and L’Ecuyer 1995) or Infinitesimal Perturbation
Analysis (Fu and Hu 1997). However, because of th
integer nature of the vectorr, it is unclear whether these
methods will provide appropriate results. Furthermor
these gradient estimation techniques are not applicable
all simulations. Certain regularity conditions must be me
to ensure that the results are valid, and these conditio
may prove difficult to verify. However, it is worth noting
that these methods provide gradient estimates based o
single simulation run, and therefore are (relatively) low
computational effort approaches. If they are applicable, a
easily implemented, they should be seriously considere

A more robust approach is to use finite differencing
The approach here would be to perturbri to ri + 1 or
ri − 1, and then reperform the simulation. This will allow
estimates of theith component of the supergradient vector
vj for each periodj ≥ i to be obtained. (Note that for
j < i, vj(i) = 0, since the performance in periodj < i
does not depend onri.)

If one desires gradient information for every perio
throughout the day, then this approach will require a
additional number of simulations equal to the number
periods. However, if one only desires gradient informatio
for the firstk periods (say), then an additionalk simulations
will need to be performed. This observation may lead
computational savings in the simulation phase of the RIIP
algorithm. Further approaches to computational savin
are discussed in the next section.

4 EFFICIENCY IMPROVEMENT

Algorithm 2 could, and probably will, require a very large
amount of computation. Many IPs will need to be solved
and many simulations will be required before convergen
is achieved. Therefore, any performance improvemen
that can be made at any stage will be most welcom
Because of the extensive use of simulation, one mig
consider the use of efficiency improvement techniques.

For large efficiency improvements, one must typicall
know and exploit a great deal of information about th
stochastic system. Because we prefer to discuss o
approach at a very general level (thereby maximizing i
applicability), it is unlikely that the efficiency improvement
techniques we advocate here will result in substant
improvements in performance. We will therefore adop
681
a

the philosophy that “every improvement helps”, and discu
some “simple” approaches here. More sophisticat
approaches might be developed for specific systems
performance measures.

The primary efficiency improvement technique w
advocate is the use of common random numbers, in
following sense. For most performance measures, we w
need to simulate several replications of a day’s operat
to obtain theQi’s. Let us assume that we decide t
simulaten days. While the RIIPS algorithm is running
the only thing that is changing (from the simulation’s poin
of view) is the number of servers available at differe
times of the day. Therefore, we could use one set
n days worth of customer dependent data such as arr
times, service times, and abandonment times through
the optimization process.

Note that there are two ways to implement th
approach. The first would be to simply reset the rando
number seeds for the simulation before each replicati
This has the advantage of allowing the use of pre-bu
simulations of the call centre, withvirtually no modification.
We also obtain the well-documented advantages of comm
random numbers when comparing stochastic systems;
e.g., Chapter 11 of Law and Kelton 1991. (The stochas
systems we are comparing are those with different ser
allocations).

However, if we are willing to implement common
random numbers in a different manner, further compu
tional savings can be realized. Suppose the customer
is generated only once and stored. Then this data can
recalled when needed to compute sample paths. There
two additional advantages to this method for implementi
common random numbers.

1. Since the data are generated only once, great comp
tional savings are made in random variate generati
Of course, we will need to store and retrieve th
simulated data, but the cost of this could be relative
minor when compared to generating the data ma
times.

2. One would expect that the server allocations in ea
period (the vectorr) will not change tremendously
from iteration to iteration. Since the simulation dat
are always the same, the sample paths will be identi
up to the first period when server allocations diffe
Hence, if we store the state of the system at t
conclusion of each period, we may “warm-start” th
current simulation from that point on. This coul
yield considerable savings when the algorithm begi
to focus on rostering the end of the day.

Of course, these advantages come at the cost
having to develop special code to perform the simulatio
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This is a significant disadvantage. The decision as
which approach to select (to implement common rando
numbers) is therefore application dependent.

The use of common random numbers as outlined he
can basically be viewed as an application of the method
sample-path optimization (see Robinson 1996 for analy
and references). Therefore, we inherit the advantages
disadvantages of this optimization approach.

A second technique that one might consider is the u
of antithetic variates. In this case, one could generate
first day’s data, and then use an antithetic random num
stream to generate the second day’s data. This appro
could be repeated for the third and fourth days, and
on. See Chapter 11 of Law and Kelton 1991 for furthe
details on how to implement antithetic variates, and wh
they might have the greatest effect.

Observe that one can simultaneously use both of the
techniques to obtain efficiency improvement.

5 IMPLEMENTATION

We do not yet have an implementation of RIIPS, bu
several implementation details are worth discussing at t
point.

Perhaps the “cleanest” implementation would involv
a simulation module, an integer programming module, a
a controlling parent application.

The simulation module should be capable of runnin
as a subroutine, so that parameters (the staff allocatio
may be set by the parent application before executi
the simulation, and results (the quality measures and
gradients) may be returned to the parent application. T
may be achieved using “off-the-shelf” simulation softwar
by performing all communication between the pare
application and the simulation module through a disk fil
Although disk access is slow compared to “on-board
processing, the bulk of the effort will almost certainly b
devoted to solving IPs and performing the simulation.
second approach to achieve this communication could
to employ “user inserts” (software hooks) as describ
in Boesel and Nelson (1998), although not all simulatio
software has this capability.

Similar comments regarding communication apply
the integer programming module.
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