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ABSTRACT for selecting the values of the input parameters to the

model. Letx; = [x;1,...,2;4] be the vector of input
We develop a variant of the Nelder-Mead (NM) simplex parameters for the simulation operating under thie
search procedure for stochastic simulation optimization that scenario, wherei = 1,...,n; and n denotes the total

is designed to avoid many of the weaknesses encumberingnumber of scenarios (or alternative system configurations)
such direct-search methods—in particular, excessive sen-in the overall simulation experiment.

sitivity to starting values, premature termination at a local The (deterministic) vector of design variables and
optimum, lack of robustness against noisy responses, anda (possibly infinite) input stream of random numbers are
lack of computational efficiency. The Revised Simplex used by the simulation model to produce a set of (random)
Search (RSS) procedure consists of a three-phase applicaperformance measurdahat provide an estimate of how the
tion of the NM method in which: (a) the ending values target system performed at the specified design point. We
for one phase become the starting values for the next |et Y§j> = [3@({)’-~-7Yi(j)] denote the set of performance
phase; (b) the size of the initial simplex (respectively, the measures (the outputg from the simulation) observed on
shrink coefficient) decreases geometrically (respectively, the jth independent replication of design poiitwhere
increases linearly) over successive phases; and (c) the final, is the number of relevant simulation outputs. Each

estimated optimum is the best of the ending values for the component ofY,; may represent any quantity of interest
three phases. To compare RSS versus the NM procedurewhich is an output from the simulation.

and RS9 (a simplex search procedure recently proposed by

Barton and Ivey), we summarize a simulation study based performance measure of interest in terms of optimization
on separate factorial experiments and follow-up multiple .4 is typically a function of several other outputs. We

comparisons tests for four selected performance measures,i arhitrarily let overall cost be the first element in the
computed on each of six test problems, with three levels

of problem dimensionality and noise variability used in
each problem. The experimental results provide substan-
tial evidence of RSS’s improved performance with only
marginally higher computational effort.

One of the components d.’gj) is usually the primary

row vectorng); and we letd(x;) denote the expected
value of this primary response at théh design point
x; SO thatf(x;) = pi(x;) = E[Yif{)]. (Throughout the
rest of this work, if it is unnecessary or inappropriate to
identify the design point index or the replication index
4, then we will suppress these indexes and simply write
1 INTRODUCTION 0(x) = E[Y1].)

We define theregion of interestfor the optimization
Stochastic simulation optimization can be thought of as procedure,
finding a combination of input parameters that gives the
optimal expected response (either minimum or maximum) = {x € R?:x defines feasible system
of some objective function defined in terms of the (ran- operating conditions,
dom) performance measures generated as the outputs of
the simulation. Given a stochastic simulation model of where R? denotesd-dimensional Euclidean space. The
a target system, the experimenter has the responsibility expected primary response from the simulatidgt{x),

[
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is what the experimenter wants to either maximize or
minimize over the region of interest. If the input
parameters are continuous variables, then the goal is
to find a setting of the input-parameter vector such that the
expected primary response is deemed to be “close enough”
to the global optimum. Thus, our goal for the optimization

procedure (assuming that the primary performance measurewith §(X

is expected total cost, which should be minimized) is to
find

0* =minf(x) and

xeZ

x* = arg min 0(x).

xe=

In this article we formulate, implement, and eval-
uate a stochastic simulation optimization procedure that
incorporates many desirable properties of the well-known
Nelder-Mead (NM) simplex search procedure (Nelder and
Mead 1965) while avoiding some of the critical weak-
nesses of this procedure. In Section 2 we formulate the
Revised Simplex Search (RSS) procedure. Section 3 is
a comprehensive experimental performance evaluation of
procedure RSS versus the classical procedure NM as well
as procedure RS9, a variant of NM that was recently
proposed by Barton and Ivey (1996). Finally in Section 4
we summarize the main conclusions of this research, and
we present recommendations for future research in this
area.

2 REVISED SIMPLEX SEARCH (RSS)
PROCEDURE

Procedure RSS operates in three phases and starts with the

phase countep being initialized to 1. The procedure is
provided with initial values of thel variables over which
it is to minimize in d-dimensional space. These initial
values define the initial vertex; = [x1 ;,...,%1,4]-

The prespecified step size is determined for the first
phase ¢ = 1) using step size parameterand the initial
vertexx; as follows: vy = max{r -z ;:j=1,...,d}.

From this initial vertex and prespecified step size
the algorithm determines the remaining vertiggsxs, . ..

, Xg+1 (that define ad-dimensional general simplex) by
moving from the initial vertex in each of th¢ directions
one at a time as followsx; 1 = x;+e;v; fori=1,...,d,
wheree; is the unit vector with one in théh component
and zeros elsewhere.

Therefore, the initial simplex (at stage= 0) and each
successive simplex (at stage= 1,2,...) have vertices
denotedx; = [z, 1,. .., T,y T 4] fOri=1,...,d+1,
so thatx; is the ith vertex (or point) during the current
(that is, thegth) stage of the search. (Althougtf‘” is a
more complete notation for th&h vertex in the stage-
simplex, we suppress the exponéfitfor simplicity since
no confusion can result from this usage.) Additionally,
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the simulation-based estimate of the objective function at

~

vertexx, is denoted byd(x;); and we take

-~

0(x 1)

max)

Emax{é\(xi):lgigd—l—l},

min) defined similarly.  The second highest of
the estimates of the response surface (which corresponds
to the next-to-worst vertex of the current simplex) is also
noted, and we represent this quantity wfihxntw) and
the corresponding vertex witk, ., .

Some explanation is required for the notation used in
the rest of this paper. When we use the notaﬁ(mmax),
we are referring to the simulation response at the vertex
yielding the maximum response on the current stage of
the search; and this is precisely the notation we will use
when emphasis on the vertex .. is important. When it
is not important to emphasize the vertex,.., we will use
the simpler notatior@max. And in a like mannerﬁ(xmin)
will be represented by?min when no ambiguity can arise
from this usage. In the following description of procedure
RSS, several points (or vertices) are named and reference
is made to their corresponding estimates of the response
surface. Within the verbal description and the flow chart
of the algorithm, we will use the shorter versions of the
notation below rather than the more cumbersome version
on the right-hand of each of the following definitions:

é\max = é\(xmax)a é\min = é\(xmin)7

Qccn = g(xccn)a QTCH = Q(Xreﬂ)’ (2)
Qntw = q\(xntw)v eexp = a(xcxp)ﬂ

HCODt = G(Xcont)

Finally, we preserve the best answer from each phase
by letting X*(¢) denote the final estimate of the optimal
solution delivered in phase, wherep = 1,2, 3.

For ¢ = 0,1,..., the ¢qth stage of the algorithm
begins by computing the centroid of all the vertices used
in the current simplex excluding,,,.; thus we obtain
the centroid of ad-dimensional polyhedron iR?. The
centroid is labeledk,,,,, and its coordinates are given by

cen’

1 d+1
Xcen = E { [; Xi‘| - Xmax} .

The procedure then proceeds through four operations (re-
flection, expansion, contraction, and shrinkage) described
below until the stopping criterion is satisfied. A flow chart
of the algorithm is depicted below in Figure 1, and a
formal statement of the algorithm is given below.
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i yes 2. no
gien xu X1 —X(p—1) » =3 5 Deliver
Y — 1 q «— 0 N . ~
g0 " —arg min, 0[x*(¢)]
| / SRR BT
form initial __form new X (%) < Xppin
simplex usingv,, initial simplex
using v, T yes
\ Reflection no termination
v re) satisfied?
91111n S 91’eﬂ S Gnexm reﬂ < omm re enexm
accept reflection attempt expansion attempt contraction
Xmax < Xrefl (vields Xexp) (yields Xeont)

emax — min(erefb emax)

A
nt S emax econt > emax
accept contraction perform shrinkage
Xmax <~ Xcont Xi < Xmin+
6W(Xi - xmin) Vi

il

eexp < Omin Ocxp = Omi
accept expansion reject expansion
Xmax < Xexp Xmax S Xrefl

Figure 1. Flow Chart of Procedure RSS
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STEPS OF PROCEDURE RSS

0. Set Up Initial SimplexlInitialize the phase counter
¢ « 1, the iteration countery «— 0, and the vertices
{x; : 1 <i < d+1} of the initial simplex using the initial
prespecified step size;,. Go to step 1.

1. Attempt ReflectionA new simplex is formed by
reflectingx,, ., through the centroic,,,, of the remaining
vertices to find a new vertex. Specificalkj,, .. is reflected
through the centroid to yield the reflected point

Xrefl = Xcen T Q- (Xcen - Xmax) )

where: o = 1.0 is the reflection coefficientx
centroid from (3), andx,,,
t0 Oax from (2). If

cen 1S the
is the vertex corresponding

X

Hmin < ereﬂ < ntw (4)

that is, if the reflected point, g is better than the next-to-
worst vertexx,,,, in the current simplex but is not better
than the best vertex,,,, then the worst vertex, .. is
replaced by the reflected poimt. q:

Xmax T Xrefl: (5)

In this case the procedure continues with the termination

criterion (i.e., the procedure goes to step 6). If the
condition (4) for accepting the reflection is not satisfied,
then the algorithm proceeds to step 2.

2. Attempt Expansionlf the reflected pointx, g4 is
better than the best vertex_;, in the current simplex,

then the reflection operation is expanded in an attempt to

obtain even greater improvement. Specifically, if

o~ o~

greﬁ < gmin (6)

then the vectorx g4 — x
expansion point

is extended to yield the

cen

Xexp = Xcen + v (Xreﬂ - Xcen) ’

where v = 2.0 is the expansion coefficient (discussed
below). If fexp < Omin, then the expansion is accepted so
that x,,,,,. is replaced byx,,, in the simplex

Xmax Xexp )

and the algorithm continues by going to the termination

criterion (step 6). If§exp > §min, then the attempted
expansion is rejected and,,. is replaced byx .4

X — X

max refls

and the procedure continues by going to step 6. Finally if
the condition (6) for attempting expansion is not satisfied,
then the algorithm proceeds to step 3.
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3. Set Up Attempted Contractionf
é\reﬂ > é\n‘cw

so that the reflected point g yields a worse (larger)
response than the next-to-worst vertey,, of the current
simplex, then some reduction in the size of the current
simplex must be performed — either a contraction or a
more drastic shrinkage. To set up this reduction in the size
of the simplex, the worst (largest) vertex in the current
simplex is updated as follows:

S ~ Xmax T Xref
if Ot < Omax, then{ e s

~
max < ereﬂ

The attempted contraction in the next step will seek to
replace the current worst vertey, ... with the new point

Xeont = Xcen T 6 : (Xmax - Xcen) )

where 8 = 0.5 is the contraction coefficient.
4. Accept Contraction.If

~

econt S amaxv

so that the contracted poirt., . yields a better (smaller)
response than the worst vertex . of the current simplex,
thenx, . is replaced byx...

X — X

max cont’

and the procedure goes to step 6; otherwise the procedure
goes to step 5.

5. Perform Shrinkage.If the contracted point,,,,
yields a worse (larger) response than every vertex in
the current simplex including,,,,, SO that the shrinkage
condition

~

Hcont > gmax

is satisfied, then the size of the current simplex must be
reduced to an extent that depends on the current phase
of procedure RSS since the algorithm has likely “overshot”
an area of improvement. In this case, all of the simplex
edges with end poink

min?

X = Xmin»

i=1,....d+1,

are reduced by the shrinkage factég, yielding new
vertices

i=1,....,d+1,

X & X T 680 ' (Xi - Xmin) )

whered,, is the shrinkage coefficient for the current phase

o of procedure RSS. The procedure then goes to step 6.
6. Test Termination Criterion for Current Phaséfter

each reflection, expansion, contraction, or shrinkage, the
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stopping rule is applied to determine if sufficient progress
has been made. The termination criterion is

e [ X — Xy || _

<n, (7)

|| Xmin ||
where is again a user-specified tolerance. This stopping
rule examines the largest distance from any vertex in
the simplex to the best vertex in the simplex () in
making a decision about termination of the search. If the
termination condition (7) is not satisfied, then the iteration
counter ¢ is incrementedg < ¢ + 1 and the procedure
returns to step 1. |If the termination condition (7) is
satisfied, then the procedure goes to step 7.

7. End Current PhaseTo complete the current phase
of procedure RSS, we record the termination point of the
current phase

o*

X (90)  Xmin

and then we increment the phase counter,
p—p+1.

8. Test Final Termination Criterion.If ¢ > 3, then
procedure RSS delivers the final estimateof the global
optimum according to

P — argmin{é\[ﬁ*(@)] D= 172,3}

and

X ()
then procedure RSS terminates. then the
procedure goes to step 9.

9. Initialize Next Phaselnitialize the iteration counter

o < 3,

q <0,
the prespecified step size

1
w 5”%*17

1%

and the first vertex of the initial simplex,
x1 — X" (¢ —1).

Form the other vertices of the initial simplex

Xi+1 <— X1 +eiV¢ fori:l,...,d.

Go to step 1.
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3 EXPERIMENTAL PERFORMANCE
EVALUATION

3.1 Formulation of Performance Measures

In this work, four performance measures were used for
evaluating stochastic simulation optimization procedures:
() natural logL of the number of function evaluations; (ii)
absolute percentage deviation of the final function value
b+ = 5(2*) from the optimal function valu@* = 6(x*),

0 — o
9*

D=

(i) maximum absolute percentage deviation in each
coordinate of the final poink* from the corresponding
coordinate of the true optimal point*,

B = max
1<j<d

; (8)

J

and (iv) average absolute percentage deviation in all
coordinates of the final poirk* from the corresponding
coordinates of the optimal point*,

A= S

J=1

Sk

1: .

(9)

When there are multiple optima, we evaluate the right-hand
sides of (8) (respectively, (9)) for each optimum and take
the smallest of these quantities as the final valueAof
(respectively,B).

3.2 Description of Test Problems

We selected six problems to serve as a test-bed for
comparing the performance of procedure RSS with that
of procedures NM and RS9. All six problems are
minimization problems. In this section we describe one of
the selected test problems by explaining the function to be
minimized, the starting point used, the optimal function
value, and the points corresponding to the optimal function
value. A complete description of all test problems is given
in Humphrey (1997).

The second problem considered is the trigonometric
function. The function is defined as

d

00 = YA + 1

where .

filx d— Zd;{cos 1) +i[1 — cos(z; — 1)]
- <—$n@i—1ﬂ»Mri:1P.wd
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We used dimensionalitied = 2, 10, and 18 for our
purposes and a starting point ®f = [1/d,...,1/d]. The
optimal value ofg* =1 is achieved at every point in the
lattice of points given by

14 27ky,..., 1+ 27ky], where
kj =0,£1,£2,..., forj=1,...,

*
Xk1koo kg

d.

The complicated nature of this function is depicted in
Figure 2 ford = 2. For this test problem, when a given
search procedure terminated, we determined which of the
optimal points was closest in Euclidean distance to the
final estimatex*; and we used that optimal point for
calculating performance measurdsand B.

0':./11' .
‘00‘:«"":,'”"\\%’3‘V .
"Q \‘00'.
1 00‘ 122 'x\i'O‘
///I" ‘ \:::,,//I'\\\“
\\\o,,,ga,%/hl,O 0 o2 // ' \“ 10
“%‘t:‘o"'l: 7
T “§\go,”z"" 7 jl, ’
() ‘}\:'0,5"'71‘ ‘§"

Function Value

" 0;'0
' ""I';f//
o2 "44’!'"

0,,
I
\

’\

10

Coordinate 2

Figure 2: Trigonometric Function (Test Problem 2) for
Dimensionalityd = 2

3.3 Summary of Experimental Results

We decided to examine a variety of problems at different
dimensionalities and with different levels of stochastic

noise included. The selected dimensionalities are listed in
the previous section and were usually 2, 10, and 18 (low,
medium, and high) dimensions. We selected 2-dimensional

The test problems we used are all deterministic func-
tions, unlike responses generated by a stochastic simulation
model. In order to work with stochastic responses, we
added a noise component to each deterministic function
value. The noise component is a random sample from a
normal distribution with a mean of zero and a standard
deviation of either 0.75, 1.0, or 1.25 times the magni-
tude of the optimal responsé*|. These three levels of
stochastic noise provide us with low, medium, and high
levels of variation around the true underlying response
surface relative to the optimal function val4é = 1 that
was common to all six test problems.

Our study of theith problem(1 <i < 6) constituted
a complete factorial experiment in which there were three
factors each at three levels as defined below:

P; = jth level of optimization procedure
NM for j =0,
= RSS forj =1,
RS9 forj =2;
G, = kth level of problem dimensionality
2 (4 in problem 4) fork =1,
= 10 (8 in problem 4) fork = 2,
18 (16 in problem 4) fork = 3;
and
N, = (th level of noise standard deviation
0.75-10*| for £ =1,
= 1.00-|6*| for ¢ = 2,
1.25-16*| for ¢ = 3.

In the experiment on problem (1 < i < 6), we let
Li jkem (respectivelyD; j k. e.m OF Bi jk,e,m OF A; j k. 0,m)
denote the performance measurgrespectively,D or B

or A) observed on thenth replication (1 < m < 9) of
the treatment combinatioth,Dk,Np) We compute the
average performance measuws;, D; ;, B; ;, and 4, ;

for each problem (1 < i < 6) and optimization procedure
j0<j<2).

Within the ith experiment and for each of the selected

performance measures that were observed on ritle

problems as we wanted to see how the procedures comparedeplication of the treatment combinatig®;, Gy, N¢), we

over “small” problems. Our decision to look at 10-
dimensional problems came primarily from the literature

which indicates that simplex search type procedures tend

to perform well up to about dimensionality 10 (Nelder and

Mead 1965). We also wanted to examine the performance
of such procedures above dimensions of 10, and that led us

to look at 18-dimensional problems. The exception to these
general rules is problem 4 (the extended Powell singular
function), for which the dimensionality was required to be
a multiple of 4. Hence, we used = 4,8,and 16 (low,
medium, and high) as previously mentioned.
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postulate a linear statistical model of the form

= Bo + BpWp, + BoWg, + ByWh,
+ BeoWp, Wy, + BpnWp, W,
+ BonWa, Wh, + €jkim,

ijém

(10)

where the “coded” independent variablgs-;, W¢, , and
Wy, are defined as follows:

-1, for j =0,
Wp, = 0, forj=1,
+1, for j =2;
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and W, and Wy, are defined similarly. Note that in the  of the computer time required to complete the desired

linear model (10), the dependent variatfgy,,, is taken simulation optimization. We were willing at the start of
to be Ljkems Djkems Bjkem, OF Ajrem, depending on the this work to accept an improved procedure which would
performance measure under consideration. require considerably more computational effort, provided
that effort produced better results. We were willing to
3.4 Analysis of Experimental Results consider an increase of an order in magnitude in the number

of function evaluations as being tolerable since computer
Most of the analysis of this section will be drawn directly time is relatively inexpensive and becoming more so with
from the numerical information presented in Table 1. each passing year. What we really hoped for, however,
We will consider each of the performance measures was an increase of not more than 5 to 8 times the number

independently over the six problems studied. of function evaluations of standard Nelder-Mead. From
Table 1 it is apparent that our procedure is more costly
3.4.1 Linear Statistical Model in terms of function evaluations required. However, the

. o . increased effort is only about 3 or 4 times greater than
The linear statistical model (10) presented previously that of procedure NM for both RSS and RS9. If we
appears to provide an adequate fit for our purposes. All temporarily disregard the natural log transformation and
r= values were above 0.93 and most were above 0.99. take the number of standard Nelder-Mead evaluations as a

As expected, two factors presented significant effects: sort of baseline, Table 2 shows a summary of the relative

problem dimensionality and search procedure. As the amount of computational effort required by each of the
dimensionality of the test problems increases, the search three procedures on each of the six problems.

in large F-values for the dimensionality factor. about as much as much work as RS9; and this is more
The results of the ana|ySiS of variance also indicate to than acceptable for, as we shall see, our procedure is

is precisely what we want — evidence that procedure RSS

is S|gn|f!cantly different from one or both of NM and RS9 343 Final Eunction Value at Estimated
(as is discussed here) and evidence that procedure RSS is .
. . Optimum

significantly better than, in at least a large humber of cases,

one or both of NM and RS9. ThE-values corresponding  In looking at performance measur® we make the

to the search procedure simply indicate that there is following observations. In five of the six problems

some significant difference in the search procedures being considered, RSS produced an average valu® dhat is

studied. Other discussion and results, mostly associated statistically significantly better than the averafevalues

with Table 1, will be presented to show that not only are produced by either NM or RS9. In problem number 2

there significant differences among procedures RSS, NM, (that is, the trigonometric function), RSS and RS9 had

and RS9, but that there is evidence to conclude that RSS results that were not distinguishable from each other but

performs better, on the whole, than NM or RS9. were significantly better than those from NM. Additionally,
Of the interactions within the linear model (10), only RSS ismuchbetter than either RS9 or NM on two of the

the problem dimensionality—search procedure interaction six problems (namely, problems 1 and 4).

at times yielded F-values that appeared to indicate

some significance. A closer examination of search

procedures RSS, NM, and RS9 over a wider variety

of problem dimensionalities is a likely area of future

Table 2: Relative Computational Effort of Procedures

) L . Proce- Problem Aver-
investigation. We felt that our goal of presenting an dure 1 > 3 Z 5 6| age
improved search procedure for a broad class of test problems NM 1 1 1 1 1 1 1
at a variety of different dimensions was adequately met RSS |32 36 31 45 31 39 36
without a more thorough and detailed examination of RS9 (36 47 33 35 38 43 38
search-procedure performance over a greater number of

problem dimensionalities.

3.4.2 Number of Function Evaluations 3.4.4 Maximum Relative Component

. . _ Deviation from Global Optimum
The first performance measure considered heré,ishe P

natural log of the number of function evaluations performed. The next performance measure considemBddeals with
This is particularly important to us as it gives us an idea the maximum deviation of any single coordinate of the best
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Table 1: Results of Multiple Comparisons Tests on Optimization Procedures NM, RS9, and RSS for Level of Significan
a=0.05

Performance Measure
Test Ziyj ﬁi,j Eiyj Ziyj
Problem| Group- Calc. Opt.| Group- Calc. Opt.| Group- Calc. Opt.| Group- Calc. Opt.
ing Val.  Proc. ing Val.  Proc. ing Val.  Proc. ing Val.  Proc.
1 6.86 RS9 1 510 NM 1 1.28 NM 1 0.41 NM
1 1
1 2 6.68 RSS 2 494 RS9 1 1.28 RS9 1 0.40 RS9
3 557 NM 3 0.48 RSS 2 0.38 RSS 2 0.19 RSS
1 7.06 RS9 1 0.22 NM 1 0.47 NM 1 0.29 NM
2 2 6.83 RSS 2 0.12 RSS 2 0.39 RS9 2 0.24 RS9
2
3 556 NM 2 0.10 RS9 3 0.35 RSS 3 0.20 RSS
1 6.69 RS9 1 20.2 NM 1 201 NM 1 1.04 RS9
1 1 1 1
3 1 6.68 RSS 1 20.0 RS9 1 201 RS9 1 1.04 NM
2 550 NM 2 182 RSS 2 1.74 RSS 2 0.96 RSS
1 7.25 RSS 1 11.0 NM 1 1.66 NM 1 0.84 NM
4 2 7.02 RS9 2 10.1 RS9 2 159 RS9 2 0.79 RS9
3 5.78 NM 3 3.76 RSS 3 0.95 RSS 3 0.41 RSS
1 6.89 RS9 1 185 NM 1 0.78 RS9 1 0.32 RS9
1 1 1
5 2 6.68 RSS 1 156 RS9 1 0.78 NM 1 0.30 NM
1
3 557 NM 2 0.53 RSS 2 0.55 RSS 1 0.29 RSS
1 6.98 RS9 1 2452 RS9 1 1.75 RSS 1 0.99 NM
1 1
6 2 6.91 RSS 2 238.3 NM 21 153 NM 1 0.92 RS9
2 1
3 560 NM 3 229.8 RSS 2 140 RS9 1 0.92 RSS

point found via the given procedure and the corresponding Once again, the performance of RSS is considerably better
coordinate of the nearest optimal point. The information than that of either RS9 or NM. In four of the six problems,
in Table 1 shows that RSS is statistically significantly RSS is shown to again be statistically significantly better
better than NM or RS9 in this respect. While the results that RS9 and NM. In problems 5 and 6 the performance of
here may not appear as dramatic as those concerning theRSS is not significantly better than that of NM and RS9,
average function values, they still clearly favor RSS. In but RSS is also shown to be no worse than NM and RS9.
problem 1, RSS has & value of about 0.38 while the  In problems 1-4, RSS is grouped by itself with a lower
corresponding values for RS9 and NM are each about (better) average value ol. The single best performance
1.28. The results are less dramatic for problems 2-5, but in this regard is that of problem 1 where RSS scores a
they still clearly favor RSS. Only for problem 6 do the 0.19, RS9 scores a 0.40, and NM scores a 0.41.

results not clearly indicate the superiority of RSS.

In summary, the information in Table 1 shows that
RSS is doing about as much work as RS9 and about
3 or 4 times as much work as NM. But in exchange
for the additional work, RSS is producing results which
The final performance measure consideredAis which are consistently at least as good as the results from RS9
looks at the average deviation in the coordinates of the and NM and in most cases are significantly better than
best point located versus those of the known best point. RS9 and NM (and in a few cases dramatically better). It

3.4.5 Average Relative Component
Deviation from Global Optimum
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seems that the additional work will consistently improve
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the results without any danger of producing results worse Programs in the Department of Industrial Engineering at

that would be achieved with RS9 or NM.

4 CONCLUSIONS AND

North Carolina State University. Currently he serves as a
corepresentative of the INFORMS College on Simulation
to the WSC Board of Directors. He is a member of ASA,

RECOMMENDATIONS ACM, IIE, and INFORMS.

The experimental analysis summarize in Section 3 led us
to conclude that procedure RSS successfully avoids some
of the weaknesses of traditional search procedures and
provides significant improvement over procedures NM and
RS9 in terms of three of our four performance measures:
D, B, andA. In terms of our fourth performance measure,
L, we see that some additional computational effort is
required by procedure RSS in comparison to procedure
NM, but procedures RSS and RS9 displayed no significant
differences in terms of performance measure We do

not consider the differences in performance meagufer

the three procedures to be of a significant nature.

The analysis in Section 3 raises questions and issues
that merit consideration for future work. The suite of six
test problems could be enlarged to provide for analysis
on a collection of test problems that encompasses an even
greater degree of difficulty, dimensionality, and geometry
of response surfaces. The experimental performance could
also be expanded to include other variants of procedure
NM as well as techniques such as simulated annealing,
genetic algorithms, and so forth. Finally, an effort should
be made to formulate some rules of thumb for the use
of procedure RSS in practice, including how to establish
initial values for the search procedure and how to set some
reasonable stopping tolerance so that procedure RSS may
be effectively used by practitioners.
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