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ABSTRACT

The search problem, ACCESSIBILITY, asks whether a

finite sequence of events can be found such that, startingJacobson 1992).

with a specific initial event, a particular state can be
reached. This problem is intractable, indicating the need
for heuristics to address it. One difficulty when applying
heuristics to ACCESSIBILITY is assessing a priori their

effectiveness, and knowing how to best adjust them to
improve performance. This paper introduces the false
negative probability as a performance measure for
generalized hill climbing algorithms applied to discrete
optimization problems, using ACCESSIBILITY as the

analysis framework. The false negative probability is also
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ACCESSIBILITY also has implications for building
and analyzing discrete event simulations, which was the
original motivation for studying the problem (Ylcesan and
For example, identifying whether a
discrete event simulation model Isgically connected
involves verifying whether a particular set of states is
reachable from an initialization event (that establishes the
initial state of the model) through a finite sequence of
events, each of which may modify the state of the model.
Moreover, a simulation model might be logically
connected only for a specific set of model parameter values
that defines a valiéxperimental frame Verification of the
logically connected property and determination of a valid
experimental frame both require instances of

used to obtain necessary convergence conditions. TheACCESSIBILITY to be solved.

implications of these results on how GHC algorithms can
be effectively applied are discussed.

1 INTRODUCTION

The discrete event simulation search problem,
ACCESSIBILITY, asks whether a finite sequence of
events can be found such that, starting with a specific

initial event, a particular state can be reached.
ACCESSIBILITY has implications for the design of

Jacobson and Yicesan (1998a) prove
ACCESSIBILITY to be NP-hard. A consequence of this
result is that it is unlikely that a polynomial-time algorithm
exists to address it. One difficulty when applying heuristics
to ACCESSIBILITY is assessinga priori their
effectiveness, and knowing how to best adjust them to
improve their performance. This paper introduces the
false negativeprobability for generalized hill climbing
(GHC) algorithms (Johnson and Jacobson 1998) applied to
ACCESSIBILITY. The false negative probability is the

discrete event dynamic systems such as telecommunicationprobability that a GHC algorithm will, in the limit,

networks and manufacturing facilities. For example,

determine that a particular state can be reached, given that

message loss in a telecommunications network or machinethe algorithm could not find such a state in finite time.

blocking in a manufacturing process represent system Therefore, the false negative probability provides a
states of particular interest. To avoid such states, oneperformance measure for GHC algorithms applied to
would be interested in studying the sequences of eventsACCESSIBILITY, a means to establish the convergence of
that lead to these critical states. In other words, it is vital to a GHC algorithm as well as a means to determine whether
assess high-risk scenarios to identify what must take placea GHC algorithm has been terminated prematurely.
for such states to occur and how a system can be modified  There are several results in the literature concerning
to avoid their occurrence. This issue can be addressed bythe asymptotic performance of simulated annealing
solving particular instances of ACCESSIBILITY. algorithms.  For simulated annealing algorithms with
exponential acceptance probability functions, Mitra et al.
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(1986) and Hajek (1988) develop conditions for three can be in a high-level programming language such as
convergence properties: asymptotic independence of thePascal or C, or in a simulation language such as SLAM
starting conditions, convergence in distribution of the (Pritsker 1995) or SIGMA (Schruben 1995).

solutions generated, and convergence to a global optimum. The state of an MS is a collection of values that
They also characterize the convergence rate. Anily and provide a complete description of the systeBvents
Federgruen (1987) present convergence conditions for induce changes in the state of the system. We assume that
simulated annealing algorithms with general acceptance there are a countable number of distinct events, D,
probabilities. In addition, they provide conditions for the associated with a giveMS. For anMS, define B to be an
reachability of the set of global optima. Yao and Li (1991) injtial event establishing the initial state of thiS, S to be

and Yao (1995) also discuss simulated annealing g particular state, and M to be a non-negative finite integer.
algorithms with general acceptance probabilities, though The notation gE;...Ey, I S denotes that the execution of
their primary contribution is with respect to general the sequence of events leads to state S. The search

neighborhood generation distributions. More recently, lem ACCESSIBILITY is f I
Schuur (1997) provides a description of acceptance problem ACCESS is formally stated.

functions ensuring the convergence of the associated

simulated annealing algorithm to the set of global optima.
This paper analyzes convergence properties of GHC

algorithms, generalizing earlier studies on simulated

annealing. The discrete event simulation search problem

ACCESSIBILITY, is used as the analysis framework, integer, M

greatly simplifying the technical development. The paper L :

is organized as follows: In Section 2, relevant concepts QUESTION: Find a sequence of eventg, &,..., By

from simulation and discrete optimization are introduced. MsM, such that the execution of the sequence yields

In Section 3, the false negative probability is formally EgEiEp...Ep[ S.

defined. In Section 4, the false negative probability is used

to obtain necessary convergence conditions for GHC EXAMPLE: Consider a single-server queueing system.

algorithms, which are illustrated in Section 5 for Monte The MS for this system can be represented using an event

Carlo search and threshold accepting. Section 6 graph (Schruben 1995, p.24), with ¢ of thisMSin the

summarizes the results and their implications for the design simulation language SIGMA. A state of théS can be

of algorithms for discrete optimization problems. defined as Q = the number of customers in the system.

Define the initialization eventdrto set Q-0 and schedule

an initial arrival, where U denotes the arrival event, and C
denotes the service completion event. Therefore, D=3. If
the length of the event sequence is M=12, then state S=10
is accessible. On the other hand, sta®-=Sl5 is valid,
though not accessible for M=12 andy Eas defined.
However, if Ey initializes the system with Q=5, then state
Q=15 is accessible for M=12. Lastly, S=-2 is an invalid

The following definitions are taken from Jacobson and state, hence is not accessillld.

Yicesan (1998a). LeMS represent a discrete event

simulation model specification a representation of the 2.2 Generalized Hill Climbing Algorithms for Discrete
system under study, reflecting the objectives of the study Optimization Problems

and the assumptions of the analysis. Mit represent a

discrete event simulatiomodel implementationf the MS, Discrete optimization problems are characterized by a
a translation of the model specification into a computer countably finite set of solutions and an objective function
executable form (i.eMI describes a procedure to mimic value associated with each such solution (see Garey and
the system behavior). Therefore, a model specification Johnson 1979, p.123, for a formal definition). The goal is
defines what a modeloes,while a model implementation  to find solutions for which the objective function is
defines how the model behavior is achieved. A model optimized. Unless otherwise noted, assume that all
specification can be in the form of a Generalized Semi- discrete optimization problems are minimization problems.
Markov Process (Shedler 1987), or an Event Graph Model ~ For a discrete optimization problem, define the
(Schruben and Yiicesan 1993); a model implementation solution spaceQ, as the set of all possible solutions.

ACCESSIBILITY: (Jacobson and Yicesan 1998a)
INSTANCE: A discrete event simulation model
specificationMS, with D events, and an associated discrete
event simulation model implementatioMl, an initial
revent of thisMS, Ej, a state, S, and a non-negative finite

2 BACKGROUND AND DEFINITIONS

To define the false negative probability, several discrete
event simulation model and GHC algorithm concepts are
needed.

2.1 Discrete Event Simulation Models
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Define anobjective functionf: Q-[0,+»] that assigns a 2.3 Applying GHC  Algorithms to  Address
non-negative value to each element of the solution space. ACCESSIBILITY

Define aneighborhood structure:Q 2%, wheren(w)dQ

for all wJQ. The neighborhood structure establishes TO apply GHC algorithms to ACCESSIBILITY, define the
relationships between the solutions in the solution space,solution spaceQ, to be the set of all possible event
hence allows the solution space to be traversed or searchegequences of length M, starting with evegt ENote that

by moving between solutions. The goal is to identify a some of these event sequences may be invalid, or valid

globally optimal solution* (i.e., f(a*) < f(«w) for all Q). only up to the K event, kO {0,1,..,M}. Define the
GHC algquthms can 'be' u§ed to address intractable neighbors ofwQ, n(w), by changing exactly one of the
(NP-hard) discrete optimization problems. GHC  events inw (i.e., a one-change rule). Define the objective

algorithms allow inferior solutions to be visited routeto

the optimal solution. In practice, the best solution obtained
over the entire GHC algorithm run, not just the final
solution, is reported. This allows the algorithm to
aggressively traverse the solution space (i.e., visit many ~ "~ ° . . . .
inferior solutions in search of a globally optimal solution), ObJeCt'Vf’ function (i.e., W):Q) if and_ only if _S<:S for
while retaining the best solution obtained throughout the some k—O,l,._..,M. Note_ that if executing the first k .event.s
entire GHC run. The GHC algorithm is described in of w results in an invalid event sequence (not defined in

function as f@)=mino: . n O5-SO0 where § is the

state reached after executing the first k eventswof
(Yucesan and Jacobson 1996), ahifls(i0Jis a norm on the
state space. Thereforey is a global minimum for this

pseudo-code form: MS), then &=+w. Moreover, the neighborhood structure
and objective function defined here are not unique;
Define an objective function £ - [0,+c] different neighborhood structures and objective functions

may result in distinct GHC algorithm implementations and
performance results.

Define A to be a GHC algorithm that can be
implemented to address an instance of ACCESSIBILITY.
For a giverMS with D events and its associatield, where
all event sequences are initialized with evegt \Eith state

Define a neighborhood structuneQ — 2°

Define the random variablg R xQ —, [0, +0]

Set the iteration indices i=k=n=1

Set the outer loop counter bound K

Set the inner loop counter bounds N(k), k=1,2,...,K
Select an initial solutiony1)0Q

Repeat whilék < K S and MJZ" given, define the solution space as the set of
Repeat while < N(K) &exue?]\t/:nt sequences of length at most M. Define two

Generate a solutiow'0n(w(i))
Calculated=f(w)-f( i)

If 5<0, thenw(i+1) — o B(S,I,M)={algorithm A reports NO for state S after |

If 520 and R(e(i), )3, thena(i+1) « g eretonsh @
If =0 and R(wi), w)<d, thenw(i+1) « wXi)

- 2;1 B(S,M)={algorithm A reports NO for state S} (2)

i

Uft” n=N(k) These two events are distinct in that B(S,I,M) is for
n=1 algorithm A executed over a finite number of iterations I,
k < k+1 while B(S,M) has no such limitation. The algorithm
Until k=K reporting YES (NO) means that algorithfn could (not)

] _ find a sequence of at most M events that reaches state S.

_ Several general sgarch strategies can be described\gte that events B(S,I,M) and B(S,M) are not events of an
using the GHC algorithm framework. —For example, s put rather, events as defined in probability theory
simulated annealing can be described as a GHC algorithm jacobson and Yiicesan 1998b). The complementary
by setting R(cXi),o)=-tIn(u(i)), (i)0Q, «ln(wi)), events, &S,1,M) and B(S,M), are defined as
where t is the temperature parameter (hence, defines a
cooling schedule as+0) and u(i) are independent and  BY(S,|,M)={algorithm A reports YES for state S after | or
identically distributed U(0,1) random variables. Other fewer iterations} (3)
search strategies that have been represented as GHC
algorithms include threshold accepting (Dueck and gng
Scheuer 1990), tabu search (Glover and Laguna 1997),

Monte Carlo search, local search, and Weibull accepting go(s M)={algorithm A reports YES for state S}. 4)
(Johnson and Jacobson 1997, 1998).
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Also define the event §,M) = BY(S,M) n B(S,I,M), with

gs(1,M) = P{Qs(I,M)}. GHC algorithms can be viewed as

sampling procedures over the solution sp@ce The key
distinction between different GHC algorithms ishiow the

for all 10Z*. This means that P{&S,M)(B(S,,M)} =
P{B%(S,M)} = 0, which also follows from (6). If
P{B‘(S,M)}=1, then (5) implies P{&S,|,M)} + gs(I,M) =
1 for all I0Z*. Therefore, P{&S,M)B(S,I,M)}= 1 for all

sampling is performed. For example, Monte Carlo search 10Z", hence only one iteration of algorithtneeds to be
produces unbiased samples from the solution space, whileexecuted. In general, it is unlikely that F{8,M)} would

simulated annealing produces biased samples, guided bybe knowna priori. The relationship between B(S,M),
the neighborhood structure, the objective function, and the B(S,I,M), and Q(I,M) is depicted in Figure 1. This figure

temperature parameter.
2.4 The False Negative Probability

The definition of B(S,I,M) in (1) implies that B(S,I,M)
(B(S,1+1,M), for all OZ", hence {B(S,,M)} is a

telescoping, non-increasing sequence of events. Therefore,
since the probability function is a continuous set function,

then, by the Monotone Convergence Theorem,

P{B(S,.M)} - P{B(S,M)} as |-,
where

B(SM) =N B(S,1,M).
1=1
Therefore, for a given (fixed) initial solutionx1), if

shows that B(S,M)O B(S,I,M), and P{B(S,I,M)} =
P{B(S,M)}+qg(l,M).

B(S.M) B°(S,M)

Q(l.M)

BY(S,I,M) B(S,,M)

Figure 1. The relationship between B(S,M), B(S,I,M),
and Q(1,M)

algorithm A is guaranteed to converge to state S, then 3-2 GHC Algorithm Scenarios

P{B°(S,M)}=1.
algorithm A

Equivalently, if P{B(S,M)}<1, then

cannot be guaranteed to converge. The false negative probability depends upon the

Convergence results for the GHC algorithms are fully effectiveness of a GHC algorithm to report YES for state S.

explored in Section 4.

In light of these observations, thialse negative
problem asks whether a GHC algorithm, in the limit, will
establish that a state is accessible, given that the GHC
algorithm, executing a finite number of iterations, is unable

In particular, four cases can be considered.

Case a: State S is not accessible. For this case,
P{B%(S,M)} = 0, hence, the false negative probability
is equal to zero for aldZ".

to show that it is accessible. This problem is quantified by Case b:State S is accessible but P(8M)}=0. This is

considering thefalse negative probability,defined as
P{B°(S,M)B(S,I,M)}.

3 FALSE NEGATIVE PROBABILITY RESULTS

3.1 Analysis Framework

Determining the false negative probability requires an

understanding of the relationship betweef{SBV) and
B(S,I,M). To this end, since ,M)=B(S,M)nB(S,I,M),
then

P{B(S..M)} = P{B(S, M)} + qs(1,M) (5)

where ¢(I,M) measures the probability gap between
B(S,M) and B(S,I,M). Therefore, P{E5,M)IB(S,I,M)}
=P{B%(S,M)nB(S,I,M)}/P{B(S,I,M)}
=gs(I,M) / P{B(S, |, M)}. (6)

the case where the GHC algorithm is ineffective,
irrespective of the run length. For this situation, the
false negative probability is equal to zero for alFT.

Case c:State S is accessible and BM)}=1. This is
the case where the GHC algorithm is guaranteed to
find state S, provided the algorithm run length is
sufficiently long. For this situation, the false negative
probability is equal to one for allZ".

Case d:State S is accessible and 0 < RBM)} < 1. This
is the case where the GHC algorithm may converge,
though this is not guaranteed. For this situation, the
false negative probability is between zero and one for
all 10Z".

Each of these four cases is encountered in practice. Case a
occurs when no solution to ACCESSIBILITY exists; namely,
either state S is invalid or there are no sequences of length M
that reach state S. Case b occurs, for example, if the
algorithm is a local search procedure and always gets trapped

If P{B(S,M)}=0 for state S, then it is not necessary to run in a local (not global) optimum. Case c occurs, for example,
algorithm A, since B(S,M) and B(S,I,M) are independent if the algorithm is Monte Carlo search or simulated annealing
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with a convergent cooling schedule. Case d occurs, for4 CONVERGENCE PROBABILITIES FOR GHC
example, if the algorithm is simulated annealing and a ALGORITHMS

cooling schedule guaranteeing convergence is not used,

though convergence is possible. This paper focuses on Casén this section, necessary convergence conditions are
d: state S is accessible and the purpose of the GHC algorithmyerived for a GHC algorithm using the false negative
is to identify an event sequence that reaches state S. probability. Without loss of generality, assume that
P{B(S,1,M)}=1 and P{B(S,M)}>0. Furthermore, unless
otherwise stated, assume that there exiSi&'l'such that

0< P{B%(S,I,M)}<1 for all I=I'" Define the (probability)
event

EXAMPLE (continued): Suppose M=4. There afe1b
possible event sequences of length four, with six of these
sequences fully valid (i.e., the entire event sequence of
length M=4 is valid), and the remaining ten only partially
valid (i.e., the event sequence is valid only for the first k _ .
events, where k is either 0, 1, 2, or 3). Table 1 lists these 16 R(_S’I'M) = {GHC algorithmA reports YES for state S at
event sequences, where an asterisk indicates that the event tration I, given thai reported NO for state S up to
sequence is fully valid. _ iteration I-1}, ()

If Monte Carlo search is implemented, then each of the With
16 sequences of events has probability 1/16 of being  (S.LM)=P{R(S,,M)}
selected. The probability that Monte Carlo search executes = P{B(S,|,M)[B(S,I-1,M)}. (8)
for | iterations with all NO responses, for state S, is
P{B(S,I,M)}=[P{B(S,1,M)}]', where P{B(0,1,M)}=0, These probability measures can be used to quantify the
P{B(1,1,M)}=1/2, P{B(2,1,M)}=11/16, P{B(3,1,M)}=7/8, false negative probability. To this end, Lemma 1
P{B(4,1,M)}=15/16, and P{B(S,1,M)}=1 for SO establishes a closed-form expression for (1) in terms of
{0,1,2,3,4}. Moreover, for accessible states, namely 0, 1, (8).
2, 3, and 4, P{BS,M)}=1, hence P{B(S,|,M)}=g(l,M).

When Monte Carlo search is applied, the false negative LEMMA 1:
probability is one for all iterations and for all accessible |
states, as indicated by (6). Conversely, for all non-accessible(i) P{B(S,I,M)} = |_1| [1-r(S,i,M)] for all IDZ".
states (i.e., 8{0,1,2,3,4}), the false negative probability is =
zero for all iterations. This behavior is a consequence of oo
Monte Carlo search asymptotically guaranteeing to find state (i) P{B(S,M)} = [1-r(S,i,M)].
S (this corresponds to Case ¢ 1=

Proof: By the definition ofr(S,i,M), i=1,2,...,1, in (8),

Table 1: Event Sequences for a 1-r(S,I,M) = P{B(S,|,M)IB(S,I-1,M)}
Single-Server Queueing Simulation Model =P{B(S,|,Mh B(S,I-1,M)}/P{B(S,I-1,M)}
= P{B(S,I,M)} / P{B(S,I-1,M)}.
# Event State(s)
Sequence Reached Therefore, since P{B(S,1,M)}=1, then
1 IUUUU* 0,1,2,3,4 ! :
2 IUUUC* 0123 P{B(S,I,M)} = [1-r(S,i,M)] .
3 IUUCU* 0,1,2 _ o . ,
4 [UCUU* 012 Taking the limit as |- +c establishes (||i:|
2 :Sggg* 8 12 Define the finite false negative probability,
7 JUCUCH 0'1' P{B%(S,J,MB(S,I,M)}, 1,J0Z", J>I. Lemma 2 gives an
8 IUCCU 0’,1 expression for this probability in terms of (8).
9 |leCcuy 0 LEMMA 2: ForJ > I, 1.IIZ",
10 | ICUCU 0 ;
11 | Icuyc 0 P{BS(S,J,MIB(S,,M)} = 1~ [ [1-r(S,i,M)] .
12 IUCCC 0,1 i=l+1
13 ICUCC 0
14 ICCUC 0
15 ICCCU 0
16 ICCCC 0
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Proof: Since {B(S,I,M)} are telescoping non-increasing
events, then using (8),

P{B“(S,J,MB(S,|,M)}
= [P{B(S,I,M)} - P{B(S,J,M)}I/P{B(S,I,M)}

Il_l[l—r(S,i,M)]— ﬁ[l—r(S,i,M)]

|I_l|[1—r(S,i,M)]
J - _ |:|
=1 -iL—L[l— r(S,i,M)].
Theorem 1 gives an explicit expression for the false
negative probability.
THEOREM 1: For all ID0Z",
P{B%(S,M)IB(S,I,M)} = 1— ﬁ[l— r(S,i,M)].
i=1+1

Proof: Taking the Ilimit as J-
establishes the resul{_]

+o0 in Lemma 2

COROLLARY 1: P{B%S,M) | B(S,I,M)} = P{B(S,M) |
B(S,1+1,M)} for all I0Z".

Proof: Since

I_l @L-r(Si,M)) < I_l @L-r(S,i,M),
i=1+1 i=1+2
the result follows from Theorem 1]

Corollary 1 shows that the false negative probability is
non-increasing in I; that is, the probability of finding a

sequence of events reaching state S can never increase wit
each iteration that does not find such a sequence. This
result can be used as a guideline for execution termination
The following results

(Jacobson and Ylcesan 1998b).
pertain to the finite-time performance of GHC algorithms.

THEOREM 2: For J>I, 1,I1Z*, P{B(S,,M)IB%S,J,M)}

J

I_I[l—r(S,i,M)]

Il_ll[l—r(S,i,M)]—

1- Iil[l—r(S,i,M)]

Proof: Applying Bayes theorem to Lemma 2 yields the
result.
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COROLLARY 2: P{B(S,I,M)IB%(S,M)}

Il_ll[l—r(S,i,M)]— ﬁl[l—r(S,i,M)]

1- [1-r(S,i,M)]
[]
for all 10Z".
in Theorem 2

Proof: Taking the limit as J- +
establishes the resull]

Note that the probability in Corollary 2 is non-increasing in
I. Therefore, for alle>0 (close to 0), there exists(1Z",
such that, for all 21, P{B(S,,M)[B%(S,M)}< €. This
means that a GHC algorithm run can be terminated once
P{B(S,,M)BY(S,M)} is sufficiently small, since the
marginal value for each additional iteration is negligible.

To establish the relationship between the convergence
in probability of a GHC algorithm and the false negative
probability, the following definition is needed.

DEFINITION: GHC algorithm A converges in
probability (to a sequence of at most M events that
reaches state S) if P{C(S,|,M)}}1 as | +oo, where

C(S,I,M) = {algorithmA reports YES for state S at
iteration I}.

Theorem 3 establishes the relationship between the
convergence in probability of a GHC algorithm and the
false negative probability.

THEOREM 3: If GHC algorithm A converges in
probability, then P{B(S,M)B(S,I1,M)} = 1 for all I0Z".

Proof: By the definition of conditional probability,
ﬁ{B(S,M)DB(S,I,M)} = P{B(S,M)nB(S,IM)} [/
P{B(S,,M)} = P{B(S,M)}/P{B(S,I,M)} for all 10Z".
Note that C(S,J,M)J B%S,J,M) for all IZ*, hence,
B(S,J,MIC%S,J,M) for all @z Therefore,
P{B(S,M)}/P{B(S,I,M)}

< lim P{C%S,J,M)} P{B(S,|,M)} =0

J o 40

for all I0Z". This implies that P{&S,M)(B(S,I,M)} = 1
for all 10z*. O

From Theorem 3, if a GHC algorithm converges in
probability, then the false negative probability is equal to
one at all iterations. Theorem 4 gives necessary and
sufficient conditions for the false negative probability to be
one at all iterations.
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THEOREM 4: For a GHC algorithm A,
P{B%(S,M)B(S,I,M)} = 1 for all I0Z" if and only if

00

Z r(S,i,M) = +w for all I0Z",
i=l+1

I
Proof: Follows from Jacobson and Yiicesan (1998E.

Corollary 4 provides a necessary condition for the
convergence in probability of GHC algorithms.
COROLLARY 4: If a GHC algorithm converges in
probability, then

r(S,i,M) = +oo for all I0Z".

i=l+1
Proof: The result follows from Theorems 3 and 4.

5 ILLUSTRATIONS

6 CONCLUDING COMMENTS

This paper defines the false negative probability as a
performance measure for GHC algorithms applied to
discrete optimization problems, using ACCESSIBILITY as
the analysis framework. The relationship between
convergence in probability and the false negative
probability is also discussed. These results can be used to
guide the design and execution of effective algorithms for
discrete optimization problems (Jacobson and Ylcesan
1998b).

The use of ACCESSIBILITY as the analysis
framework greatly simplifies the development of our
results.  Such cross-fertilization of concepts between
discrete event simulation and discrete optimization
provides a rich avenue of investigation, to obtain useful
tools that can benefit both fields. The work presented here
is one of many directions that can provide new and useful
insights into difficult unresolved issues in both domains.

Theorem 4 can be used to show that the false negativepckNOWLEDGEMENTS

probability is one (for all iterations) for Monte Carlo
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