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ABSTRACT

An important problem in discrete-event stochas
simulation is the selection of the best system from a fin
set of alternatives. There are many techniques for ran
and selection and multiple comparisons discussed in
literature. Most procedures employ classical frequen
approaches, although there has been recent attentio
Bayesian methods. In this paper, we compare Bayesian
frequentist assessments of unknown means of simula
output. First, we present a Bayesian formulation 
describing the probability that a system is the best, gi
prior information and simulation output. This formulatio
provides a measure of evidence that a given system is
when there are two or more systems, with eit
independent or common random numbers, with known
unknown variance and covariance for the simulat
output, given a Gaussian output assumption. Many, but
all, frequentist assessments are shown to be derivable 
assumptions of normality of simulation output wh
certain limits are taken. So we compare Bayes
probability of correct selection (P(CS)) with frequentist 
value as a measure of evidence that the best syste
selected under normality assumptions.

1 INTRODUCTION

In this paper, we explore similarities and differences
standard frequentist approaches (Law and Kelton, 19
and a Bayesian approach (deGroot, 1970 and Chick, 1
to measure the evidence that a given simulated syste
best. Best here is taken to be the system with the hig
mean value of performance measure for simulation outp

Goldsman and Nelson (1994) present a state-o
review of multiple comparison, ranking and selecti
procedures and related topics in computer simulation
727
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large class of these techniques relies on frequen
assessments and the ‘indifference zone’ notion, whi
attempts to identify differences of at least a certa
magnitude between systems.

On the other hand, there is a growing literature for th
Bayesian decision-theoretic simulation output analys
especially for computer budget and sample allocati
procedure (Gupta and Miescke, 1994; Gupta and Miesc
1996). Formally, decision theory talks about expecte
utilities. To simplify, we here talk more generally about th
mean value of output.

We discuss Bayesian assessments of unknown m
for selecting the best system with normally distribute
simulation output, independent or dependent (e.g. comm
random numbers) simulation replications, and known 
unknown covariance structures, for K = 2 or K > 2 systems.
In Section 4, we compare frequentist P-values a
Bayesian posterior P(CS) as evidence for correct selecti
We consider five simulated (s, S) inventory policies t
illustrate ideas.

2 A BAYESIAN ASSESSMENT OF UNKNOWN
MEAN FOR A SINGLE SYSTEM

2.1 Normality Assumptions

We first look at a Bayesian single system model (K = 1) in
order to provide a basis for K ≥ 2 systems. Suppose
stochastic simulation provides independent outpu

1o ,..., Ro  that is normally distributed with unknown mean

ì  and precision ë .
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We would like to know whether the system mean ì  is

larger than some specific value Ì .

2.2 Bayesian Approach: Known Precision

Assume precision ë  is known, and that the unknown mea
ì  has the conjugate normal prior distribution with me

0ì  and precision 0ë . The conjugate prior allows fo

closed form solutions. In particular, the posteri
distribution of ì  is then:

( ) 


 ++
+ Rë,ë~NormalDìp
Rëë

ORëìë
0

0

00

where { }R,...,ooD 1=  and ∑
=

=
R

r
R
orO

1

So the probability that the mean exceeds Ì  is

( ) ( ) 









 −+Φ==> +
+

>
∫ ÌRëëDìpDÌìP

Rëë

ORëìë

Ìì
0

00
0

where Φ  is the cumulative distribution function of th
standard normal distribution.

Now suppose that there is little information with th
normal prior density. deGroot (1970) suggests to us
reference prior distribution which is  uniform over th
whole real line such that ( ) cìp =  given by taking limit

00 →ë , where c is constant. This reference prior provide

the following posterior distribution:

( ) ( ),RëO~NormalDìp

Then the probability that whether the system mean µ  is
larger than some specific value Ì  is

( ) ( ) ( )( )ÌORëOìpDÌìP
Ìì

−Φ==> ∫
>

2.3 Bayesian Approach: Unknown Precision

Next we consider the case where precision ë  is unknown.
We use the normal-gamma conjugate prior for meanì

and precision ë : the conditional distribution of ì  given ë

is normal with mean 0ì  and precision 00ën  and the

marginal distribution of ë  is ( )á, âGamma :

( ) ( ) ( )[ ] ( ) ( )âëëììënì,ëp á
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The posterior marginal distribution of µ  is then:

( ) ( )( )Râ
áRn

R á,,ì~StudentDìp
R

R 20 +

where
Rn

ORìn
Rì +

+=
0

00

2
R

R áá += ( )
( )Rn

OìRns
R ââ +

−++=
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2
00
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and the density function of ( )ì,ê,íStudent  is

( ) 21
21

)/(í

ì)(x
í
êcì,ê,íxp

+−





 −+=

where ( )( ) ( )( )( )2121
221 //

íðí//íÃêc Γ+=

So the probability that the system has mean greater th
Ì  is

( ) ( ) ( ) ( )




 −Φ==> +

>
∫ ÌìOìpOÌìP Râ

áRn
á

Ìì
R

R

R

0
2

where áΦ  is the cumulative function of the standardize

Student distribution with á  degrees of freedom.
Vague knowledge of ë  is often represented by the

reference prior ( ) ëì,ëp 1∝ ( 00 →n , 0→á , 0→â  for

conjugate prior), which is improper. The posterio
distribution becomes:

( ) ( )( )11 −− ,R,O~StudentDìp
s
RR

The mean is greater than Ì  with probability

( ) ( ) ( )


 −Φ=> −
− ÌOOÌìP

s
RR

R
1

1

3 BAYESIAN MODEL FOR MULTIPLE SYSTEMS

Suppose there are K  different systems, and the objective is
to select the system with the maximum mean. Th
probability that a given system is best, P(CS), will b
calculated from the posterior distribution of the mean.

3.1 Independent Replications

This section presents assumptions, analysis, a
approximation for the determining the P(CS) that a give
simulated system has the highest mean, given t
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assumption of independent simulation replications 
known or unknown precision.

We make the following assumptions:

1. Let 
kk,Rk ,...,oo 1,  be the output for the k -th system.

The number of replications for each system is n
necessarily equal.

2. The kO  are independent and normally distributed wi

(potentially unknown) mean kì  and precision kë .

Since the output for each system is independent,
can apply the single system model to define the poste
distribution for kì .

Fact 3.1 Assume the above, except that kë  is known.
Further assume that the unknown mean kì  has the
conjugate normal prior distribution with mean 0kì  and
precision 0kë . The posterior distribution of the
conditional) mean is a normal distribution:

( ) 


 ++
+

kkkëRë
OëRìë

kk ëR,ë~NormalDìp
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k
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1

Further if a reference prior is used,

( ) ( )kkkkk ë,RO~NormalDìp  (2)

Likewise, we have the following fact for the case 
unknown precision.

Fact 3.2 Given the normality assumptions with unknow

kë . Using the normal-gamma conjugate prior about me

kì  and precision kë : the conditional distribution of kì
given kë  is normal with mean µk0  and precision 00 kk ën
and the marginal distribution of kë  is ( )kk âáGamma  , .
The posterior distribution of µk  is then:

( ) ( )( )kRâ
áRn

kRkk á,,ì~StudentDìp
kR

kRkk 20 +

(3)
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Further if the reference prior is used,

    ( ) ( )





 −

−
1

1
k

ks
kRkR

kkk ,R,O~StudentDìp  (4)

Proofs of fact 3.1 and 3.2 The proofs follow directly from
the definition of conjugate distributions (see, e.g. deGroo
1970 and Inoue, 1998). 

Applying these facts, it is possible to find the
probability that system i is best, P(CS) for either known or
unknown precision case as follows:

( ) ( )Di j ììPD  i PP(CS) ji ≠≥==  allfor bestis system

where D  is the output from all simulation replications.
When there are only two systems considered (K = 2),

the methodology is equivalent to single system mod
based on the difference of two means (Inoue, 1998
However Monte Carlo simulation from the posterio
marginal distribution of ( )Kì...,,ì,ì    21  might be required

for K > 2 to estimate P(CS).

3.2 Dependent Replications

Because of significant savings of computational effort fo
system analysis, it is often desirable to use the depend
output from system to system such as common rando
numbers (CRN).  In this section we explore a Bayesia
approach to account for such dependencies.

We make the following assumptions:

1. Assume that common random numbers are used a
the number of replications, R, for each system is the
same.

2. Let ( )K,r,r,r ,...,o,oo 21=ro  be the vector of outputs

from r-th replication. The vectors ( ),...,Rrr 1=o  are

independent, but the components are not necessa
independent.

3. ( )K,r,r,r ,...,o,oo 21=ro  is K-dimensional multivariate

normal with unknown mean vector ì  and precision

matrix ë .

( ) ( ) ( ) ( )[ ]ìoëìoëì,o rr
ë

r −−−= tK/

ð
p

2
1

2

2
exp

Sample statistics from R simulation replications, the
sample K -variant mean and a sample KK ×  covariance
are denoted:

∑
=

=
R
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When the precision matrix is known, we have t
following posterior distribution for the unknown mea
vector.

Fact 3.3 In addition to the above assumptions 1- 3, assu
that the precision matrix is known ë . Second, assume tha
the unknown mean vector ì  has conjugate normal

distribution with mean vector 0ì  and precision matrix
KK×ℜ∈0ë . Then the posterior distribution for the mea

vector is

( ) ( )0ëëìDì R +RNormalp K ,~ (5)

where ( ) ( )OëìëëëR RR ++= −
00

1
0µµ

With the reference prior ( matrix zero→0ë , ( ) cp =ì  for

all Kℜ∈ì ), it follows that

( ) ( )ëDì R~Normalp K ,O (6)

For the unknown precision matrix case, the poste
distribution of the unknown mean performance 
determined as follows.

Fact 3.4 In addition to the above assumptions 1 - 
assume that the precision matrix is unknown ë . Second
assume the appropriate multivariate generalization, 
conjugate normal-Wishhart distribution: the conditiona
distribution of unknown mean vector ì  is normal

distribution with mean vector 0ì  and precision matrix

ë0n  and the marginal distribution of ë  is a K dimensional

Wishart distribution with parameters á  and â  (with

12 −> Ká  and â  is KK ×  a symmetric, nonsingular

matrix).
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ììëììëì, ë

trc

np

)/(Ká
w

tK/

ð

no

−•

−−−=
+−

exp

exp

21

02
1

2

2

α

00

where ( )
1

1
2
1241

−

=

−+−








Γ= ∏

K

k

ká)/K(K
w ðc

Then the posterior distribution for the mean vector is
multivariate Student distribution,
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and the density function of ( )íê,ì,KStudent  is

( ) ( ) ( ) 21

1
)/(í

íscíp
+−

−−




 += ìxêìx t

êìx ,,,,

where ( )( ) ( )( )( )221
22 K//

S íðí//KíÃc Γ+= ê

With the reference prior, ( ) ( ) 21
1

/K
p +=

ë
ëì ,, ( 00 →n ,

0→á , matrix zero→â ), it follows that

( ) ( )( )K,RKR,RStudentp -
K −− 1~ SODì (8)

Proofs of fact 3.3 and 3.4 The proofs follow directly from
the definition of conjugate distributions (see, e.g. deGroo
1970, Chick, 1997 and Inoue, 1998).

The probability that system i  is best, for either known
or unknown precision matrix is as follows:

( ) ( )∫
≠≥

=≠≥=
i j ìì

ji

ji

pi j ììPP(CS)
allfor 

 allfor ìD Dì

where D  is the output from all simulation replications.

4 COMPARISON OF BAYESIAN AND
FREQUENTIST APPROACHES

In what way, if any, does a P-value for multiple selection
compare to the posterior probability correct selection? Th
is an important question for evaluating whether or not 
frequentist approach can be justified from a Bayesia
approach. We explore the answer to this question for 
collection of such tests for the unknown mean.

4.1 A Single (K = 1) System with A Standard

Before considering which is the best of multiple systems, 
is helpful to look at the simplest case, K = 1. In particular,
we want to see if the unknown mean ì  exceeds some

standard Ì .
In frequentist approach, we could analyze this problem

using the one-sided hypothesis test of ÌìH ≥:0  versus

ÌìH <:1 . When the precision ë  is unknown, a widely

used test statistic T  is

( ) ( )ÌOT
s

RR −= −1
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In this case, P-value is

( ) ( )


 −Φ=− −
− ÌOvalueP

s
RR

R
1

1

This and Section 2.1.3 lead to the following result.

Result 4.1 Under the above assumptions and
approximations with single system model, the Bayesi
posterior P(CS) with improper prior is exactly same as th
frequentist one-sided P-value.

This result shows that for one-sided hypothesis testing, it
possible to reconcile Bayesian evidence against n
hypothesis using a reference prior with frequenti
evidence (also see Casella and Berger, 1987).

When the number of replications is large we have th
following results.

Result 4.2 Under the normality assumption Section 2.1
with single system model, the sizes of Bayesian poster
central credible set and frequentist confidence interval a
the same order of magnitude.

Proof For the unknown precision case, the frequenti
approach has the confidence interval whose size is like

( )



 −
•− s

RR
,Rt

1
1

For the analogous Bayesian central credible set with
reference prior (Bernardo and Smith, 1994), the size is al

( )



 −
•− s

RR
,Rt

1
1

On the other hand, Bayesian approach with prop
conjugate prior has a central credible set whose width
like (see Equation (3)).















+
−++

++
•+

Rn

)OR(ìn
sâ

R)áR)((n
R,át

0

2
00

0

2

2
2

As ∞→R , this is of order








•+ s
R

R,át
2

2

As R increase, •••+ ≈≈ ztt R,R,á2  and 
s

R
s
RR 2)1( ≈−  to first

order, so the result holds.
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So if a reference prior is used or the number o
replications is very large, they all have confidence/credibl
sets whose size is the same order of magnitude.

4.2 Two (K = 2) Systems

4.2.1  Independent Case

When there are two systems, we would like to know
whether system 1 has a larger mean than system 2. Assu
that the precisions kë  are unknown and unequal ( )21 ëë ≠ ,

but we have the same number of replications for eac
system ( )RRR == 21 . One frequentist approach considers

this problem as the single system model using th
difference of two means. Thus we set the hypothesis,

0: 210 ≥− ììH 0: 211 <− ììH

A standard test statistic and P-value for 0H  are

( ) ( )21
21

1
OOT

ss

RR −=
+

−

( ) ( )


 −Φ=− +
−

− 21
1

1
21

OOvalueP
ss

RR
R

where ∑
=

=
R

r
R

o
k

rkO
1

,  and ( )∑
=

−=
R

r
krkk Oos

1

2

,

Consider a special case for the Bayesian approac
Assume normal-gamma conjugate priors for ( )11,ëì  and

( )22,ëì : the conditional distribution of 1ì  given 1ë  is

normal with mean 10ì  and precision 110ën , and the

marginal distribution of 1ë  is ( )1 âá,Gamma  and the

conditional distribution of 2ì  given 2ë  distributed

conditionally normal with mean 20ì  and precision 220ën

with 2ë  distributed with ( )2 âá,Gamma . Then the

posterior distribution of 21 ìì −  is

( ) R), , ë~Student(ì,D|Dììp áRR +− 22121

where
Rn

ORìn

Rn

ORìn
Rì

+

+

+

+
−=

20

22020

10

11010

1

220

2
210

1
−

++++ 




 +=

)R/R)(á(n
Râ

)R/R)(á(n
Râ

Rë

With reference prior defined in Section 2.1.3,

( ) 




 −−−

+
− 1
21

1
212121  , R , OO~Student,D|Dììp

ss

)R(R
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This leads the following:

Result 4.3 Given the normality assumptions (Section 2.
the Bayesian posterior P(CS) with improper prior 
exactly same as the frequentist P-value.

Proof Results follows like Result 4.1 and 4.2.

Inoue (1998) discusses many other cases dealing 
two system cases with known precision, unknown 
equal precision, and unequal replications.

4.2.2  Dependent Case

For K = 2 systems with correlated output, assume that e
pair of outputs has a bivariate normal with unknown me
vector and unknown precision matrix. In one frequen
approach, for the one-sided hypothesis, the test statistic

( )dT
ds

)R(R
d

1−=

where ( )Rrood rrr ,...,121 =−=

21
1

21 OOd
R

r
R

)ror(o −== ∑
=

−

( )
2

1
∑

=
−=

R

r
rd dds

In the frequentist sense, P-value for 0H  is

( )





Φ=− −

− dvalueP
ds

)R(R
R

1
1

This is different from the analogous Bayesian result ev
when a reference prior is used.

Result 4.4 For K = 2, the Bayesian posterior P(CS) with 
reference prior has the different degrees of freedom fr
the frequentist P(CS).

Proof From Equation (8) of Fact 3.4,

( ) 




 −− 2,~ 2

2 ,RStudentp
ds

)R(RODì

The marginal distribution of 21 ìì −  is also Student with

2−R  degrees of freedom (deGroot, 1970). The probabi
that system 1 is the best is then

( )





Φ= −

− dP(CS)
ds

)R(R
R

2
2

732
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4.3 More Than Two (K > 2) Systems

Suppose that we would like to measure evidence that
system i is best. In frequentist approaches, a wide vari
of P-values have been used for MCB and multip
hypotheses testing (Hsu, 1996).

Here we use Bonferroni inequality to obtain 
conservative P-value for the hypothesis that the systemi is
best with (K – 1) one-sided hypotheses.

ji,i,j ììH ≥:0 ji,i,j ììH <:1     ( )i,....,K:jj ≠= 1

The overall P-value is based on Bonferroni inequali
which gives a lower bound on the probability for the joi
occurrence of a finite number of events.

( ) ( ),i,j,i,j HvalueP is  trueHP 00 −=

then

( ) ( )( )[ ]∑
≠

−−−≥
K

ij
,i,j,i,j HvalueP is trueall HP 00 11   (9)

The use of Bonferroni inequity is familiar in
simultaneous statistical inference (Charnes and Kelt
1988). So we define the right hand side of Inequality (9)
the overall P-value of the joint hypothesis jii ììH ≥:,0

( )ijKj ≠= :,...,1 :

( ) ( )( )[ ]∑
≠

−−−=−
K

ij
,i,ji HvaluePHvalueP 0,0 11

4.4 General Observations

For independent replications, a Bayesian approach w
reference prior and a frequentist approach have the s
relevant distributions for pairwise comparisons. For 
Bayesian approach with conjugate prior, the sizes 
credible sets are asymptotically of the same order
magnitude. So if the posterior P(CS) is approximated 
the Bonferroni bound not Monte Carlo simulatio
frequentist approach is justified asymptotically (in limit o
parameters of priors or the large number of replications)
the Bayesian approach (Inoue, 1998). For unkno
precision case, we need 1>kR  replications for each

system because both Bayesian and frequentist approa
are based on the Student distribution with 1−kR  degrees

of freedom.
For CRN, the story is different. First, to obtain prop

posterior distribution, we need 21)(KR −>  replications

for each system. As the number of system increases
does the number of replications required to justifiab
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inference. Second, the degree of freedom for hypoth
tests differs for a Bayesian approach with reference p

KR− and a frequentist approach 1−R . For a small
number of replications, this indicates that frequen
assessments of evidence of correct selection are optim

Formally, the reference prior is improper and theref
incoherent behavior. It is not clear that a justification o
values based on them, therefore, is to be consid
advantage for frequentists. The Bayesian P(
formulation may be estimated by MC simulation form 
posterior for the unknown mean. This is not for frequen
P-values.

5 NUMERICAL EXAMPLE

In this section, we present experimental results from
application of Bayesian and frequentist approach t
typical simulation problem. We consider five (s, 
inventory policies treated by Law and Kelton (1991, 
592). The objective here is to determine which inven
system has the minimum expected cost per period for
periods.

Table 1: Simulation results for five (s, S) policies

Independent Reps.
System s S Mean S.D

1 20 40 125.27 4.57
2 20 80 121.28 3.37
3 40 60 125.83 2.64
4 40 100 131.90 2.48
5 60 100 144.65 2.00

Dependent Reps
System s S Mean S.D

1 20 40 125.29 4.20
2 20 80 120.74 2.66
3 40 60 124.96 2.16
4 40 100 131.10 1.99
5 60 100 143.53 1.66

We run R = 100 replications for each of the fiv
systems with both independent and synchronized com
random numbers were performed (Table 1). In 
example, CRN means that all inventory systems w
evaluated with the same times between demands an
same sizes of demands.

We start with independent case. For Fact 3.2, ass
that a prior mean for 0kì  is an approximate value (Nelso

Schmeiser, Taaffe, and Wang, 1997 used que
approximation in a similar context) using (Q,R) invento
method (Namhias, 1989): 13010 =ì , 12020 =ì ,

13530 =ì , 14040 =ì , 15550 =ì  and that all systems ha
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e

the expected value of precision of the prior distribution o
0.33 with 10 =kn , 51.á = , and 54.âk =  )51( ,..,k = . Then

the posterior distribution have the Student distribution who
mean, precision, degrees of freedom given in Table 2.

Table 2: Posterior Distribution with Independent Case

Mean Precision D.F

11 Dì 125.32 4.70 103

22 Dì 121.27 9.14 103

33 Dì 125.92 10.86 103

44 Dì 131.97 14.97 103

55 Dì 144.75 19.65 103

For dependent replications, we will use the same value 
prior for ì :

[ ]t155140135120130=0ì

10 =n

51.á = [ ]t.....diag 5454545454=â

Using the covariance of the output and the above pri
distribution, the posterior distribution of ì  is the

multivariate Student t distribution defined as

( ) ( )( )( )031 , ,~ 1-
2
103101

5 RâìD|ì RStudentp

where

[ ]t64.14319.13106.12573.12034.125=Rì























=

83.20618.13917.17302.11395.213

18.13947.24045.19258.21644.307

17.17345.19280.28430.20953.361

02.11358.21630.20905.35584.405

95.21344.30753.36184.40506.903

Râ

We examined the probability of correct selection give
a selection of system 2 as best using (1) estimates

P(CS), ( ){ }DjììP j 2ˆ
2 ≠−≥− , by sampling from the

Bayesian posterior distribution and (2) the Bonferron
inequality of frequentist P-values for jìì −≥− 2  ( )2≠j .

A summary of results is presented in Table 3.
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Table 3: Summary of Comparison

# REPS Variates

P(CS)
(sampling from

posterior)
P-value

(Bonferroni)
10 Indep. 0.9737 0.8847

CRN 0.9999 0.9996
30 Indep. 0.9992 0.9953

CRN 1.0000 1.0000
50 Indep. 0.9999 0.9994

CRN 1.0000 1.0000
100 Indep. 1.0000 1.0000

CRN 1.0000 1.0000

Therefore, at the expense of sampling from the poster
distribution of mean, one can obtain tighter assessme
than Bonferroni with pairwise comparison.  Results we
somewhat insensitive to our choice of prior distribution.
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