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ABSTRACT large class of these techniques relies on frequentist
assessments and the ‘indifference zone’ notion, which
An important problem in discrete-event stochastic attempts to identify differences of at least a certain
simulation is the selection of the best system from a finite magnitude between systems.
set of alternatives. There are many techniques for ranking On the other hand, there is a growing literature for the
and selection and multiple comparisons discussed in the Bayesian decision-theoretic simulation output analysis,
literature. Most procedures employ classical frequentist especially for computer budget and sample allocation
approaches, although there has been recent attention tgrocedure (Gupta and Miescke, 1994; Gupta and Miescke,
Bayesian methods. In this paper, we compare Bayesian andl996). Formally, decision theory talks about expected
frequentist assessments of unknown means of simulationutilities. To simplify, we here talk more generally about the
output. First, we present a Bayesian formulation for mean value of output.
describing the probability that a system is the best, given We discuss Bayesian assessments of unknown mean
prior information and simulation output. This formulation for selecting the best system with normally distributed
provides a measure of evidence that a given system is bessimulation output, independent or dependent (e.g. common
when there are two or more systems, with either random numbers) simulation replications, and known or
independent or common random numbers, with known or unknown covariance structures, #r= 2 orK > 2 systems.
unknown variance and covariance for the simulation In Section 4, we compare frequentist P-values and
output, given a Gaussian output assumption. Many, but not Bayesian posterior P(CS) as evidence for correct selection.
all, frequentist assessments are shown to be derivable fromWe consider five simulated (s, S) inventory policies to
assumptions of normality of simulation output when illustrate ideas.
certain limits are taken. So we compare Bayesian
probability of correct selection (P(CS)) with frequentist P- 2 A BAYESIAN ASSESSMENT OF UNKNOWN
value as a measure of evidence that the best system is MEAN FOR A SINGLE SYSTEM
selected under normality assumptions.
2.1 Normality Assumptions
1 INTRODUCTION
We first look at a Bayesian single system mo#et(1) in
In this paper, we explore similarities and differences of order to provide a basis fak = 2 systems. Suppose
standard frequentist approaches (Law and Kelton, 1991) stochastic simulation provides independent output,
and a Bayesian approach (deGroot, 1970 and Chick, 1997) o, ,...,05 that is normally distributed with unknown mean
to measure the evidence that a given simulated system is; gng precisions .
best. Best here is taken to be the system with the highest
mean value of performance measure for simulation output. o
Goldsman and Nelson (1994) present a state-of-art p(or|‘|,('=;):(2f‘2)1 exp{—%é(o, —1)2]
review of multiple comparison, ranking and selection
procedures and related topics in computer simulation. A
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We would like to know whether the system maaris
larger than some specific valle .

2.2 Bayesian Approach: Known Precision

Assume precisiorg is known, and that the unknown mean
i has the conjugate normal prior distribution with mean

i, and precision&,. The conjugate prior allows for

closed form solutions. In particular, the posterior
distribution of i is then:

(i |D)~Normaﬁé’;:+;FF:§6 &+ Ré%]
_ R
where D ={0,,...,0:} and0 = %

So the probability that the mean exceédsis

P(i >i |p)= [D(3|D):q’§m

i>l

&)1 o+ REO
&t+Re

- %
where @ is the cumulative distribution function of the
standard normal distribution.

Now suppose that there is little information with the

The posterior marginal distribution qf is then:

p(‘| |D)—Studerl@ R,% ,ZéR)

N n0i0+R6

where ig= norR
7 _z R A _ A s nORio—a
ap=aty arp =at3+ 2(n,+R

and the density function chtuden@,é,i ) is

—(i+1)/2

P(X|i,é,i ): c%+i§(x_‘|) ZE
where ¢ =2 A(( +1) 2)/(r (i1 2)( )1/2)

So the probability that the system has mean greater than
I is

)0

L

where ®, is the cumulative function of the standardized

P(i > |O): Ip(i |O):q>zéRD %':éR(‘l r—1

1>l

normal prior density. deGroot (1970) suggests to use a Student distribution witha degrees of freedom.

reference prior distribution which is uniform over the
whole real line such thap(i ):c given by taking limit

&, - 0, wherec is constant. This reference prior provides
the following posterior distribution:

p(i |D)~Norma(6,Ré)

Then the probability that whether the system meais
larger than some specific valde is

(i >1 D)= [olijo)=olRe(c-1 )

1>l

2.3 Bayesian Approach: Unknown Precision

Next we consider the case where preciséiis unknown.
We use the normal-gamma conjugate prior for méan

and precisioné: the conditional distribution of given &
is normal with meani, and precisionn,& and the
marginal distribution ofé is Gamm&é, é):

p(i.6)= (2] *exd- 1roeli —1 0+ et el 2¢)
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Vague knowledge ofé is often represented by the
reference priorp(i,é)D]/é(nO -0,a-0, a-0 for

conjugate prior), which is improper. The posterior
distribution becomes:

p(i |D)—Studer{6,@ ,R—l)

The mean is greater thdn with probability

6

3 BAYESIAN MODEL FOR MULTIPLE SYSTEMS

P(i >1 |0)=®r,y

Suppose there aré different systems, and the objective is
to select the system with the maximum mean. The
probability that a given system is best, P(CS), will be
calculated from the posterior distribution of the mean.

3.1 Independent Replications
This section presents assumptions, analysis, and

approximation for the determining the P(CS) that a given
simulated system has the highest mean, given the
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assumption of independent simulation replications for Further if the reference prior is used,
known or unknown precision.

We make the following assumptions: -
g P (i k|Dk)~smder%6k, Rk(;'r )R —1@ 4)

1. Let Oya,....0cg be the output for thek -th system.

The number of replications for each system is not Proofs of fact 3.1 and 3.2Zhe proofs follow directly from
necessarily equal. the definition of conjugate distributions (see, e.g. deGroot,
2. The O, are independent and normally distributed with 1970 and Inoue, 1998).
otentially unknown) mea, and precisiong, .
(P Y ) X P ™ Applying these facts, it is possible to find the
probability that systemis best, P(CS) for either known or

Since the output for each system is independent, we .. )
unknown precision case as follows:

can apply the single system model to define the posterior

distribution for i . P(CS)= Plsystemi isbesD)=P(i; > 1 ; forall j #iD)

Fact 3.1 Assume the above, except that is known. where D is the output from all simulation replications.
Further assume that the unknown mean has the When there are only two systems consideted- (2),
conjugate normal prior distribution with meah,, and the methodology_ is equivalent to single system model
precision &,. The posterior distribution of the based on the difference _of two means (Inoue, 19_98).
conditional) mean is a normal distribution: However Monte Carlo simulation from the posterior

marginal distribution of(i 1,1 ,,...,1 x ) might be required

p(‘| k|Dk)~NormaI§3 O;K;O:thk;m B0 R & ﬁ (1) for K > 2 to estimate P(CS).

_ R, 3.2 Dependent Replications
where Dy :{OK,lv"'vOK,&} and Ok = ) =~

rk=1Rk Because of significant savings of computational effort for
system analysis, it is often desirable to use the dependent
Further if a reference prior is used, output from system to system such as common random
numbers (CRN). In this section we explore a Bayesian
p(‘| k|Dk)~Normal(6k,R<'e'1<) ) approach to account for such dependencies.

We make the following assumptions:

Likewise, we have the following fact for the case of

K .- 1. Assume that common random numbers are used and
unknown precision. the number of replication®}, for each system is the
. . . . same.
Fﬂact 3._2 Given the normality assgmphons_wnh unknown Let o, :(Olr102r1"'rQ<r) be the vector of outputs
& . Using the normal-gamma conjugate prior about mean et '
i, and precisiong, : the conditional distribution ofi from r-th replication. The vector®, (r =1....,R) are
given &  is normal with meanu,,o and precisionn,yé,, independent, but the components are not necessarily
and the marginal distribution o, is Gammda,, &, ). independent.
The posterior distribution ofy, is then: 3. o = (01,r102,r1'"70r<,r) is K-dimensional multivariate
(R normal with unknown mean vector and precision
N Y Nt s
P(' «|Dk )~Studer&1 KR vzakR) matrix &.
®) = K2

N i le) sy [é S\t N
where i ,g :% p(or||, e)—%) exp{—%(o, -i)éo, -1 )]

AR = &y +% Sample statistics fronR simulation replications, the

(‘ _ )2 sample K -variant mean and a samplkxK covariance
B = B + K + o ko ™k are denoted:
2 2 nk0+Rk
R ) —_ R, R _ v
- _ =y%  s=Y(o, -0)o, -0)
5= 3 o, ~04) 0=5" > b -0l

n=1 r=1 r=1
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When the precision matrix is known, we have the
following posterior distribution for the unknown mean
vector.

Fact 3.3In addition to the above assumptions 1- 3, assume

that the precision matrix is knowé. Second, assume that
the unknown mean vectoi has conjugate normal

distribution with mean vectori , and precision matrix
&, 00" | Then the posterior distribution for the mean
vector is

p(i [D)~ Normal (i . Re+&,) (5)

where g = (Ré+ éo)‘l(éoi o+ Réa)

With the reference prior&, — zeromatrix, p(i )=c for
all i O0OX), it follows that

p(‘l |D)~Norma|K (6, Ré) (6)

For the unknown precision matrix case, the posterior
distribution of the unknown mean performance is
determined as follows.

Fact 3.4 In addition to the above assumptions 1 - 3,
assume that the precision matrix is unkno#n Second
assume the appropriate multivariate generalization, a
conjugate normal-Wishhart distribution: the conditional
distribution of unknown mean vectoi is normal
distribution with mean vectori , and precision matrix
nyé and the marginal distribution o# is a K dimensional
Wishart distribution with parametersa and & (with
2a>K-1 and & is KxK a symmetric, nonsingular

matrix).

o, &)= (=) exel-2(1 ~1,) ot -1,)

.c,|a" |é|é‘_(K 2 ax-tr (a8)]

O K ) 0
where c, = v [ r{ase)
U k=1 0

Then the posterior distribution for the mean vector is a
multivariate Student distribution,

no +R)2a+R-K +

o(i|D)- Studer\ggl A U a4+ R-K + 1§(7)

2
R (noiO+R6)
where ig=+~-—"
nO+R
=250 (7 0-0ho-0)
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and the density function dbtudeng (‘|, é,i) is

At a (i +1)/2
Cs%"‘ (x-1 )ie(x—l )E

where cg =|e["2A(( +K)/2)/ (r(i/ 2)ia )K’z)

1,8,i)=

plx

. . AN 1
With the reference prior, p(| ,e)—@mﬁ(n0 -0,

4 - 0, a - zeromatrix), it follows that

p(i D)~ Student (O.RR-K)sLR-K)  (8)
Proofs of fact 3.3 and 3.%he proofs follow directly from
the definition of conjugate distributions (see, e.g. deGroot,
1970, Chick, 1997 and Inoue, 1998).

The probability that system is best, for either known
or unknown precision matrix is as follows:

PCS)=P(i; 21 forall j #i|D)= [Pio(i)
izl forallj#i

where D is the output from all simulation replications.

4 COMPARISON OF BAYESIAN AND
FREQUENTIST APPROACHES

In what way, if any, does a P-value for multiple selection
compare to the posterior probability correct selection? This
is an important question for evaluating whether or not a
frequentist approach can be justified from a Bayesian
approach. We explore the answer to this question for a
collection of such tests for the unknown mean.

4.1 A Single K = 1) System with A Standard

Before considering which is the best of multiple systems, it
is helpful to look at the simplest case= 1. In particular,
we want to see if the unknown mean exceeds some

standardi
In frequentist approach, we could analyze this problem
using the one-sided hypothesis testhbf :1 =1 versus

H,:i <1 . When the precisioré is unknown, a widely
used test statisti¢ is

T :\/@(6—] )



Comparison of Bayesian and Frequentist Assessments of Uncertainty for Selecting the Best System

In this case, P-value is So if a reference prior is used or the number of
replications is very large, they all have confidence/credible
RRD) (= sets whose size is the same order of magnitude.
P -value= &, [} FEU(G- )@

4.2 Two K = 2) Systems

This and Section 2.1.3 lead to the following result. 4.2.1 Independent Case

Result 4.1 Under the above assumptions and \yhen there are two systems, we would like to know
approximations with single system model, the Bayesian ynether system 1 has a larger mean than system 2. Assume
posterior P(CS) with improper prior is exactly same as the that the precisiong, are unknown and unequ@l ” éz),

frequentist one-sided P-value. o
g but we have the same number of replications for each

This result shows that for one-sided hypothesis testing, it is system(Rl =R, = R)' One frequentist approach considers

possible to reconcile Bayesian evidence against null this problem as the single system model using the
hypothesis using a reference prior with frequentist difference of two means. Thus we set the hypothesis,
evidence (also see Casella and Berger, 1987).

When the number of replications is large we have the
following results.

Ho:il_izzo Hl:il_i2<0

A standard test statistic and P-value Fbg are
Result 4.2 Under the normality assumption Section 2.1
with single system model, the sizes of Bayesian posterior 1) — —
gle sy Y p T [rR(rR 1)(0 _02)

central credible set and frequentist confidence interval are - 5+,
the same order of magnitude.

Proof For the unknown precision case, the frequentist P-value=d®_, RSE::) (O_—O_Z)E
approach has the confidence interval whose size is like o o
JR— o . _ JR— 2
WhereOk = zk? and Sk = z (Ok,r _Ok)
trs. R(§—1) @ r=1 r=i

Consider a special case for the Bayesian approach.
For the analogous Bayesian central credible set with a Assume normal-gamma conjugate priors (ﬁ)ﬁ,él) and
reference pl’ior (Bernardo and Sm|th, 1994), the Size iS a|SO (i 2'é2): the conditional distribution Oﬁ 1 given el is
normal with meani,, and precisionn&, and the
tro1. S @ marginal distribution of & is Gamm44,&,) and the
conditional distribution of i, given &, distributed
On the other hand, Bayesian approach with proper conditionally normal with mean ,, and precisionn,é,
conjugate prior has a central credible set whose width is jth &, distributed with Gamm&é, 32)_ Then the
like (see Equation (3)). . o .
posterior distribution ofi ; —1i , is

t (ng+R)(24+R)
Y = | PRS- @ p(i, -1 ,D;.D, ~Studeni(, &, 24+ R)
N where g = Moi10*ROL _ Naol 20RO,
As R - o, this is of order Mo*R Noo*R

. ; -1
6 = 4R + %2R
2 R — z z
@\/FTE o RIGHRIZ)  (nyg +RI(@+RIZ)
to54Rs s

With reference prior defined in Section 2.1.3,

As R increase,tys,r, =tg, =2z and @zR—Z to first

order, so the result holds. p(i =1 2|D1,D2)~Studer@371—o_2 , ZF:;) , R—l@

731



Inoue and

This leads the following:
Result 4.3Given the normality assumptions (Section 2.1),
the Bayesian posterior P(CS) with improper prior is
exactly same as the frequentist P-value.
Proof Results follows like Result 4.1 and 4.2.

Inoue (1998) discusses many other cases dealing with
two system cases with known precision, unknown but

equal precision, and unequal replications.

4.2.2 Dependent Case

Chick
4.3 More Than Two K > 2) Systems

Suppose that we would like to measure evidence that the
systemi is best. In frequentist approaches, a wide variety
of P-values have been used for MCB and multiple
hypotheses testing (Hsu, 1996).

Here we use Bonferroni inequality to obtain a
conservative P-value for the hypothesis that the sysfem
best with K — 1) one-sided hypotheses.

Hoyjt1i 21 Hyy:ii<i; (j=1..Kj#i)

i ]

The overall P-value is based on Bonferroni inequality,

ForK = 2 systems with correlated output, assume that eachwhich gives a lower bound on the probability for the joint

pair of outputs has a bivariate normal with unknown mean
vector and unknown precision matrix. In one frequentist
approach, for the one-sided hypothesis, the test statistic is

Ty :\/@(a)

where dr =0, -0y (r =L...,R)

— R0y — —

d:z °1rR2r =0, -0,
=1

2

0. ~a)

In the frequentist sense, P-value fdy, is

P-value= ® HE /%d‘l) G)%

This is differentfrom the analogous Bayesian result even
when a reference prior is used.

R

sdzz

r=

Result 4.4For K = 2, the Bayesian posterior P(CS) with a
reference prior has the different degrees of freedom from
the frequentist P(CS).

Proof From Equation (8) of Fact 3.4,

x R-2)
(i |D)~Studen§§3,%,R—2@

The marginal distribution ofi; =i, is also Student with

R-2 degrees of freedom (deGroot, 1970). The probability
that system 1 is the best is then

P(CS)= P, W(&)@
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occurrence of a finite number of events.

P(Ho'i,j is trud:P—vaIue(Hoyi,j)
then

P(all Ho,j is true)z 1- % [1— (P —value(H 0, ))] 9)

The use of Bonferroni inequity is familiar in
simultaneous statistical inference (Charnes and Kelton,
1988). So we define the right hand side of Inequality (9) as
the overall P-value of the joint hypothesi$,; :1; >

i 21
(j=1..K:jzi):

K

P —vaIue(H 0i )=l— z

IEdl

- (P -vatud 0ij )

4.4 General Observations

For independent replications, a Bayesian approach with
reference prior and a frequentist approach have the same
relevant distributions for pairwise comparisons. For a
Bayesian approach with conjugate prior, the sizes of
credible sets are asymptotically of the same order of
magnitude. So if the posterior P(CS) is approximated by
the Bonferroni bound not Monte Carlo simulation,
frequentist approach is justified asymptotically (in limit of
parameters of priors or the large number of replications) by
the Bayesian approach (Inoue, 1998). For unknown
precision case, we needR, > feplications for each
system because both Bayesian and frequentist approaches
are based on the Student distribution wih — dédgrees
of freedom.

For CRN, the story is different. First, to obtain proper
posterior distribution, we nee®>(K -1)/2 replications

for each system. As the number of system increases, so
does the number of replications required to justifiable
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inference. Second, the degree of freedom for hypothesis
tests differs for a Bayesian approach with reference prior
R-K and a frequentist approaciR-1. For a small
number of replications, this indicates that frequentist
assessments of evidence of correct selection are optimistic.

Formally, the reference prior is improper and therefore
incoherent behavior. It is not clear that a justification of P-
values based on them, therefore, is to be considered
advantage for frequentists. The Bayesian P(CS)
formulation may be estimated by MC simulation form the
posterior for the unknown mean. This is not for frequentist
P-values.

5 NUMERICAL EXAMPLE

In this section, we present experimental results from the
application of Bayesian and frequentist approach to a
typical simulation problem. We consider five (s, S)
inventory policies treated by Law and Kelton (1991, pp.
592). The objective here is to determine which inventory
system has the minimum expected cost per period for 120
periods.

Table 1: Simulation results for five (s, S) policies

Independent Reps.

System S S Mean S.D
1 20 40 125.27 4.57
2 20 80 121.28  3.37
3 40 60 12583 2.64
4 40 100 13190 2.48
5 60 100 14465 2.00
Dependent Reps
System S S Mean S.D
1 20 40 125.29 4.20
2 20 80 120.74  2.66
3 40 60 12496  2.16
4 40 100 131.10 1.99
5 60 100 14353 1.66

We run R = 100 replications for each of the five
systems with both independent and synchronized common
random numbers were performed (Table 1). In this
example, CRN means that all inventory systems were

the expected value of precision of the prior distribution of
0.33 withn,g = 1, 4=15, and 4, =4.5(k=1,..5) . Then

the posterior distribution have the Student distribution whose
mean, precision, degrees of freedom given in Table 2.

Table 2: Posterior Distribution with Independent Case

Mean Precision D.F
1Dy 125.32 4.70 103
1,0, 121.27 9.14 103
15|D;  125.92 10.86 103
14Dy 131.97 14.97 103
i5|Ds  144.75 19.65 103

For dependent replications, we will use the same value for
prior fori :

i,=[130 120 135 140 154
ng =1

4=15 a=diag[45 45 45 45 45|

Using the covariance of the output and the above prior

distribution, the posterior distribution ofi is the
multivariate Student t distribution defined as
p(i | D)~ Studeng(i , 22219 a2 103)
where
i =[12534 12073 12506 13119 14364
90306 40584 36153 30744 213950
40584 35505 20930 21658 113021
ag =[B6153 20930 28480 19245 173170
0744 21658 19245 24047 13918%
21395 11302 17317 13918 206834

We examined the probability of correct selection given
a selection of system 2 as best using (1) estimates of

P(CS), f’{—‘l 52— j(j ¢2]D}, by sampling from the

evaluated with the same times between demands and theBayesian posterior distribution and (2) the Bonferroni

same sizes of demands.

inequality of frequentist P-values fofi , = -1 ; (j#2).

We start with independent case. For Fact 3.2, assume summary of results is presented in Table 3.

that a prior mean foil ., is an approximate value (Nelson,

Schmeiser, Taaffe, and Wang, 1997 used queuing
approximation in a similar context) using (Q,R) inventory
method (Namhias, 1989): i,5= 130 1,5 =120,

139 =135, i,49 =140, 15y =155 and that all systems has
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Table 3: Summary of Comparison Gupta, S. S. and K. J. Miescke (1994). Bayesian look
ahead one-stage sampling allocation for selecting the
P(CS) best populationJournal of Statistical Planning and
(Samp"ng from P-value Inference 54: 229-244 '
# REPS Variates posterior) (Bonferroni) Hsu, J. C. (1996)Multiple Comparisons: Theory and
10 Indep. 0.9737 0.8847 MethodsChapman &_Hall, New York o .
CRN 0.9999 0.9996 Inoue, K. (1998). Simulation output analys_ls in a Bayesian
30 Indep. 0.9992 0.9953 d_ecision—_theoretic framework. working  Ph.D.
CRN 1.0000 1.0000 dissertation.

Law A. M. and W. D. Kelton (1991 5imulation Modeling

50 Igg?\lp' 10(;9(?09(? 10(?09(?51 & Analysis McGraw-Hill, Inc, New York, 2 edition.
‘ ‘ Namhias, S. (1989Production and Operations Analysis
100 Indep. 1.0000 1.0000 Irwin. Homewood, III.
CRN 1.0000 1.0000

Nelson, B. L., B. W. Schmeiser, M. R., Taaffe, and J. Wang

] ] (1997). Approximation-assisted point estimation.
Therefore, at the expense of sampling from the posterior Operations Research Lette20: 109-118.

distribution of mean, one can obtain tighter assessments
than Bonferroni with pairwise comparison. Results were AUTHOR BIOGRAPHIES
somewhat insensitive to our choice of prior distribution.

KOICHIRO INOUE is a Ph.D. candidate in the
REFERENCES Department of Industrial and Operations Engineering at the
University of Michigan, Ann Arbor. His working

Bernardo, J. M. and Smith, A. F. M. (1998ayesian dissertation is application of Bayesian statistics to

Theory Wiley, Chichester, UK. simulation output analysis. His research also includes
Casella, G. and R. L. Berger (1987) Reconciling Bayesian decision analysis with multi-attributes.

and frequentist evidence in the one-sided testing

problem. Journal of the American Statistical STEPHEN E. CHICK is an assistant professor of the

Association 82: 106-111 Department of Industrial and Operations Engineering at the
Charnes, J. M. and W. D. Kelton (1988) A comparison of University of Michigan, Ann Arbor. In addition to

confidence region estimators for multivariate stochastic simulation, his research interests include

simulation output. In M. Abrams, P. Haigh, and J. engineering probability, Bayesian statistics, reliability,

Comforts (Eds.)Proceedings of the Winter Simulation  decision analysis, and computational methods in statistics,

Conference pp. 458-465. Institute of Electrical and and applications to health care, particularly epidmiology.

Electronics Engineers Inc. His work experience includes several years of material
Chick, S. E. (1997). Selecting the best system: A decision- handling system design for the automotive industry using

theoretic approach. In S. Andradottir, K. Healy, D. simulation analysis.

Whithers, and B. Nelson (EdsProceedings of the

Winter Simulation Conferenceénstitute of Electrical

and Electronics Engineers Inc.
deGroot, M. H. (1970)Optimal Statistical Decision®New

York: MacGraw-Hill, Inc.
Goldsman, D. and B. L. Nelson (1994). Ranking, selection,

and multiple comparisons in computer simulation. In

J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F.

Seila (Eds.),Proceedings of the Winter Simulation

Conference pp. 192-199. Institute of Electrical and

Electronics Engineers Inc.
Gupta, S. S. and K. J. Miescke (1988). On the problem of

finding the largest normal mean under hetroscedasity.

In S. S. Gupta and J. O. Berger (EdSjatistical

Decision Theory and Related Topics NMplume 2.

New York: Springer Verlag.

734



	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search
	Search Results
	Print

