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ABSTRACT of determinatign RZ ), possibly adjusted for the number of
parameters IR, ), the linear correlation coefficient, also
Bootstrapping is a resampling technique that requires lessknown as Pearson’s rh@( ), and cross-validation giving
computer time than simulation does. Bootstrapping -like Studentized prediction errors and using Bonferroni's
simulation- must be defined for each type of application. This inequality (resulting in, saytmax ). These various statistics
paper defines bootstrapping for random simulations with can be studied through a Monte Carlo experiment. This paper
replicated runs. The focus is on linear regression gives preliminary results (at the WSC ‘98 conference more

metamodels. The metamodel's paetens are estiated extensive results will be presented; see 85 on future
through Generalized Least Squares. lIts fit is measuredresearch).
through Rao’s lack-of-fit F-statistic. The distributions of this Theliterature gives the following picture. Stine (1985)

statistic is estimated through bootstrapping. The main also examines bootstrapping in regression analysis, but he
conclusions are (i) not the regression residuals should beassumes that the regression model is correct; moreover he
bootstrapped; instead the deviations that also occur in theassumes constant response variances, whereas simulation
standard deviation, should be bootstrapped (ii) bootstrappingapplications show variance heterogeneity, in general.
Rao's lack-of-fit statistic is a good alternative to the F-test: it Breiman (1992) investigates the selection of the correct
gives virtually identical results when the assumptions of the regression model, but he assumes no replicatiops (),

F-test are known to apply, and somewhat better results constant response variances, and a particular parametric

otherwise. bootstrap of a particular statistic different from ours.
Bootstrapping has not yet been applied frequently in systems
1 INTRODUCTION simulation; two academic examples are provided in Friedman

and Friedman (1995), including references to software that
In this paper we examine the validation of a linear regression permits bootstrapping (they mentiBAS and SPSS; we use
model used asmetamodebr response surface (an approxi- S-Plus). Kim, Willemain, Haddock, and Runger (1993)
mation of the input/output or I/O transformation implied by formulate their so-called ‘threshold’ bootstrap for the
the underlying simulation model).Different types of analysis of autocorrelated simulation outputs. Barton and
metamodels and their validation are surveyed in Kleijnen and Schruben (1996), Cheng and Holland (1997), and Cheng
Sargent (1997). We, however, introdimtstrappingas a (1995) investigate bootstrapping of empirical input
technique for this validation. Bootstrapping outside distributions in simulation.
simulation is studied in the seminal book, Efron and The main conclusions are (i) not the regression resiéuals
Tibshirani (;993), which we abbreviate toE&T. In geperal, should be bootstrapped: instead the deviatihs- W
bootstrapping means that the data (sayh the original hould be bootst d (i) bootst ing Rao's lack-of-fit
sample of size are randomly resampled with replacemeént ( should be boo sdrarl)pe ('.') 00 rs] rapplng_ Raoss 1ack-0 ”'
=1,..9.E&T(pp. 115, 383) comment that ‘bootstrapping .Sgat's.t'cl's a gloo ahternar\]tlve to the F_-test. 'ft gr;ves virtually
is not a uniquely defined concept ... alternative bootstrap Lenﬂca resul ts Wden the ﬁssgmptlons ? t i F-tgst are
methods may coexist’. We shall give our nptetation of nown to apply, and somew at ettgr results otherwise.
bootstrapping for our problem. We organlzet.he re_mamder of th|§ paper as follows. In

82 we summarize linear regression metamodels with

We focus on Rao’s lack-of-fit F-statistic, but we plan to : i X
study several other popular statistics, namely the coefficient parameters estimated through Least Squares (LS); we define
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Rao’s lack-of-fit F-statistic. In 83 we discuss how the An example of such a metamodel is a second-order
distribution of this statistic can be estimated through polynomial. This metamodel has (i) one grand or overall
bootstrapping. In 84 we present preliminary Monte Carlo mean BO , (iHk main effectsf; , (iiik (k - 1)/2 two-factor
results. In 85 we briefly discuss future research. In 86 we interactionsP.. ., j(<j' andj'=2, ...k), and (iv)k quadratic
summarize the main conclusions. effects, B.. . . Metamodel validation often concerns the
Note: Bootstrapping in simulation raises an interesting selection of the correct degree of the polynomial. Cheng and
guestion. Instead of using the computer to generate response&leijnen (1997) gives a Bayesian approach, whereas this
through bootstrapping, the computer may be used to generateaper gives a bootstrap approach. Kleijnen and Standridge
more simulation responses, either for old factor combinations (1987) applies a popular ad hoc approach.
or for new combinations. In practice, many sSlation First suppose that the metamodel is fitted applying
models_ require much more cc.)mpu_ter time than regression ordinary LSor OLS. Then the OLS estimator (s@y) for a
analysis does. In those situations it makes sense indeed tq‘irst-order polynomial (meta)model is
bootstrap. Breiman (1992, p. 750) also discusses

bootstrapping versus replicating, but not in a simulation R ; T —
context. B = (XX Xw. 2)

2 LINEAR REGRESSION METAMODELS IN

SIMULATION This formula assumes that the inverse exists; DOE ensures

that X, is indeed not collinear. For examplek i 3 and a

We first define some symbols. We use Greek letters for first-order polynomial |s_assumed,theri3&ﬁe3|gn gives an.
orthogonal X, , assuming the factors are standardized; see

parameters; bold face for matrixes and vectors. We suppose,,, .. .
. ) e Kleijnen and Bettonvil (1990).
that the simulation model h&gactors, denoted by with | . : . .
_ - T Generalized LEGLS) estimategaccounting for variance
=1 ..ksod = (dl’ d2’ r CL) We assume a single heterogeneity (resulting in WLS) and -in case of common
type of simulation response, denoted wye.g. average 9 ty g in . ;
random numbers- correlations among simulation responses.

waiting time). We len denote the total number chdtor These variances and covariances can be estimated b
combinations actually simulated. Factor combinaitiaith y

i =1, ..,nis replicatedm, times using non-overlapping s. (W) =
} iS Vi i i (Y
pseudo-random number streams. This yields simulation "
. n — —
responseW,. . with =1, ..,m . HencelN = Ei - m, Z (W, ~W)(W, . ~W.) .
denotes the total number of simulation observationsw et r-1 ®)
denote then-dimensional vector of average simulation (mi -1
outputs that can be obtained fromj. . . Denote the total withi, i’ =1, ...n.

number of parameters in the regression metamodsg!fyr
example, a first-order polynomial regression metamodel for
k factors has parametefis= (G, 8., ...,8)' soq=k+ 1. Let

X denote thenxq matrix of simulated independent
regression variables; for example, its first column consists of
ones; its first row ok, = (1, X;. 5 ... X;. 4. 1). We further
assume that tha combinations of simulation factors are Using the covariance estimators in (3), we define the
selected though application of the statistical theory on Design ., matrix S = (s .). This random matrix is used in
Of Experiments (DOE); for example, & 2design may be Estimated GLVSV or EéLS:

used. Henc« is controlled by thexk design matriD =

(d) and the form of the metamodel assumed. Consequently, ~

in our situation the original (non-bootstrapped) da{@ee ﬁ * @)

§1) consist of X, w). Finally, lety denote the output for the (X ’S\A;lX)’lX /Sv;lvv .

correct (adequate, valid) metamodel, so

Sometimes Wezshall abbreviae (w) to s; ; furthers;; =

Sy and s; = § ; in case of common random numbers we
have constant replication numbars=m. E & T (p. 53) use
‘plug in’ estimators with denominators, , but we prefer
unbiased estimators.

y = XB + € (1) Notice that this is a non-linear estimator since it uses the
random variable§W and/

N ) ) To explain Rao’s test we start as follows. Titezature
wheree denotes the additive random residual with zero mean o, pOE often assumes replications, and the concomitant

and covariance matrigoMy) . Analysis of Variance (ANOVA) assumes normally,
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independently, and identically (NID) distributed residuals
with zero meane ~ NID(0, 0) :see (1). ANOVA then
uses the classic# lack-of-fit test which compares two
estimators of the common response variante
(i) The first estimator useS withe 1, ...,n, which are the

classic variance estimators based on replication defined in
is constant, thes

(3). Because the true response variante

SN (f

n estimators are averaged or poolsa: X::,n -

3 BOOTSTRAPPING RAO’S LACK-OF-FIT F-
STATISTIC

,as followsE & T describe the real world by ~ P wherez is an

independently and identically distributed (i.i.d.) variable
(possibly, multi-variate), andP is its distribution
éunctlon (Hence, each individual observatign may be
sampled 0, 1, ...s times; so this sampling follows a
multinomial probablllty function). LetF  denote the

m is not constant, then a weighted average is used, with the®stimated probability function. Then the bootstrap sample is

degrees of freedom, - 1 as weights.)
(ii) The second estimator uses thestimated residuals
where the linear regression model (1) together with OLS

~

g

= W —_ .
. | yI (5)
=1 n)
gives the predictor or forecay‘; = Xi/ﬁ . These residuals
ive the second variance estimator,

A §izm/(n - () This estimator is unbiased if and
only if (iff) the regression model is epified correctly;
otherwise this estimator overestimates the true variance.
(i) Finally, these two estimators are compared statistically

through the F-statistid= _ aN-n - The lack of fit is

declared significant if this statistic exceeds its uppewl -
quantile.

Rao (1959) extends this test from OLS to EGLS,
assuming a constant number of correlated replicataanis
the case for common random numbers. et  denote-the
dimensional vector with estimated EGLS residuals. Then the
test statistic becomes

(6)

[(n - a)(m - 1)]

Kleijnen (1992) shows that this test performs well for
symmetrically distributed simulation responses; for example,
it works for normally or uniformly distributed, but not for
lognormally distributed simulation responses. In queueing

~F
whereF =

G=1, ..

Bootstrapping supposes that the data are summarized by
astatistic(say) 0 = sf). E & T gives as examples the mean,
variance, linear correlation coefficient, and eigenvalues; we
focus on Rao’s statistic (6).

If no common random numbers are used, then we allow
different replication numberan # m. Such unequal
replication numbers are used in, for example, Cheng and
Kleijnen (1997, 1998), assuming that queueing systems with
n different traffic rates are simulated with more customers
when traffic rates are high.

Common random numbecseate positive correlations
between the componentswg‘wnh w, =
(Wy. 1, Wy 1, ..., W, )| @ndr = 1, ..,m; that is, we assume a
constant number of repllcat|0n$ m.

Note: E & T (p. 111) considers regression analysis
without DOE, so there are no replicatioms:= 1 soN =n.

In our proposed bootstrap, a restriction is that the resulting
matrix X be non-singular. This restrioti, however, is
satisfied as DOE guarantees a non-singukay matrix X.

We present one bootstrap technique, namely a non-
parametric version. We ensure that in our bootstrap the
metamodel is correct, so that we obtain a bootstrap
distribution of Rao’s statistic under the null-hypothesis of a
valid metamodel. With the relling bootstrap distribution we
can confront the original statistifE computed for the
metamodel from the original I/O simulation da¥a &). We
expect this statistic to fall below the upper & quantile of
the bootstrap distribution.

Technically this means that - unlike Breiman (1992,

1/s @)

,9).

simulations the responses may indeed be asymmetricallyp 740) and E & T (pp. 113-117) - we do not use the original

distributed; also see Cheng and Kleijnen (1997). Fortunately,
bootstrapping permits the estimation of any statistic including
(6), for any distribution.

703

estimated reS|duaIer :er(. 1 er- n)/ : some thought
shows that when the metamodel is false, then bootstrapping
these residuals is wrong! Instead we usaltheations
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These variables have zero means, whatever the fittedtraffic rates a second-order polynomial might be adequate

metamodel is. We use these variables as follows.
First we consider the classic case, hamely simulation

responses that are independent and have constant variance

0. Then we resampl®&l values from theN original
deviations defined in the last equation, (8). This yields the

bootstrapped simulation responses assuming the metamodegéstimates of the rpsnse parapter p result,

is valid:

)

We might refine this bootstrap because only for large
replication numbersn do the deviations have the same
variance as the residuals have, namety

multiply d ; -Dy an appropriate constant). We point out that

(better metamodels are proposed in Cheng and Kleijnen
(1998).

However, to improve thefficiency and effectivenest

our study on bootstrapping and validation, we proceed as
follows. To simulate the M/M/1 model such that accurate
requires
extremely long runs. The resulting computer time would be
awaste, given the goal of our study. Moreover, we would not
know for which traffic ratesA a first or second-order
polynomial is adequate. Therefore we make sure that in some
Monte Carlo experiments a first-order polynomial with zero
intercept @0 = 0) is adequate. In the other experiments we
guarantee that the second-order effect is important relative to

(i.e., we might the first-order effect: see the marginal eff@f},. x,/B,

Kleijnen (1992, p. 1172) explains that when est|mat|ng the

no bootstrap simulation response in the last equation (9) istype | errors, the values of the true regression parameters do

identical to any of the original simulation responses!

The second case allows for variance heterogeneity of theO, .

simulation responses. Given the vakie
only the values of the correspondldg

not matter; so they are all taken equal to zﬁr& (
.). We, however, tak,

B0,

= 1, because of the marginal

, we then resampleeffethB1 X/B; - We examm@1 1 is0.25in this study.

Here we report on Monte Carlo experiments with a

The third and final case allows for common seeds. Then design partly taken from Kleijnen (1992, pp. 1170-3). So we

we havem independent vectors, each withcorrelated
simulation responses. Now we resamplertheectors of
deviationsd, =d. , , dr n) with replacement,lse
1/m; see (7)

From these bootstrapped I/O daka,(W" ) we compute
the EGLS estlmatorS B" & ., afd" ;see(3)through
(6). Repeating this bootstrdﬁ) tlmes gives the bootstrap
distribution of F * . If the original statistic does not fall
within the interval that ranges from zero to the estimated
upper 1 -a quantile of this bootstrap distribution, then we
reject the null-hypothesis of a valid metamodel. Note that we
keep the original input dabé unchanged; also see Breiman
(1992) and E & T.

Note: The pseudorandom number stream may be atypical,

resulting in a valuav that has extremely low probability:
outlier. For example, the event of a sequence of 1,000
consecutive pseudorandom numbers all below 0.01,
possible, but highly unlikely. Therefore the analysts may
wish to eliminate this valug when fitting the metamodel.
See the general regression literature.
outliers are automatically removed when they are not
resampled.

4 MONTE CARLO STUDY

Consider the best-known queueing model, namely M/M/1,

In bootstrapping,

The simulation results foﬁ

examine a single factok & 1), a true metamodel that is
either a first-order or a second-order polynomialq 02 or
3), a number of factor combinations that is small, namely
= 3, where the standardized factor values are -1, 0, and 1, a
number of simulation replications that is maximal (say)
50 =53, true residuals that are either Gaussian or lognormal-
ly distributed with zero means, standard deviations
o= (1.0, 1.818, 0.182), and common seeds which we
assume to givep(W;, W,) = 0.9x = 0.20, and 100
macroreplications. We use a bootstrap sample siz of
1000, to estimate the distribution of the various validation
statistics. (Similar extensive experiments are performed in
Breiman 1992).

We first consider normally distributed errors; in this
case Rao's lack-of-fit statistic is known to have an .,
distribution in case of a valid metamodel. In the simulation

is experiments we fit a first-order polynomial to the data, so g=

2. Rao's lack-of-fit statistic is compared tgF, = 1.6849

and to the 80 percentile of the bootstrap distribution
respectively. This allows us tot determine whether the
bootstrap gives good results in a analytically tractable case.
1 = 0 (no specification error)
are depicted in Table 1 (A= Accept, R= Reject, B=
Bootstrap, F= F-test).

which has Poisson arrival and service processes, one server

(implicit assumptions: first-in-first-out or FIFO priority rule,
unlimited size of buffer or waiting room). Suppose the

simulated response is the steady-state expected waiting time

of customers (say) u. For low traffic rates (saya first-
order polynomial is an adequate approximation; for higher

704



Bootstrapping and Validation of Metamodels in Simulation

Table 1:,. ; =0, Normal Errors

F A R T
B

80 1 81

R 1 18 19

81 19 |100

From these results we estimate and = 0.19 . Undger H
: o = 0.2 both results have a p-value of 0.9007 (using and
exact binomial test and a two-sided alternative).

Totest H : ag = o against a two sided alternative only
the cases on which they differ are of interest (the R-A and A-
R cells in the table). Under {tach case on which they
differ has probability 0.5 of landing in the R-A and A-R cell
respectively. We (arbitrarily) define a case in the A-R cell as
a "succes", and ¢hin a binomial test with 2 trials, 1 success
and probability of sccess = 0.5. This gives us a p-value of
1 so we cannot reject the null hypothesis.

Next we consider the case wih, = 0.25
(misspecified model) and normal errors. The results are
summarized in Table 2.

Table 2:3,. ; = 0.25, Normal Errors

F A R T

B
A 42 0 42
R 1 57 58
43 57 | 100

The estimated power of the bootstrap in this case is 0.58;

and for the F-test 0.57. Clearly we cannot reject pbwer
s = power; (p-value = 1).

Next we consider log-normal errors and no specification
error (B,.; = 0). The simulation results are summarized
in Table 3.

Table S:Bl_ 1 =0, Log-normal Errors

F A R T

B
A 73 3 76
R 0 24 24
73 27 | 100
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From Table 3 we calculafe, = 0.24  and
& = 0.27, with p-values (H : « = 0.2) of 0.3176 and
0.1027 respectively. The testHfO D 0g = 0 yieldsap-
value of 0.25 on the data in Table 3.

Finally we consider log-normal rrs with a
misspecified modelf§,. ; = 0.25).

The simulation results are summarized in Table 4.

Table 4:[51_ ; =0.25, Log-normal Errors

F A R T

B
A 32 5 37
R 0 63 63
32 68 | 100

The estimated power of the bootstrap in this ca3&&
for the F-test the estimate is 0.68. The test gf. pbwerg =
power, yields a p-value of 0.0625.

5 FUTURE RESEARCH

Popular statistics for measuring the fit of estimated
regression metamodels are: the coefficient of determination,
denoted as R-square, possibly adjusted for the number of
parameters, and the linear correlation coefficient, also known
as Pearson’s rho. One more alternative is cross-validation,
giving Studentized prediction errors and using Bonferroni’'s
inequality.

Several more validation statistics will be considered,
such as the relative absolute errors, considering either their
average or their maximum. These various fitting and
validation procedures and different statistics will be studied
through an extensive Monte Carlo experiment. Queueing
examples will provide further illustrations of the practical use
of these procedures and statistics.

6 CONCLUSIONS

The main conclusions are (i) Not the regression residdals

should be bootstrapped; instead the deviatidhs- W

should be bootstrapped (ii) bootstrapping Rao's lack-of-fit
statistic is a good alternative to the F-test. In case the
assumptions of the F-test are known to apply (normal errors),
the bootstrap gives virtually identical results. In case the
assumptions of the F-test are violated (log-nornmedrs)

both tend to give a somewhat high Type | error probability,
but the bootstrap less so. Further experiments are required to
draw more definitive conclusions.
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