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ABSTRACT

The search problem, ACCESSIBILITY, asks whether
finite sequence of events can be found such that, star
with a specific initial event, a particular state can 
reached.  This problem is intractable, indicating the ne
for heuristics to address it. One difficulty when applyin
heuristics to ACCESSIBILITY is assessing a priori the
effectiveness, and knowing how to best adjust them
improve performance. This paper introduces the fa
negative probability as a performance measure 
generalized hill climbing algorithms applied to discre
optimization problems, using ACCESSIBILITY as th
analysis framework. The false negative probability is a
used to obtain necessary convergence conditions. 
implications of these results on how GHC algorithms c
be effectively applied are discussed.

1 INTRODUCTION

The discrete event simulation search proble
ACCESSIBILITY, asks whether a finite sequence 
events can be found such that, starting with a spec
initial event, a particular state can be reache
ACCESSIBILITY has implications for the design o
discrete event dynamic systems such as telecommunica
networks and manufacturing facilities.  For examp
message loss in a telecommunications network or mach
blocking in a manufacturing process represent syst
states of particular interest.  To avoid such states, 
would be interested in studying the sequences of eve
that lead to these critical states.  In other words, it is vita
assess high-risk scenarios to identify what must take p
for such states to occur and how a system can be mod
to avoid their occurrence.  This issue can be addresse
solving particular instances of ACCESSIBILITY.
761
g

d

o
e
r

e

,

c
.

on

e

e
ts
o
e
d

by

ACCESSIBILITY also has implications for building
and analyzing discrete event simulations, which was 
original motivation for studying the problem (Yücesan an
Jacobson 1992).  For example, identifying whether
discrete event simulation model is logically connected
involves verifying whether a particular set of states 
reachable from an initialization event (that establishes 
initial state of the model) through a finite sequence 
events, each of which may modify the state of the mod
Moreover, a simulation model might be logicall
connected only for a specific set of model parameter val
that defines a valid experimental frame.  Verification of the
logically connected property and determination of a va
experimental frame both require instances 
ACCESSIBILITY to be solved.

Jacobson and Yücesan (1998a) pro
ACCESSIBILITY to be NP-hard.  A consequence of th
result is that it is unlikely that a polynomial-time algorithm
exists to address it. One difficulty when applying heuristi
to ACCESSIBILITY is assessing a priori their
effectiveness, and knowing how to best adjust them
improve their performance.   This paper introduces t
false negative probability for generalized hill climbing
(GHC) algorithms (Johnson and Jacobson 1998) applied
ACCESSIBILITY.  The false negative probability is th
probability that a GHC algorithm will, in the limit,
determine that a particular state can be reached, given 
the algorithm could not find such a state in finite tim
Therefore, the false negative probability provides 
performance measure for GHC algorithms applied 
ACCESSIBILITY, a means to establish the convergence
a GHC algorithm as well as a means to determine whe
a GHC algorithm has been terminated prematurely.

There are several results in the literature concern
the asymptotic performance of simulated anneali
algorithms.  For simulated annealing algorithms wi
exponential acceptance probability functions, Mitra et 
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(1986) and Hajek (1988) develop conditions for thr
convergence properties: asymptotic independence of 
starting conditions, convergence in distribution of t
solutions generated, and convergence to a global optim
They also characterize the convergence rate.  Anily a
Federgruen (1987) present convergence conditions 
simulated annealing algorithms with general accepta
probabilities. In addition, they provide conditions for th
reachability of the set of global optima.  Yao and Li (199
and Yao (1995) also discuss simulated anneal
algorithms with general acceptance probabilities, thou
their primary contribution is with respect to gener
neighborhood generation distributions. More recent
Schuur (1997) provides a description of acceptan
functions ensuring the convergence of the associa
simulated annealing algorithm to the set of global optima

This paper analyzes convergence properties of G
algorithms, generalizing earlier studies on simulat
annealing.  The discrete event simulation search probl
ACCESSIBILITY, is used as the analysis framewor
greatly simplifying the technical development.  The pap
is organized as follows: In Section 2, relevant conce
from simulation and discrete optimization are introduce
In Section 3, the false negative probability is formal
defined.  In Section 4, the false negative probability is us
to obtain necessary convergence conditions for G
algorithms, which are illustrated in Section 5 for Mon
Carlo search and threshold accepting.  Section
summarizes the results and their implications for the des
of algorithms for discrete optimization problems.

2 BACKGROUND AND DEFINITIONS

To define the false negative probability, several discr
event simulation model and GHC algorithm concepts 
needed.

2.1 Discrete Event Simulation Models

The following definitions are taken from Jacobson a
Yücesan (1998a).  Let MS represent a discrete even
simulation model specification, a representation of the
system under study, reflecting the objectives of the stu
and the assumptions of the analysis. Let MI represent a
discrete event simulation model implementation of the MS,
a translation of the model specification into a compu
executable form (i.e., MI describes a procedure to mimi
the system behavior). Therefore, a model specificat
defines what a model does, while a model implementation
defines how the model behavior is achieved. A mod
specification can be in the form of a Generalized Se
Markov Process (Shedler 1987), or an Event Graph Mo
(Schruben and Yücesan 1993); a model implementa
762
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can be in a high-level programming language such a
Pascal or C, or in a simulation language such as SLAM
(Pritsker 1995) or SIGMA (Schruben 1995).

The state of an MS is a collection of values that
provide a complete description of the system. Events
induce changes in the state of the system.  We assume t
there are a countable number of distinct events, D
associated with a given MS.  For an MS, define E0 to be an

initial event establishing the initial state of the MS, S to be
a particular state, and M to be a non-negative finite intege
The notation E0E1...Em ⇒ S denotes that the execution of

the sequence of events leads to state S.  The sea
problem ACCESSIBILITY is formally stated.

ACCESSIBILITY:  (Jacobson and Yücesan 1998a)
INSTANCE: A discrete event simulation model
specification, MS, with D events, and an associated discret
event simulation model implementation, MI, an initial
event of this MS, E0, a state, S, and a non-negative finite

integer, M.
QUESTION: Find a sequence of events E1, E2,..., Em,

m≤M, such that the execution of the sequence yield
E0E1E2…Em⇒ S.

EXAMPLE:  Consider a single-server queueing system
The MS for this system can be represented using an eve
graph (Schruben 1995, p.24), with the MI of this MS in the
simulation language SIGMA. A state of the MS can be
defined as Q = the number of customers in the system
Define the initialization event E0 to set Q←0 and schedule

an initial arrival, where U denotes the arrival event, and 
denotes the service completion event.  Therefore, D=3. 
the length of the event sequence is M=12, then state S=
is accessible. On the other hand, state S≡Q=15 is valid,
though not accessible for M=12 and E0 as defined.

However, if E0 initializes the system with Q=5, then state

Q=15 is accessible for M=12. Lastly, S=-2 is an invalid
state, hence is not accessible. 

2.2 Generalized Hill Climbing Algorithms for Discrete
Optimization Problems

Discrete optimization problems are characterized by 
countably finite set of solutions and an objective function
value associated with each such solution (see Garey a
Johnson 1979, p.123, for a formal definition).  The goal i
to find solutions for which the objective function is
optimized.  Unless otherwise noted, assume that a
discrete optimization problems are minimization problems

For a discrete optimization problem, define the
solution space, Ω, as the set of all possible solutions.
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Define an objective function f: Ω→[0,+∞] that assigns a
non-negative value to each element of the solution sp
Define a neighborhood structure η:Ω→2Ω, where η(ω)⊂Ω
for all ω∈Ω.  The neighborhood structure establish
relationships between the solutions in the solution sp
hence allows the solution space to be traversed or sear
by moving between solutions.  The goal is to identify
globally optimal solution ω* (i.e., f(ω*) ≤ f(ω) for all ω∈Ω).

GHC algorithms can be used to address intracta
(NP-hard) discrete optimization problems.  GH
algorithms allow inferior solutions to be visited en route to
the optimal solution.  In practice, the best solution obtain
over the entire GHC algorithm run, not just the fin
solution, is reported.  This allows the algorithm 
aggressively traverse the solution space (i.e., visit m
inferior solutions in search of a globally optimal solution
while retaining the best solution obtained throughout 
entire GHC run.  The GHC algorithm is described 
pseudo-code form:

Define an objective function f: Ω→[0,+∞]
Define a neighborhood structure η:Ω→2Ω

Define the random variable Rk:Ω×Ω→[−∞,+∞]
Set the iteration indices i=k=n=1
Set the outer loop counter bound K
Set the inner loop counter bounds N(k), k=1,2,…,K
Select an initial solution ω(1)∈Ω
Repeat while k ≤ K
Repeat while n ≤ N(k)
Generate a solution ω'∈η(ω(i))
Calculate δ=f(ω')-f(ω(i))
If δ<0, then ω(i+1)← ω'
If δ≥0 and Rk(ω(i), ω')≥δ, then ω(i+1)←ω'
If δ≥0 and Rk(ω(i), ω')<δ, then ω(i+1)←ω(i)
n ← n+1
i ← i+1
Until n=N(k)
n=1
k ← k+1
Until k=K

Several general search strategies can be descr
using the GHC algorithm framework.  For examp
simulated annealing can be described as a GHC algor
by setting Rk(ω(i),ω')=-tkln(u(i)), ω(i)∈Ω, ω'∈η(ω(i)),
where tk is the temperature parameter (hence, define
cooling schedule as tk→0) and u(i) are independent an
identically distributed U(0,1) random variables.  Oth
search strategies that have been represented as 
algorithms include threshold accepting (Dueck a
Scheuer 1990), tabu search (Glover and Laguna 19
Monte Carlo search, local search, and Weibull accep
(Johnson and Jacobson 1997, 1998).
76
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2.3 Applying GHC Algorithms to Address
ACCESSIBILITY

To apply GHC algorithms to ACCESSIBILITY, define the
solution space, Ω, to be the set of all possible event
sequences of length M, starting with event E0.  Note that

some of these event sequences may be invalid, or vali
only up to the kth event, k ∈ {0,1,...,M}.  Define the
neighbors of ω∈Ω, η(ω), by changing exactly one of the
events in ω (i.e., a one-change rule).  Define the objective
function as f(ω)=mink=0,1,...,M  Sk-S , where Sk is the
state reached after executing the first k events of ω
(Yücesan and Jacobson 1996), and    •  is a norm on the
state space.  Therefore, ω* is a global minimum for this
objective function (i.e., f(ω*)=0) if and only if Sk=S for
some k=0,1,...,M.  Note that if executing the first k events
of ω results in an invalid event sequence (not defined in
MS), then Sk=+∞.  Moreover, the neighborhood structure
and objective function defined here are not unique;
different neighborhood structures and objective functions
may result in distinct GHC algorithm implementations and
performance results.

Define A to be a GHC algorithm that can be
implemented to address an instance of ACCESSIBILITY.
For a given MS with D events and its associated MI, where
all event sequences are initialized with event E0, with state

S and M∈Z+ given, define the solution space as the set o
all event sequences of length at most M.  Define two
events

B(S,I,M)≡{algorithm A reports NO for state S after I
iterations},                                                      (1)

and

B(S,M)≡{algorithm A reports NO for state S}                (2)

These two events are distinct in that B(S,I,M) is for
algorithm A executed over a finite number of iterations I,
while B(S,M) has no such limitation.  The algorithm
reporting YES (NO) means that algorithm A could (not)
find a sequence of at most M events that reaches state 
Note that events B(S,I,M) and B(S,M) are not events of an
MS, but rather, events as defined in probability theory
(Jacobson and Yücesan 1998b).  The complementar
events, Bc(S,I,M) and Bc(S,M), are defined as

Bc(S,I,M)≡{algorithm A reports YES for state S after I or
fewer iterations} (3)

and

Bc(S,M)≡{algorithm A reports YES for state S}. (4)
3
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Also define the event QS(I,M) ≡ Bc(S,M) ∩ B(S,I,M), with
qS(I,M) ≡ P{QS(I,M)}.   GHC algorithms can be viewed as
sampling procedures over the solution space Ω.  The key
distinction between different GHC algorithms is in how the
sampling is performed.  For example, Monte Carlo searc
produces unbiased samples from the solution space, wh
simulated annealing produces biased samples, guided 
the neighborhood structure, the objective function, and th
temperature parameter.

2.4 The False Negative Probability

The definition of B(S,I,M) in (1) implies that B(S,I,M) ⊇
(B(S,I+1,M), for all I∈Z+, hence {B(S,I,M)} is a
telescoping, non-increasing sequence of events. Therefo
since the probability function is a continuous set function
then, by the Monotone Convergence Theorem,

P{B(S,I,M)}→ P{B(S,M)} as I→∞,
where

B(S,M) = ),,(
1

MISB
I
∩

∞

=
.

Therefore, for a given (fixed) initial solution ω(1), if
algorithm A is guaranteed to converge to state S, the
P{Bc(S,M)}=1.  Equivalently, if P{Bc(S,M)}<1, then
algorithm A cannot be guaranteed to converge
Convergence results for the GHC algorithms are full
explored in Section 4.

In light of these observations, the false negative
problem asks whether a GHC algorithm, in the limit, will
establish that a state is accessible, given that the GH
algorithm, executing a finite number of iterations, is unabl
to show that it is accessible.  This problem is quantified b
considering the false negative probability, defined as
P{Bc(S,M)B(S,I,M)}.

3 FALSE NEGATIVE PROBABILITY RESULTS

3.1 Analysis Framework

Determining the false negative probability requires a
understanding of the relationship between Bc(S,M) and
B(S,I,M).  To this end, since QS(I,M)=Bc(S,M)∩B(S,I,M),
then

P{B(S,I,M)} = P{B(S, M)} + qS(I,M) (5)

where qS(I,M)  measures the probability gap between
B(S,M) and B(S,I,M).  Therefore, P{Bc(S,M)B(S,I,M)}

=P{Bc(S,M)∩B(S,I,M)}/P{B(S,I,M)}
= qS(I,M) / P{B(S, I, M)}. (6)

If P{B c(S,M)}=0 for state S, then it is not necessary to ru
algorithm A, since Bc(S,M) and B(S,I,M) are independent
764
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for all I∈Z+. This means that P{Bc(S,M)B(S,I,M)} =
P{Bc(S,M)} = 0, which also follows from (6). If
P{Bc(S,M)}=1, then (5) implies P{Bc(S,I,M)} + qS(I,M) =
1 for all I∈Z+.  Therefore, P{Bc(S,M)B(S,I,M)}= 1 for all
I∈Z+, hence only one iteration of algorithm A needs to be
executed.  In general, it is unlikely that P{Bc(S,M)} would
be known a priori. The relationship between B(S,M),
B(S,I,M), and QS(I,M) is depicted in Figure 1. This figure
shows that B(S,M) ⊆ B(S,I,M), and P{B(S,I,M)} =
P{B(S,M)}+qS(I,M).

B(S,M) Bc(S,M)

Qs(I,M)

      Bc(S,I,M)              B(S,I,M)

Figure 1.  The relationship between B(S,M), B(S,I,M),
  and Qs(I,M)

3.2 GHC Algorithm Scenarios

The false negative probability depends upon the
effectiveness of a GHC algorithm to report YES for state S
In particular, four cases can be considered.

Case a: State S is not accessible.  For this case
P{Bc(S,M)} = 0, hence, the false negative probability
is equal to zero for all I∈Z+.

Case b: State S is accessible but P{Bc(S,M)}=0.  This is
the case where the GHC algorithm is ineffective
irrespective of the run length.  For this situation, the
false negative probability is equal to zero for all I∈Z+.

Case c: State S is accessible and P{Bc(S,M)}=1.  This is
the case where the GHC algorithm is guaranteed t
find state S, provided the algorithm run length is
sufficiently long.  For this situation, the false negative
probability is equal to one for all I∈Z+.

Case d: State S is accessible and 0 < P{Bc(S,M)} < 1.  This
is the case where the GHC algorithm may converge
though this is not guaranteed.  For this situation, th
false negative probability is between zero and one fo
all I∈Z+.

Each of these four cases is encountered in practice.  Cas
occurs when no solution to ACCESSIBILITY exists; namely,
either state S is invalid or there are no sequences of length
that reach state S.  Case b occurs, for example, if th
algorithm is a local search procedure and always gets trapp
in a local (not global) optimum.  Case c occurs, for example
if the algorithm is Monte Carlo search or simulated annealin
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with a convergent cooling schedule.   Case d occurs, 
example, if the algorithm is simulated annealing and
cooling schedule guaranteeing convergence is not us
though convergence is possible.  This paper focuses on C
d: state S is accessible and the purpose of the GHC algor
is to identify an event sequence that reaches state S.

EXAMPLE  (continued): Suppose M=4. There are 24=16
possible event sequences of length four, with six of the
sequences fully valid (i.e., the entire event sequence
length M=4 is valid), and the remaining ten only partiall
valid (i.e., the event sequence is valid only for the first
events, where k is either 0, 1, 2, or 3). Table 1 lists these
event sequences, where an asterisk indicates that the e
sequence is fully valid.

If Monte Carlo search is implemented, then each of t
16 sequences of events has probability 1/16 of be
selected. The probability that Monte Carlo search execu
for I iterations with all NO responses, for state S, 
P{B(S,I,M)}=[P{B(S,1,M)}] I, where P{B(0,1,M)}=0,
P{B(1,1,M)}=1/2, P{B(2,1,M)}=11/16, P{B(3,1,M)}=7/8,
P{B(4,1,M)}=15/16, and P{B(S,1,M)}=1 for S ∉
{0,1,2,3,4}.  Moreover, for accessible states, namely 0,
2, 3, and 4,  P{Bc(S,M)}=1, hence P{B(S,I,M)}=qS(I,M).

When Monte Carlo search is applied, the false negat
probability is one for all iterations and for all accessib
states, as indicated by (6).  Conversely, for all non-access
states (i.e., S∉{0,1,2,3,4}), the false negative probability is
zero for all iterations.  This behavior is a consequence
Monte Carlo search asymptotically guaranteeing to find st
S (this corresponds to Case c).    

Table 1: Event Sequences for a
Single-Server  Queueing Simulation Model

# Event
Sequence

State(s)
Reached

1 IUUUU* 0,1,2,3,4
2 IUUUC* 0,1,2,3
3 IUUCU* 0,1,2
4 IUCUU* 0,1,2
5 ICUUU 0
6 IUUCC* 0,1,2
7 IUCUC* 0,1
8 IUCCU 0,1
9 ICCUU 0
10 ICUCU 0
11 ICUUC 0
12 IUCCC 0,1
13 ICUCC 0
14 ICCUC 0
15 ICCCU 0
16 ICCCC 0
765
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4 CONVERGENCE PROBABILITIES FOR GHC
ALGORITHMS

In this section, necessary convergence conditions a
derived for a GHC algorithm using the false negativ
probability. Without loss of generality, assume tha
P{B(S,1,M)}=1 and P{Bc(S,M)}>0.  Furthermore, unless
otherwise stated, assume that there exists I'∈Z+ such that
0< P{Bc(S,I,M)}<1 for all I≥I'.  Define the (probability)
event

R(S,I,M) ≡ {GHC algorithm A reports YES for state S at
iteration I, given that A reported NO for state S up to
iteration I-1}, (7)

with
r(S,I,M) ≡ P{R(S,I,M)}

              = P{Bc(S,I,M)B(S,I-1,M)}. (8)

These probability measures can be used to quantify 
false negative probability. To this end, Lemma 
establishes a closed-form expression for (1) in terms 
(8).

LEMMA 1:

(i) P{B(S,I,M)} = ∏
=

−
I

i

MiSr
1

)],,(1[  for all I∈Z+.

(ii)  P{B(S,M)} =  ∏
∞

=

−
1

)],,(1[
i

MiSr .

Proof:  By the definition of  r(S,i,M), i=1,2,…,I, in (8),
1 - r(S,I,M) = P{B(S,I,M)B(S,I-1,M)}
              =P{B(S,I,M)∩B(S,I-1,M)}/P{B(S,I-1,M)}
 = P{B(S,I,M)} / P{B(S,I-1,M)}.

Therefore, since P{B(S,1,M)}=1, then

P{B(S,I,M)} = ∏
=

−
I

i

MiSr
1

)],,(1[  .

Taking the limit as I → +∞ establishes (ii). 

Define the finite false negative probability,
P{Bc(S,J,M)B(S,I,M)}, I,J∈Z+, J>I.  Lemma 2 gives an
expression for this probability in terms of (8).

LEMMA 2: For J > I, I,J∈Z+,

P{Bc(S,J,M)B(S,I,M)} = ∏
+=

−−
J

Ii

MiSr
1

)],,(1[1  .
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Proof: Since {B(S,I,M)} are telescoping non-increasing
events, then using (8),

P{Bc(S,J,M)B(S,I,M)}
        = [P{B(S,I,M)} - P{B(S,J,M)}]/P{B(S,I,M)}

        = 

∏

∏ ∏

=

= =

−

−−−

I

i

I

i

J

i

MiSr

MiSrMiSr

1

1 1

)],,(1[

)],,(1[)],,(1[

        = 1 - ∏
+=

−
J

Ii

MiSr
1

)],,(1[ .    

Theorem 1 gives an explicit expression for the fals
negative probability.

THEOREM 1:  For all I∈Z+,

P{Bc(S,M)B(S,I,M)} = ∏
∞

+=

−−
1

)],,(1[1
Ii

MiSr .

Proof: Taking the limit as J → +∞ in Lemma 2
establishes the result.   

COROLLARY 1:  P{Bc(S,M) | B(S,I,M)} ≥ P{Bc(S,M) |
B(S,I+1,M)} for all I∈Z+.

Proof:  Since

 ∏∏
∞

+=

∞

+=

−≤−
21

),,(1()),,(1(
IiIi

MiSrMiSr ,

the result follows from Theorem 1.  

Corollary 1 shows that the false negative probability 
non-increasing in I; that is, the probability of finding a
sequence of events reaching state S can never increase 
each iteration that does not find such a sequence. T
result can be used as a guideline for execution terminat
(Jacobson and Yücesan 1998b).  The following resu
pertain to the finite-time performance of GHC algorithms.

THEOREM 2:   For J>I, I,J∈Z+, P{B(S,I,M)Bc(S,J,M)}

     = 

∏

∏ ∏

=

= =

−−

−−−

J

i

I

i

J

i

MiSr

MiSrMiSr

1

1 1

)],,(1[1

)],,(1[)],,(1[

.

Proof:  Applying Bayes theorem to Lemma 2 yields the
result.  
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COROLLARY 2:   P{B(S,I,M)Bc(S,M)}

       =  

∏

∏ ∏
∞

=

=

∞

=

−−

−−−

1

1 1

)],,(1[1

)],,(1[)],,(1[

i

I

i i

MiSr

MiSrMiSr

for all I∈Z+.

Proof:  Taking the limit as J → +∞  in Theorem 2
establishes the result.   

Note that the probability in Corollary 2 is non-increasing in
I.  Therefore, for all ε>0 (close to 0), there exists I0∈Z+,
such that, for all I≥I0, P{B(S,I,M)Bc(S,M)}≤ ε.  This
means that a GHC algorithm run can be terminated once
P{B(S,I,M)Bc(S,M)} is sufficiently small, since the
marginal value for each additional iteration is negligible.

To establish the relationship between the convergence
in probability of a GHC algorithm and the false negative
probability, the following definition is needed.

DEFINITION: GHC algorithm A converges in
probability (to a sequence of at most M events that
reaches state S) if P{C(S,I,M)}→1 as I→+∞, where

      C(S,I,M) = {algorithm A reports YES for state S at
iteration I}.   

Theorem 3 establishes the relationship between the
convergence in probability of a GHC algorithm and the
false negative probability.

THEOREM 3:  If GHC algorithm A converges in
probability, then P{Bc(S,M)B(S,I,M)} = 1 for all I∈Ζ+.

Proof:  By the definition of conditional probability,
P{B(S,M)B(S,I,M)} = P{B(S,M)∩B(S,I,M)} /
P{B(S,I,M)}  =  P{B(S,M)}/P{B(S,I,M)} for all I ∈Ζ+.
Note that C(S,J,M) ⊆ Bc(S,J,M) for all J∈Ζ+, hence,
B(S,J,M)⊆Cc(S,J,M) for all J∈Ζ+.  Therefore,
P{B(S,M)}/P{B(S,I,M)}

≤ lim
+∞→J

P{Cc(S,J,M)}/ P{B(S,I,M)} = 0

for all I∈Ζ+.  This implies that P{Bc(S,M)B(S,I,M)} = 1
for all I∈Ζ+.  

From Theorem 3, if a GHC algorithm converges in
probability, then the false negative probability is equal to
one at all iterations.  Theorem 4 gives necessary and
sufficient conditions for the false negative probability to be
one at all iterations.
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THEOREM 4:   For a GHC algorithm A,
P{Bc(S,M)B(S,I,M)} = 1 for all I∈Ζ+ if and only if

∑
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),,(
Ii

MiSr  for all I∈Ζ+.

Proof: Follows from Jacobson and Yücesan (1998b).   

Corollary 4 provides a necessary condition for the
convergence in probability of GHC algorithms.
COROLLARY 4:  If a GHC algorithm converges in
probability, then

∑
∞

+=

+∞=
1

),,(
Ii

MiSr  for all I∈Ζ+.

Proof: The result follows from Theorems 3 and 4. 

5 ILLUSTRATIONS

Theorem 4 can be used to show that the false negativ
probability is one (for all iterations) for Monte Carlo
search, which can be described as a GHC algorithm b
setting η(ω(i))=Ω for all ω(i)∈Ω, and Rk=+∞ for all k∈Z+.
Define p(S)=Ω(S)/Ω, where Ω(S) is the set of event
sequences in Ω that solve ACCESSIBILITY.  Then,
r(S,I,M)=p(S).  Therefore, P{B(S,I,M)}=[1-p(S)]I.  From
Lemma 2, for J>I, I,J∈Z+, P{Bc(S,J,M)B(S,I,M)}=1-[1-
p(S)]J-1.  Hence, the false negative probability approache
one as J approaches infinity.  Moreover, from Theorem 4

r S i M p S
i Ii I

( , , ) ( )= = +∞
= +

+∞

= +

+∞

∑∑
11

 for all I∈Z+.  This

means that, with probability one, Monte Carlo search wil
find an event sequence that solves ACCESSIBILITY as k
approaches infinity.  However, P{C(S,I,M)}=p(S) for all
I∈Z+, hence, Monte Carlo search does not converge i
probability.

Corollary 4 can be used to show that particular forms
of threshold accepting do not converge in probability.
Threshold accepting is a particular GHC algorithm with
Rk(ω(i),ω') = Tk, ω(i)∈Ω, ω'∈η(ω(i)), for all k, where Tk
approaches zero as k→+∞. Note that as Tk becomes
sufficiently close to zero, P{Rk(ω(i),ω')≥δ}= 0 for all
ω(i)∈Ω, ω'∈η(ω(i)), with δ=f(ω')-f(ω(i))>0.  Therefore,
there exists an I0 such that r(S,I,M)=0 for all I≥I0 (Jacobson
and Yücesan 1998b). Therefore, from Corollary 4, if Tk

approaches zero as k→+∞, then threshold accepting does
not converge in probability.
nce
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6 CONCLUDING COMMENTS

This paper defines the false negative probability as
performance measure for GHC algorithms applied 
discrete optimization problems, using ACCESSIBILITY a
the analysis framework.  The relationship betwe
convergence in probability and the false negati
probability is also discussed.  These results can be use
guide the design and execution of effective algorithms 
discrete optimization problems (Jacobson and Yüce
1998b).

The use of ACCESSIBILITY as the analysi
framework greatly simplifies the development of ou
results.  Such cross-fertilization of concepts betwe
discrete event simulation and discrete optimizati
provides a rich avenue of investigation, to obtain use
tools that can benefit both fields.  The work presented h
is one of many directions that can provide new and use
insights into difficult unresolved issues in both domains.
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