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ABSTRACT do not indicate how long a method must be applied for
satisfactory results, or how and when the method should
be terminated. In this paper we propose a stopping rule
for the NP method.

The basic idea of the NP method is very simple. The

We consider a new simulation-based optimization method
called the Nested Partitions (NP) method. This method
generates a Markov chain and solving the optimization
problem is equivalent to maximizing the stationary distribu- method systematically partitions the feasible region into
tion of this Markov chain over certain states. The method smaller and smaller Subregionsy and moves iterative|y from
may therefore be considered a Monte Carlo sampler that one region to another in order to concentrate the search
samples from the stationary distribution. We show that effort in viable regions. This procedure has been shown
the Markov chain converges geometrically fast to the true to generate a Markov chain, which we refer to as the
stationary distribution, and use these results to derive a NP Markov chain. It can be shown that the NP Markov
stopping criterion for the method. chain has a unique stationary distribution and given certain
regularity assumptions the maximum stationary probability
corresponds to a global optimum. Hence, the NP method
converges with probability one to a global optimum (Shi
In system optimization it is often desirable to optimize the andOlafsson, 1998). In this paper we consider a stopping
performance of a system where the design parametersrule for this method. Since the stationary distribution of the
are discrete and the outcomes are uncertain. This NP Markov chain is used for inference, the convergence
means that there is no analytical expression relating of the NP method can be translated into convergence
the discrete decision parameters to the corresponding of the NP Markov chain. The NP method may hence
expected performance of the system. Such stochastic be considered a Monte Carlo sampler that samples from
discrete optimization problems have received relatively the stationary distribution of the NP Markov chain, and
little attention in the research literature, although some its convergence properties may therefore be inferred by
important advances have been made in the last few years.considering its efficiency as an Markov Chain Monte Carlo
Recent methods proposed for this problem include the (MCMC) sampler.
stochastic rulermethod (Yan and Mukai, 1992; Alrefaei The use of MCMC methods has become increasingly
and Andradttir, 1997), the method of Andrattir (1995), popular in recent years, and many theoretical advancements
the stochastic comparisomethod (Gong, Ho, and Zhai, have also been made (Rosenthal, 1995). However, there
1992), ordinal optimization (Ho, Sreenivas, and Vakili, is still a considerable gap between theory and practice in
1992), thestochastic branch-and-boun{Norkin, Pflug, the field (Brooks and Roberts, 1998). Although many nice
and Ruszczyski, 1996), and thenested partitions(NP) theoretical bounds have been derived for the convergence
method (Shi andOlafsson, 1997;1998). Under certain rate of Markov chains, such bounds normally contain

1 INTRODUCTION

conditions, all of these methods have been shown to
converge almost surely to an optimal solution, but a
common difficulty is obtaining good stopping rules. This

constants that are not available a priori except for special
cases. Therefore, such bounds are not directly applicable in
practice. In fact, practitioners most often use convergence

is of paramount importance in practice, because although diagnostics to assess the convergence of a Markov chain
asymptotic convergence is of much interest, such results simulation (Cowles and Carlin, 1996; Brooks and Roberts,
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1998). Such convergence diagnostics usually consider number of disjoint subsets that cover the feasible region
some summary statistic of the Markov chain, and declare is considered. Each of these regions is sampled using a
convergence when it appears to have settled down in steadyrandom sampling scheme, with the only restriction being
state. The problems with such diagnostics are well known. that each point must be sampled with a positive probability.
Most seriously, it is inevitable that such methods will The estimated performance function values of the randomly
sometime declare convergence too soon, since the Markov selected samples are used to estimate the promising index
chain ‘settling down’ is only a necessary condition for for each region. This index determines which region
convergence, but not sufficient. becomes the most promising region in the next iteration.
Another method of bridging the gap between theory If one of the subregions is found to be best this region
and practice is to use auxiliary simulation to estimate the becomes the most promising region. If the surrounding
required constants (Cowles and Rosenthal, 1996). This region is found to be best the method backtracks to a larger
is the approach taken here. We use theoretical boundsregion. To choose this larger region a fixed backtracking
as a basis for a stopping criteria, and then use auxiliary rule is used. The new most promising region is then
simulation to estimate a theoretical constant that is required partitioned and sampled in a similar fashion. We note that
for this bound. By combining these two ingredients we this partitioning creates a tree structure similar to that of
obtain an approximate stopping criterion that can be applied the branch-and-bound method.
during simulation optimization. We assume tha® is partitioned such that eventually
The remainder of this paper is organized as follows. every point corresponds to a singleton region. We call such
In Section 2 we briefly review the Nested Partitions (NP) singletons regions of maximum depth, and more generally
method for simulation-based optimization. This algorithm talk about the depth of any region. This is defined
generates a Markov chain and in Section 3 we derive iteratively with © having depth zero and so forth. We let
bounds that establish that it converges geometrically fast ¥ denote the space of all regions that are formed by a fixed
to its stationary distribution. In Section 4 we show how partitioning scheme as described above, and wel(e}
these bounds may be estimated using auxiliary simulation, denote the depth of a region € X. Ultimately, we are
and in Section 5 we use these results to derive a stopping interested in finding the best singleton region. Therefore,
criterion for the method. In Section 6 we present a we let ¥, denote all singleton regions, and in tleth
numerical example to illustrate the auxiliary simulation iteration we let the estimated best regioré,l), be the
approach and the stopping criterion, and finally, Section 7 singleton region that has been most frequently considered

contains some concluding remarks. the most promising region. To be able to updaf¥, we
let Ni(o) be the number of times a regian € 3, has
2 THE NP METHOD been visited. We only define these counters for maximum

depth regions that have been visited at least once. To keep
We are interested in solving the general stochastic discrete track of the sequence of set partitions leading to the current

optimization problem, which can be stated as follows. most promising region, we define the functien ¥ — ¥
as follows. Leto € ¥\ O©. Defines(o) =n € %, if and
min F[L(0,w)], 1) only if o Cnpandifo C§Cnthen =mnorf=o. For

6co

completeness we defin€®) = ©. Therefore,s(c) € &
is the region that was partitioned to obtain the region
ogEX.

Using the notation defined above, the NP method can
be implemented as follows.

where© is finite, L(0,w) is the sample performance, and
w € Q is a point in the sample space of an underlying
probability triple (2, F,P). To keep the notation simple

we do not refer explicitly to the sample space in this
paper. We assume that the expected performance function0. Initialization. Setk =0 ando(k) = ©.
cannot be evaluated analytically and is estimated using
discrete-event simulation. We now review briefly how the

nested partitions (NP) method can be used to solve this
problem.

The NP method proceeds as follows. In theh
iteration there is a regiow (k) C © that is considered
the most promising. In the first iteration(1) = O,
the entire feasible region. In each iteration, this most
promising region is partitioned into a fixed number of 2. Random Sampling. Use a random sampling proce-
subregions and the entire surrounding region is aggregated  dure to selectN; points 61,672, ..., ¢7Ni and cal-
into one region. Therefore, at each iteration, a fixed culate the corresponding sample performance values

Partitioning.  If the depth is not the maximum
depth, partition the most promising regian(k), into
M, 1) subregionsr (k), ..., on,,, (k). If the depth is
maximum depth then le¥/, ) = 1 andoy (k) = o (k).

If the depth is not zero, i.eg(k) # O, aggregate
the surrounding region® \ ¢(k) into one region
UMa(k)-‘rl(k)'
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L(671Y), L(672), ..., L(#"Ns) from each of the regions
O'j(k), ] = 172, ceey Mrf(k) + 1.

Estimating the Promising Index. Given apromising
index function, I: ¥ — R, for each regiono;, j =
1,2,..., M, + 1, calculate the estimated promising
index f(oj) of the region. In this paper we select the
promising index asl(n) = minge, J(¢), which can
be estimated using

I(o;) = L(9), @

min
0=041,...,0°Ni

for j = 1727~-~7Mo(k) + 1.

Backtracking. Calculate the index of the region with
the best promising index.

min I(o;).
17~~-7Mc7(k')+1

L @)
If more than one region is equally promising, the tie
can be broken arbitrarily. If this index corresponds
to a region that is a subregion ef(k), then let this
be the most promising region in the next iteration.
That iso(k +1) = 0;(k), j < My If the index
corresponds to the surrounding regidmcktrack to
the superregion of (k)

o(k+1) =s(a(k)). (4)
Updating Counters. Update the number of times each
maximum depth region has been visiteds(f+1) €
Yo let Nk+1(0(1€ + 1)) = Nk;Jrl(O—(k + 1)) + 1. Let
Niy1(0) = Ngy1(o) for all othero € Xy that have
been visited at least once. Update the estimated
best region as follows. Ifo(k + 1) € ¥, and

Nisi(o(k + 1)) > Negpa(ol”), then let of!),

o(k+1). Otherwise, letr\), = o). Letk =k +1
and go back to Step 1.

In this paper we assume that there is a unigue global
optimum that corresponds to a singleton regigp; € Xo.

In Shi and Olafsson (1998) it is shown that the NP
algorithm above generates a Markov chain and under
certain regularity conditions,,; is the singleton state that
has the largest stationary probability. In each iteration of
the NP algorithm an estimate of the stationary distribution
is generated,

(o) = Nk]jg)

, 0EXN,

(®)

and as is well known, this estimate converges asymptotically
to the true stationary distribution. Therefore, by taking

a,(j) = argmax,cx, Ni(o) as the estimate of the global
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optimum, the NP algorithm converges to the unique global
optimum (Shi andOlafsson, 1998). Because of this
the NP algorithm may be considered an MCMC sampler
that samples from the stationary distribution. When a
sufficiently good estimate of the stationary distribution has
been obtained, the algorithm has converged. Here we are
therefore concerned with how fast this estimated stationary
distribution converges to the true stationary distribution.
Perhaps the most important feature of an efficient MCMC
sampler is that the Markov chain is geometrically ergodic
(Roberts and Rosenthal, 1998), and in the next section we
show this holds here.

3 GEOMETRIC CONVERGENCE RATE

As before we letu, denote the empirical stationary
distribution. We are interested in determining when the
distance betweep; and the true stationary distributian

is within a certain predetermined tolerance. When such
sufficient accuracy is obtained the estimated stationary
distribution can be used for inference about which singleton
region has the largest stationary probability and the NP
method has converged. To measure the distance between
these two probability distributions we use tiogal variation
distancenorm.

Definition 1  Given two probability measures, and v,
the norm

||U1 - U2Hvar = Sup ‘UI(A) - U2(A)|
ACS

is called the total variation distancel

We let 1 = A\ > Ay > A3... > Ajy| > —1 denote the
eigenvalues of the transition matrix of the NP Markov chain.
Itis well known that the rate of convergence to the stationary
distribution is determined by the eigenvalue that is the
second largest in absolute valig,., = max{Az, |A\jx|[}.
If all the eigenvalues are positive thap,,,. = A2. Negative
eigenvalues correspond to near cyclic behavior and we can
always modify the NP algorithm in a trivial manner to
ensure that all the eigenvalues are positive. This can
for example be achieved by introducing a self-loop with
probability £ for every state, that is, with probability
we move to a subregion or backtrack, and with probability
% we stay in the current most promising region for one
more iteration. We can therefore assume from now on
that Amaz = A2.

We also need the following definitions.

Definition 2 A set A C ¥ is connectedif for every
m,n2 € A, there exists a path fromy; to 7, such that
every state in the path is inl.
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Definition 3 The ergodic flowout of A is defined as

F(A) = > P(n,8)-=(n).

neA
£€x

(6)

The conductancef the Markov chain defined byP, ) is

®= min &(A), 7)
o<m(A)<3
where FlA)
2A) = ®)

Our objective is to calculate the conductance of the NP
Markov chain. The next two lemmas show how the
minimum in equation (7) can be taken over a limited
number of sets.

Intuitively, the conductance is a measure of the
bottlenecks in the probability ‘flow’ in the partitioning
tree. Intuitively this ‘flow’ is likely to be small for

subsets where there is only one state through which the

NP Markov chain can exit the subset. This leads us to
connected subsets that are such that the Markov chain ca
only leave the set through the ‘root’ node, that is, entire
branches. The first lemma shows that the set on which
the minimum (7) is realized must be a connected set.

Lemma 1 Let A C X be an unconnected subset. Then
there exist proper subset4; C A and A; C A such that
O(A) > min{P(A;), P(Az)}.

Proof: Since A is disjoint we can select4; and As
such thatd = A; U Ay, A1 N Ay =0, andP(A1,A2) =
0. Then it is clear thatr(A;) + 7(A2) = w(A) and
F(Ay) + F(Az) = F(A). Therefore,

D(A)

Now if ®(A) < ®(A;) then®(A) > P(A;), soP(A) >
mln{fb(.Al),CI)(.Ag)} ]

This establishes that equation (7) is realized on a connected

subset. The next lemma shows that this subset has eve
more structure.
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Lemma 2 Let. A C X be a connected set. L& be the
set of all regions that are a subset of a region.ih

(9)

caneecn
Let A* = AU B. Then
B(A") < B(A). (10)
Proof: Clearly
m(AY)

m(A) +7(B) = w(A),

and since the Markov chain can only existby entering
A, it is also clear that

F(A*) < F(A).

Therefore,

nand the lemma is provedl
We now obtain the first major result, which is a lower
bound on the conductance.

Theorem 1 The conductanc® of the NP Markov chain
is bounded from below by

(1 = C)P(oopt; s(Topt))

>
¢ 1—-Co

(11)

)

where
C = 1- P(Ut)ptv S(UOPt))
P(oopt; $(opt))

Proof: By Lemma 1 and Lemma 2 it suffices to consider
connected setsd which contain all the regions that are
a subregion of a region id. Then there exists a state
o4 € A that contains all the other statesC o 4, for all

o € A. Furthermore, since the minimum in equation (7)
is taken of all sets that have less that or equa%tdn
probability mass, it is clear that 4 # ©. Therefore, the
flow out of setA is

F(A)=n(oa)P(oa,s(ca)).

Now we can write down the balance equations for states
in A that are of different but adjacent depth levels as
follows,

> P, s(m)=(n)

neA
N dm)=k+1

> (1= P(n,s(m)w(n),

neA
d(n)=Fk
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and furthermore, we can assume that for the unique global Proposition 1  The total variation distance can be
optimumo,,: We haveP (oopt, s(oopt)) < P(n, s(n)) forall bounded as follows,

n € X.. Therefore,

1—7(0)

P(Uoptv S(Uopt)) de”)i“;‘Jrl 7T(77) 4- HPn(@v ) - 7TH12;a'r < W(@) /\gnv (12)
< . .
- Zd<,,">i’2+1 P, s(m)m(n) where )\, is as before the second largest eigenvalue.
- Zdﬁﬁi‘k (1= P(n,s(n))m(n) Proof: See Proposition 3 in Diaconis and Stroock (1991).
O
< (1= P(oopt, 8(opt))) Zd?f);‘k m(n)
Therefore, Propositioh 2 The second largest eigenvalue can pe
L p( o) bounded in terms of the conductance of the underlying
- Oopty S\Topt graph.
m(n) < £ m(n).
,,,; P(0opt; $(0opt)) ,,,; P2
a(n)=k+1 a(m=k Ao <1——. (13)
2
If we denoteC' = 1=P(oert:5(0on)) than py induction o
P(0opt,5(Topt)) y Proof: See Lemma 2.4 in Sinclair (1993)3
k—d(ca)
Z m(n) <C Hm(oa), Now we obtain an explicit bound on the total variation
alm ok distance in terms of the stationary distribution and transition
and probabilities of the NP Markov chain.
& Theorem 2 The total variation distance between the law
Z m(n) = Z Z m(n) of the Markov chain and the true stationary distribution
neA k=d(oa) 084, is bounded as follows,
2
< Y CFen(oy) 1-7(0)
- k
k=d(o.A) ||P (@, ) - TI'Hvar < m (14)
d*—d(o.4)

2:(1-C7%)

1;) Ctr(oa) (

1— Cd*—d(oA)+1
= —i-¢ Tl
Now we can use these results together with the definition
of ®(.A) to obtain the following,

k
1 ((1C)P(Uopt»5(ffopt)))2> ,

where as before

C = 1- P(Uoz)tv S(Uoz)t))_

BA) = F(A) P(oopt, s(0opt))
(A) Proof: Follows directly from combining Theorem 1,
o moa)P(oa;5(04)) Proposition 1, and Proposition ZJ
= 1_cd-dla+t
TW(UA) . .
(1= C)P(oa, s(02)) We note. 'that theseﬂbounds converge rapidly to zero if
- 1 — Cd" —d(oa)+1 the transition prObabI|It>P(Uopt,s(aopt)) is large, and thg_
constant in the bound is small if the stationary probability
S U C)P(%Pt’*s(aom)). 7(©) is large.
1-cd The bounds in equation (14) show that the law of the
NP Markov chain converges geometrically fast to the true
In the last inequality we used’ > 0 and d(o4) > 1 stationary distribution, but this is only a qualitative bound
so 4 —dlea)+l < ¢ -1+l — 04" This completes the  since the transition probabilities and stationary probabilities
proof. O are unknown. To obtain a quantitative bound we need to
estimate these probabilities and we will do that in the next
We will need the following two results. section usingauxiliary simulation
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4 AUXILIARY SIMULATION

Since both7(©) and P(oopt, s(0opt)) are unknown a

priori, the bounds on the conductance (11) and the
bounds on the total variation distance (14) are not
directly computable. Therefore, we propose using auxiliary
simulation to estimate these quantities during simulation-

based optimization. To derive these estimates, we need to

define one more quantity, namely we IBj.(n) denote the
number of departures from € ¥, by the k-th iteration.

Definition 4 In the k-th iteration, as before Ieta,il)

denote the region that is considered to be the best singleton
region, and Ieta,gz) denote the singleton region that is
considered the second best. Thaty;ﬁ(ag)) > uk(n) for

O

all e 9o\ {0V, @1, and (o) > (o).

We note that assuming the strict inequaliw(a,(cl)) >

uk(a,(f)) imposes no lack of generality.

Using this notation the algorithm may be terminated

The stationary quantities of interest can then be estimated ©nce the following equation is satisfied.

as follows.

1-7mO) 1-28 §_N(e)
7(O) w - Ng(©)
Dk(a(l))
P(Uopta S(UOPt)) ~ )
Ni(oy)
. Dk(d;(cl))
Nl Ni(ol)) = Di(a})”)
D) DoV
NWE})) k(og )

Finally, we get an estimate of the conductance

))
By substituting this into equation (14) we get the following
approximate quantitative bound that holds asymptotically,

~ 9 k
<1_<I>(k) ) .
2
(16)

In the next section we use this bound to derive approximate
stopping criteria.

; 2Dy (0;”) = Ni(o”)

(I)(k) - (1) (1)
ek o (et

(15)

Dk(”;ﬁl))

Ni(0©)

Pk 67'_ ’uarS
1P, — 7l AT

k —
4 -

5 STOPPING CRITERIA

Although it is reassuring that the NP method converges
asymptotically at a geometric rate, it would be of more
practical importance to have a sufficient condition such
that if this condition is satisfied aftek iterations, the

NP method can be terminated. In this section we use

Theorem 3 If the following inequality is satisfied for
somek > 0, theno'" = 5,
e () = e ()

||.uk’ - 7T||1)a7“ < (17)

2
Proof: See Theorem 13 iDlafsson (1998).

We note that this theorem does not guarantee the existence
of a finite k£ such that the inequality (17) is satisfied. In
fact, for anyk < oo there is a positive probability that it is
not satisfied. However, dang ., px(n) = 7(n), Vn € %,
this probability of (17) not being satisfied converges to
zero.

We let ¥(k) = % (,Uk (a,(cl)) — uk (019))) denote
the right hand side of the inequality (17), and note that
this is easily computable after each iteration

- 00 ) - % 08)

We have shown that if i, — || o, is sufficiently small then
the algorithm may be terminated. This cannot be bounded
directly; however, since:; is a sample that is generated
according to the lawP*(©,-) of the NP Markov chain,
we propose approximating it WithP* (0, -) — 7|| yar, that

is,

(k) (18)

(19)

With this approximation we have an approximation of the
left hand side of the inequality (17) that we can bound with
inequality (14) and inequality (16) above. Furthermore,
the latter of these is easily computable.

We note that the approximation (19) is exact for both
k =0 as then bothu; and the law of the chain place all
the probability mass at a single state and ask — oo
since bothy; and P*(©,-) converge to the stationary

||,Uk - ﬂ'Hvar ~ Hpk(@v ) - 7T||var'

bounds on the total variation distance between the true and distribution. Additional arguments for this approximation

estimated stationary distribution to derive such stopping
criterion.

To implement the stopping criterion we need to
maintain two singleton regions that have the largest and
second largest estimated stationary probability.
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may be found inOlafsson (1998).

With the approximation (19) of |ur — 7||var, and
the bound (16) on|P*(©,-) — 7||u. derived using the
auxiliary simulation approach in the last section, we have
a computable approximate bound on the left hand side
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Jobs =5, Machines = 3, Resources = 3, Speedup = 0.2
T T T

of inequality (17) in the stopping criterion. Since from 1

equation (18) the right hand side(k) of the inequality is [ Contuctaned |
directly computable, we obtain the following approximate osl]
stopping rule that is directly applicable during simulation .
optimization. o
Stopping Criterion.  Terminate the NP algorithm at
iteration & if
R k‘ 0.3
k — Nk(@) (I)(k)2 0.2
1— < U(k). 20

4 . Nk(@) 2 - ( ) ( ) 0.1 W e
A potential problem with this stopping rule is that it relies o i mo W w0 w0 a0
on the estimates of the conductance being sufficiently
good. Hence, a warmup period is usually advisable before
it is applied. Figure 1: Conductance of the NP Markov Chain
6 NUMERICAL EXAMPLE . ‘ Jobs:s.r:llachmes:a‘Re‘sourcesza‘spe‘edupzo.z ‘

In this section we consider the application of the NP
method and the stopping criterion to a scheduling problem
in cellular manufacturing systems where the cells are

configured in parallel. The objective of this problem is to l
simultaneously sequence jobs within each cell, and allocate o8
limited flexible resource to the cells, in such a way that
the makespan is minimized. The details of the problem 0al]
formulation, as well as further numerical results, may be o

found in Olafsson (1998). o |
We refer the interested reader @afsson (1998) for WWW

the details of the implementation of the NP algorithm, ° e T e . .

and simply concentrate on the behavior of the stopping

criteria. The approximate stopping criteria (20) depends

on a sufficiently good estimate of the conductance of the Figure 2: Performance of the Stopping Criterion

NP Markov chain. A necessary condition for the auxiliary

simulation estimate of the conductance to have converged

is that it has stabilized or ‘settled down’. We therefore 7 SUMMARY

start by considering the estimated conductarddé) to

verify that it does seem to converge to a limit. This is \We have considered the convergence rate of a new method
shown in Figure 1 for a problem where five jobs are to for simulation-based optimization, the Nested Partitions
be scheduled in two cells, and there are three flexible (NP) method. This method generates a Markov chain and
resources that can be allocated dynamically to the cells. jts convergence rate is dependent on how fast this chain
It is apparent that this auxiliary simulation estimate of the converges to its stationary distribution. By bounding the
conductance stabilizes quite rapidly. These results indicate tota] variation distance between the law of the Markov
that the auxiliary simulation estimate of the conductance chain and its stationary distribution, we showed that this
is a reasonable estimate. occurs at a geometric rate. We also used these bounds to
Since the auxiliary simulation method has been some- derive an approximate stopping criterion for the method

what validated, we consider the performance of the stopping and illustrated our results with a numerical example.
criterion. Figure 2 shows the left hand side (LHS) and

right hand side (RHS) of inequality (20) for the same

problem as before. For this problem, the NP algorithm

found the true optimum, and the LHS of the stopping ACKNOWLEDGMENTS

criterion converges rapidly below the RHS and terminates

correctly. This indicates the stopping criterion may be This research was supported in part by the National Science
useful. Foundation under grant DMI-9713647.
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