
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

DISTRIBUTED SIMULATION MODELING: A COMPARISON OF HLA, CORBA, AND RMI

Arnold Buss

Operations Research Department
Naval Postgraduate School

Monterey, CA 93943  U.S.A.

Leroy Jackson

United States Army
TRADOC Analysis Center

Monterey, CA 93943  U.S.A.

e
e
o

r,
n
d

l
o
e
e
el
g

f
r

)
o
h
o
c

n
,

n
.
 f
g
c
n
D

d
a
ta
e.

ree
eir
is
 this
ch,

re
gh 5
nd
nd
nt

nts
age,
, we
ges
 the

or
re a
ary
al
ct’s
ther
, an
nd
fore
en
al
wn

 the
s a
guage
bly
ich
es.

ng
ABSTRACT

The execution of distributed simulations has becom
increasingly important to the Department of Defens
(DOD).  This paper compares three architectures f
supporting distributed computing, HLA, CORBA, and
RMI.  While the fundamental structure of each is simila
there are differences that can profoundly impact a
application developer or the administrator of a distribute
simulation exercise.

1 INTRODUCTION

The design and execution of distributed simulation mode
has become increasingly important to the Department 
Defense (DOD).  In recent years, the DOD has invest
considerable resources in infrastructures for distribut
simulation modeling. The current focus is the High Lev
Architecture (HLA) spearheaded by the Defense Modelin
and Simulation Office (DMSO) (US Department o
Defense, 1998). The HLA benefits greatly from two earlie
DOD efforts: the Distributed Interactive Simulation (DIS
protocol standards, and the Aggregate Level Simulati
Protocol (ALSP).  There have been several efforts in t
commercial sector to enable distributed computing.  Tw
of the most viable recent efforts are the Common Obje
Request Broker (CORBA), by the Object Manageme
Group (OMG), and Remote Method Invocation (RMI)
from Sunsoft’s Java Development Kit (JDK).

There are many reasons why DOD has an interest i
common framework for performing distributed simulation
Declining defense budgets have increased the necessity
cost containment.  Increased use of simulation for trainin
acquisition, and analysis promises to substantially redu
costs.  A common architecture for distributed simulatio
enhances interoperability and reuse in various DO
simulation modeling efforts.

Each of these three architectures for distribute
computing offers much to the problem of executing 
distributed simulation model.  Each has a fundamen
world view that affects the structure of its architectur
819
r

s
f
d
d

n
e

t
t

 a

or
,
e

l

This paper will compare the features of these th
important technologies with particular focus on th
impact on distributed simulation.  Naturally, it 
impossible to cover all aspects of the architectures, so
paper will only touch briefly on the salient features of ea
emphasizing those aspects impacting the simulator.

In the following section we will discuss the co
elements of distributed architectures.  Sections 3 throu
will touch on the important features of HLA, CORBA, a
RMI, respectively, followed by a brief discussion a
comparison in Section 6.  Section 7 will prese
conclusions and recommendations.

2 BASIC ELEMENTS OF DISTRIBUTED
ARCHITECTURES

We will focus our attention on three of the basic eleme
of distributed architectures: an object interface langu
an object manager, and a naming service.  In addition
will consider issues such as the programming langua
supported, the hardware and operating systems, and
network protocols used.

An object interface language is important f
supporting distributed applications because they requi
more abstract level of communications than ordin
applications.  An object must make only minim
assumptions about the implementation of another obje
method since that method could involve objects on ano
machine.  In contrast to a class’s definitions of methods
interface is a contract for implementing objects a
contains only a list of methods.   Interfaces are there
the ideal vehicle for providing interoperability betwe
distributed objects.  HLA and CORBA take a multilingu
approach to distributed objects so they define their o
separate interface specifications that are distinct from
implementing languages. RMI, on the other hand, i
language specific approach and thus uses the Java lan
interface for its interface specification. This considera
simplifies many design issues but limits the extent to wh
RMI can deal with distributed objects in other languag
Using interfaces is a critical factor for implementi



Buss and Jackson

nd
m
ll

je
 
e
t t
ca
 t
on
h
 

n 
In
io
th

 
s
 

 a
sa
in
th
nd
he
c
d

ifi
-

ut
h
d
if
c
ra

g
fo
n
nd
 

ed

se
o
el
re
al
ules

c
a
ia.
rd
s

s
.

s,

f
h

l
re
,
a
ic
e

e

th
e
S

s

ct
.

 at
exercises involving some combination of live, virtual, a
constructive simulations, since the underlying mechanis
in these three types of simulation are fundamenta
different.

The object manager is responsible for passing ob
references to requesting clients, instantiating objects
necessary and marshalling object requests betw
different machines.  Objects can therefore be indifferen
whether invoking a given method actually executes in lo
code or remote code since the Object Manager hides
details.  Conceptually, the object manager is a backb
through which objects on all machines communicate.  T
object manager may in fact be physically located on
server, located on both a client and a server or o
machine entirely separate from the client and server.  
well-designed architecture, however, the physical locat
of the object manager should be irrelevant to 
application designer.

The naming service is the mechanism by which
server informs clients about objects available for acce
The implementation of these services can range from
simple listing to a complex database of objects. Clients
able to discover the objects served, discover neces
signatures and arguments for various methods, obta
reference to an object, and begin invoking methods on 
object.  This capability opens extremely flexible a
dynamic possibilities for distributed computing, since t
process of establishing communication between obje
can be delayed until runtime and need not be hard-co
into applications.

A distributed architecture can be language-spec
(RMI) or language-neutral (HLA, CORBA).  A language
specific approach can assume more about the distrib
objects--essentially all features of the language.  T
disadvantage is that legacy systems may be implemente
different, incompatible languages.  The language-spec
approach makes it difficult to incorporate these lega
programs.  Language-neutral architectures can incorpo
legacy applications written in any supported language,
although the transition can involve difficult programmin
efforts.  There are considerably more opportunities 
interoperability between disparate programs that may 
have been developed with distributed computing in mi
However, bindings must be provided for each language
be supported and, for interoperability to be truly achiev
each must be able to work with all others.

3 HLA

The highest priority effort in the Department of Defen
(DOD) for modeling and simulation is the development 
a common technical framework. The High Lev
Architecture (HLA) is the standard technical architectu
for all DOD simulations. It consists of the major function
elements, the interface specifications and the design r
820
s
y

ct
as
en
o
l

he
e
e
a
a

 a
n
e

a
s.
a

re
ry

 a
at

ts
ed

c

ed
e
 in
ic
y
te

r
ot
.

to
,

f

that together provide a common framework for specifi
system architecture designs. The HLA resulted from 
process that included government, industry, and academ
The HLA has been accepted as a draft IEEE standa
supported by the Simulation Interoperability Standard
Organization (SISO).

HLA is applicable to a broad range of functional area
ranging from training to analysis to systems acquisition
HLA is applicable to constructive simulations with pure
software representations, to man-in-the loop simulation
and to interfaces to live systems.

The HLA design principles envision federations o
simulations composed from modular components wit
well-defined functionality and interfaces. A federation is
the combination of a particular federation object mode
(FOM), a set of federates and the run-time infrastructu
services (RTI). Federates include simulation utilities
simulations, and live player interfaces. The RTI is 
distributed operating system for the federation. Specif
simulation functionality is purposely separated from th
general purpose, supporting, RTI.

There are three main components to the HLA: th
HLA rules, the HLA interface specification, and HLA
object model template (OMT).

3.1 HLA Rules

The first component of the HLA definition is the HLA
Rules that describe the responsibilities of simulations wi
respect to the RTI in an HLA compliant federation. Ther
are five federation rules and five federate rules (U
Department of Defense, 1996a, 1998):

Federation Rules

(1) Federations shall have a FOM in OMT format.

(2) All representation of objects shall be in the federate
and not the RTI.

(3) During federation execution, all exchange of FOM
data shall be via the RTI.

(4) During federation execution, all federates shall intera
with the RTI in accordance with the interface specification

(5) During federation execution, an attribute of an
instance of an object may be owned by only one federate
a given time.

Federate Rules

(6) Federates shall have a SOM in OMT format.



Distributed Simulation Modeling: A Comparison of HLA, CORBA, And RMI

an

ut

de
ce

a
e

e
ra
es
tio
PI
d
ic
e
m
th
ce

 f
 a
ot
 a
 
in
T
o
ud

 
ec
k
ng
an
on

de
t

on
at

 
lity

t
its

ts
ce

at
ral,
ct
 a
ther

)
ant
he
e
he

t
r
t
nt
ge
ts

ns
cts
d
n
l

,
ct
d
n
for
te
s)
ll

in

e.
ich
. A
on
).
ce
es
n

d
n’s
t
by
(7) Federates shall be able to update/reflect attributes 
send/receive data in accordance with their SOM.

(8) Federates shall be able to transfer/accept attrib
ownership in accordance with their SOM.

(9) Federates shall be able to vary the conditions un
which they provide attribute updates in accordan
with their SOM.

(10) Federates shall be able to manage local time in a w
which will allow them to coordinate data exchang
with other members of the federation.

3.2 HLA Interface Specification

The second component of the HLA definition is th
interface specification, a standard for federates to inte
with the RTI (Us Department of Defense, 1998). It defin
how RTI services are accessed. The interface specifica
is provided as an application programmer interface (A
in several forms including CORBA IDL, C++, Ada95 an
Java. The interface specification has six basic RTI serv
groups: federation management, declaration managem
object management, ownership management, ti
management and data distribution management.  Note 
this “interface specification” is not related to the interfa
language discussed in Section 2.

Federates use Federation Management services
creation, dynamic control, modification and deletion of
federation execution. The HLA specification does n
prevent a single software system from participating in
federation execution as multiple federates nor does
preclude a single software system from participating 
multiple, independent federation executions. Current R
implementations, however, may not necessarily supp
this feature. Federation Management services also incl
control checkpoint, pause, resume and restart features.

Federates use Declaration Management services
declare their intent to publish and subscribe to obj
attributes and interactions. Federates must invo
Declaration Management services prior to registeri
object instances, updating instance attribute values, 
sending interactions. The effects of declarati
management are independent of federation time.

Federates use Object Management services to 
with registration, modification and deletion of objec
instances and the sending and receipt of object interacti
Object Management services are complimented by D
Distribution Management services.

Federates use Ownership Management services
transfer ownership of instance attributes. This capabi
supports cooperative modeling in the federation.

Federates use Time Management services 
coordinate the advance of logical time and maintain 
821
d

e

r

y

ct

n
)

e
nt,
e
at

or

it

I
rt
e

to
t
e

d

al

s.
a

to

o

relationship to real time. Time is represented as poin
along a federation time axis. Each federate may advan
along the axis during federation execution, but th
advance may be constrained by other federates. In gene
time advances are coordinated with the Obje
Management services so that information is delivered in
causally correct and ordered fashion. Messages are ei
time stamp ordered or receive ordered.

Federates use Data Distribution Management (DDM
services to reduce the transmission and receipt of irrelev
data. DDM adds to the normal Object Management t
ability to further refine the data requirements at th
instance attribute level. These DDM services support t
efficient routing of data.

3.3 HLA Object Model Template

The third component of the HLA definition is the Objec
Model Template (OMT), a common method fo
prescribing the information contained in the HLA objec
model for each federation and simulation (US Departme
of Defense, 1996a, 1996b). OMT is the interface langua
for HLA. Object models describe the set of shared objec
in a simulation or federation, the attributes and interactio
of these objects, and the level of detail at which the obje
represent the real world including their spatial an
temporal resolution. The HLA OMT provides a commo
representational framework for object mode
documentation. The OMT fosters simulation
interoperability and the reuse of simulations.

There are two types of object models in HLA
Federation Object Models (FOMs) and Simulation Obje
Model (SOMs). Both types of models are documente
using the OMT. The FOM contains all shared informatio
(objects, attributes, interactions & parameters) essential 
a particular federation. The SOM contains all federa
information (objects, attributes, interactions & parameter
which is visible to other federates in a federation and a
information from other federates that may be reflected 
the federate.

An attribute is the named portion of an object’s stat
An interaction is a change in the sending object state wh
may cause a state change in another, receiving, object
parameter is the information associated with an interacti
provided by the sending object to the receiving object(s
Federates update attributes by providing the new instan
attribute value for an attribute, and reflect attribute chang
by receiving the new instance attribute value for a
attribute.

HLA’s approach to interoperability is through the
ability to publish and subscribe to attributes an
interactions.  These are discovered through the federatio
FOM.  Local object interaction is substantially differen
from remote interaction, since the latter is possible only 
the receipt of the change in a subscribed attribute.



Buss and Jackson

ing
ing

tion
rvic
 a
ion

ect
00
en

and
 w
and
in a
os

the
is
ces
the
he
 ar
ate
ules

or
nd

ma
ned
ica
ria
ace
cts
ds

ute
le
an

the
BA
ace
or

are
pe

bas
ng

ghl
 be
o 

 to
d

f-
ds

’s
an
n
nd

 a
rn
 be
is
m

A
he
out
ly,
ns
A
are
g
his

st
nd
her
nd
a

 the

n
re
he
RB
s
er
B,
e

ply
n
d.
a

od
n
tub
ct
m
ith
ct
nd
In HLA, the object interface language is defined us
the OMT, the object manager is the RTI and the nam
service is the federation execution (A federation execu
is an instance of the Create Federation Execution se
invocation and entails executing the federation with
specific FOM and an RTI, and using various execut
details.)

4 CORBA

CORBA is a non-commercial venture by the Obj
Management Group (OMG), a consortium of over 8
members that was founded in 1989 (Object Managem
Group, 1998; Orfali and Harkey, 1998).  It is the oldest 
perhaps the most mature of the three architectures
consider in this paper.  CORBA is an extremely large 
complex collection of specifications and protocols, and 
brief paper such as this, we can only touch on its m
salient features.

4.1 CORBA Interface Language

The interface language for CORBA programs is 
Interface Definition Language (IDL). The IDL syntax 
essentially that of C++, except that IDL defines interfa
rather than implementations. In a CORBA application, 
IDL is written first, then compiled into code in one of t
supported languages. The elements defined in the IDL
then implemented in that language using the gener
code as the basis. IDL has four primary elements: mod
interfaces, operations, and attributes.

A module is a namespace that bundles one or m
interfaces. An interface is a collection of attributes a
operations that correspond to an object.  An interface 
be viewed as a contract to implement the defi
operations as corresponding methods with ident
signatures and return types, and to provide the approp
accessor methods corresponding to attributes.  Interf
may define an inheritance hierarchy.  All obje
implementing an interface must have metho
corresponding to that interface’s operations and attrib
as well as those of all inherited interfaces. Multip
inheritance of interfaces is supported; however, 
interface cannot inherit from two interfaces having 
same name for an operation or for an attribute.  COR
2.0 specifies that an object can have only one interf
However, for CORBA 3.0 there are proposals to supp
multiple interfaces.

Attributes correspond to instance variables and 
used to represent data.  Attributes are either basic ty
constructed types, or object references.  The possible 
types are the usual primitive data types (short, int, lo
float, double, boolean, etc).  The constructed types rou
correspond to those available in C++.  A struct can
defined using typedef.  A sequence corresponds t
822
e

t

e

t

e
d
,

e

y

l
te
s

s

.
t

s,
ic
,
y

a

variable-length array.  Finally, the any type may be used
represent any kind of data.  Any is a very powerful an
flexible way of representing data, since it is sel
describing. An object reference is used to invoke metho
on an object.  Although not specified in IDL, an attribute
implementation typically uses accessor methods rather th
providing direct access to an instance variable.  A
attribute may be defined to be read-only or both read a
write.

An Operation corresponds to a method and, like
method, is identified by its name, signature, and retu
type.  The arguments of an operation may be defined to
in, out, or inout, depending on whether the argument 
passed from the calling object to the invoked object, fro
the invoked object to the calling object, or both.

CORBA is language neutral in the sense that CORB
clients and servers may be implemented in any of t
supported languages and be able to work together with
even knowing each other’s language.  More important
under CORBA any participant need make no assumptio
regarding the implementing language of other CORB
clients or servers.  Currently the supported languages 
C, C++, Smalltalk, Ada, Cobol, and Java.  Definin
interfaces rather than classes is a key element to t
language neutrality.

4.2 CORBA Object Manager

The Object Manager for CORBA is the Object Reque
Broker (ORB).  The ORB enables objects to send a
receive messages from objects without regard to whet
they are local or remote.  All messages between client a
server objects must go through the ORB.  Typically, 
client requests a reference to an object on a server with
intent of invoking methods on it.

Although the ORB is conceptually an entity betwee
client and server objects, in fact it consists of softwa
residing on both client and server machines.  When t
client requests an object, the message first goes to the O
on its machine.  The client ORB establishe
communication with the ORB on the server.  The serv
returns a reference to the requested object to its OR
which passes it to the client ORB who returns it to th
client.  This is transparent to the programs, but does im
that every object participating in a CORBA applicatio
must reside on a machine with the ORB software installe

CORBA has both static and dynamic means for 
server to provide remote objects. The static meth
involves client and server “stubs,” each of which is a
interface to the actual object on the server.  The server s
is often referred to as a “skeleton.”  A Stub links an obje
to the ORB on its machine and is typically generated fro
IDL, so that the modeler need not be concerned w
writing calls to the ORB. To implement a distributed obje
in this manner, one starts with the IDL for the class a



Distributed Simulation Modeling: A Comparison of HLA, CORBA, And RMI

 c
d 
 

 t
a
tly
an

ha
t 
y 
on
bs
y
th
ic
o

he
e

in
  
 t
 t

g
s
 
so
BA
on
o

1)
o

av
ou
 
nd
ct
a
te
e

d 
a

rm
M

th

e

t
ng
 as
7).
d
es.
ing
at
nd
s

a

in
ote
tub
tch
ich
 a

ired
nd
he
m

r.
ity
f
a
le
lly
fe
ot
 be
is
re
wn

or
le
ect.
,
fore

 the
iate
generates the stubs and skeletons.  Only the skeleton
is used on the server, while only the stub code is use
the client.  The stub and skeleton need not even be in
same language, since all communication is done via
ORB.  For example, a C++ object on a server could h
Java client stubs generated from its IDL.  Importan
neither the client nor the server has to make 
assumptions about the other’s language.

4.3 CORBA Naming Service

The static use of stubs does require each client to 
specific code for the desired remote object, which mus
created and compiled before the remote objects ma
obtained.  CORBA provides a Dynamic Invocati
Interface (DII) to avoid the need for pre-compiled stu
With DII the client first “discovers” the remote object b
one of several mechanisms.  Next, the interface to 
object is obtained so the client can determine wh
method it wants to invoke.  Information about the meth
(argument list, return type, and exceptions thrown) is t
obtained.  The invocation request is created and s
invoking that method on the remote object.

A server can create an Interface Repository contain
interfaces that may be dynamically accessed by clients.
interface repository may be browsed to locate classes
are of interest to a client.  Interface repositories contain
IDL for the published objects.

For CORBA clients and servers operating on a sin
local area network (LAN) communication is more or le
automatic.  The ORB software on each machine
typically able to discover all other ORBs on the LAN, 
interoperability is transparent to each client.  COR
provides the ability to communicate with ORBs 
different LANs using the Internet Inter-Orb Protoc
(IIOP), which extends TCP/IP.

5 RMI

Beginning with the Java Development Kit 1.1 (JDK1.
the Java programming language has included Rem
Method Invocation (RMI) as part of the standard J
libraries (Javasoft, 1997).  RMI support is contained in f
sparse packages in the JDK1.1 distribution devoted
identifying a remote object (via a “marker” interface) a
throwing remote exceptions, registering remote obje
serving remote objects, and performing remote garb
collection. RMI is an object-oriented type of Remo
Procedure Call (RPC).  As its name implies, it involv
invoking a method on a remote object.  RMI is designe
minimize the differences between using ordinary (loc
and remote objects.

RMI is Java-centric, and shares Java’s platfo
independence.  The requirements for implementing an R
client or server are simply having an implementation of 
82
ode
on
the
he
ve
,
y

ve
be
be

.

at
h
d
n
nt,

g
An
hat
he

le
s
is

l

,
te
a
r
to

s,
ge

s
to
l)

-
I

e

Java Virtual Machine (JVM), and RMI classes ar
immediately portable to all JVM platforms.

5.1 RMI Interface Language

Unlike HLA and CORBA, RMI does not define its objec
interface language separately from the implementi
language.  Rather, RMI uses Java’s own interface syntax
its object interface language (Javasoft, 1997; Farley, 199
This considerably simplifies application design an
programming, since it is in one rather than two languag
A Java interface is denoted as being remote by inherit
the java.rmi.Remote interface, a “marker” interface th
does not require any methods to be implemented, a
serves only as an identifier to the compiler.  All method
defined in a remote interface must throw 
java.rmi.RemoteException or one of its subclasses.

5.2 Object Manager

RMI approaches the implementation of remote objects 
essentially the same manner as CORBA.  Each rem
interface may be compiled separately into a client-side s
and a server-side skeleton. Users developing from scra
may subclass java.rmi.server.UnicastRemoteObject, wh
provides the functionality for serving remote objects on
point-to-point basis.  Remote objects will typically
subclass UnicastRemoteObject and implement the des
remote interface.  The remote object is instantiated a
bound to a name using the java.rmi.Naming class.  T
Naming class uses a system similar to that of Unifor
Resource Locator (URL): “rmi://host:port/object name”.

An important aspect of RMI is the Security Manage
Since running remote objects involves a potential secur
risk, RMI requires that an instance o
java.rmi.RMISecurityManager be used to implement 
security policy.  The RMISecurityManager is responsib
for determining whether methods are being invoked loca
or remotely and protecting against potentially unsa
operations. If an instance of RMISecurityManager has n
been set, then only classes from the local machine may
loaded into the application.  The RMISecurityManager 
extremely restrictive in that all non-remote operations a
disabled.  The programmer may, however, define his o
security manager instead.

5.3 RMI Naming service

The java.rmi.registry.Registry class provides methods f
binding remote objects to names, listing the availab
objects on a server, and looking up a desired remote obj
The registry actually plays the role of a “server” in RMI
since the registry must be run as a separate process be
objects can be registered and served.  A client may use
registry to locate remote classes, download the appropr
3



Buss and Jackson

e
t
e

d

I

y

h

r

i
t

d
a
 

s
h

l
t

t

e
 

A
a

n

s

ut
 as
n
an

ally
.

is
s
e

en
t’s
h

In
is

e
es
n
a
rs.
ty
s.
ly
of

o
the
ve

that
be
d

ly
nts,
ing

s
e
d
y
he
e

ns

hip
va
client stubs, and begin invoking methods.   However, th
client does not need any special processes, since 
mechanisms for client behavior are all contained in th
JDK specification, of which RMI is a part.  Remote
connections in RMI are made using JDK’s built-in
networking capabilities, with packets being transmitte
using TCP/IP.

Since RMI is Java-based, it may only interact with
non-Java applications via the Java Native Interface (JN
While technically feasible, JNI’s complexity does not
appear to offer substantial benefit for porting legac
applications at this time.  As with most Java-centric
approaches, interfacing with non-Java legacy application
remains problematic.

6 COMPARISONS

There are a number of disparities between the thre
approaches.  Both CORBA and HLA are concerned wit
legacy applications, possibly in different languages
CORBA’s basic approach is to provide support fo
CORBA-compliant middleware that communicates with
legacy applications.  Since CORBA supports most majo
language bindings, the middleware can be implemented 
the most convenient language and be guaranteed 
interoperate with any CORBA client.  Although HLA has
API’s for C++, Ada, and Java, the responsibility for
interoperability between federates in different languages 
placed on the RTI implementers.  This adds a burden 
implementing an HLA federation in multiple languages, in
contrast to CORBA imposing absolutely no overhea
whatsoever for cross-language compatibility.  RMI being 
Java-based technology is essentially not cross-language
all.  Interoperability to non-Java programs must be don
via JNI and has no common interface, as with CORBA
However, Java’s inherent cross-platform capabilitie
substantially increase the number of platforms on whic
distributed applications may be run.

CORBA and RMI are oriented towards genera
applications, whereas HLA is specifically targeted a
distributed simulations.  Consequently, HLA has
considerably more infrastructure directly aimed a
supporting simulation models through the Federation Rule
and the simulation-specific services, such as Tim
Management.  Since all simulations have the concept of
simulated clock, this service is essential to prope
functioning of an HLA federation.  However, a distributed
CORBA or RMI application may not even have the notion
of simulated time, so it would make no sense for either o
those architectures to include such features.  The HL
rules impose much stricter constraints on federates th
either CORBA or RMI.  For example, it is entirely feasible
for a Java client to use both RMI and CORBA to
communicate with remote objects.  Indeed, limitations i
824
he

).

s

e

.

r
in
to

s
o

at
e
.

s

a
r

f

n

the ability of CORBA to incorporate non-CORBA object
may necessitate such a possibility in some cases.

HLA provides publishing and subscription services b
does not support direct communication between objects,
CORBA and RMI do.  The communication betwee
remote objects in either of the latter two architectures c
be substantially more complex and expressive, essenti
no less so than ordinary communication between objects

HLA’s notion of transfer of object ownership is a
unique capability among the three architectures.  Th
capability can be a powerful modeling tool in certain type
of simulation.  For example, an aircraft modeled in on
application can carry missiles whose dynamics wh
launched are provided by another model.  The aircraf
model can own the missile until it is launched, upon whic
time ownership is transferred to the missile’s model.  
CORBA and RMI, an object instantiated by a server 
always owned by that server.

Both CORBA and RMI use specific communication
protocols for network transmission. RMI uses TCP/IP, th
most common internet protocol, whereas CORBA defin
its own Internet Inter-Orb Protocol (IIOP) that builds o
TCP/IP.  HLA, on the other hand, does not specify 
protocol, but leaves the choice up to the RTI implemente
This is unfortunate, since it may preclude interoperabili
between RTI implementations by different vendor
CORBA 1.0 likewise did not specify protocols, and ear
ORB implementations suffered exactly such a lack 
interoperability.

A singular advantage of RMI over the other tw
architectures involves security.  As described above, 
RMISecurityManager ensures that no hostile code can ha
access to local resources.  There are classes in JDK 
implement encryption and digital signatures, which can 
used to transmit sensitive information in the clear an
verify the identity of the sender.

7 CONCLUSIONS

HLA, CORBA, and RMI take similar approaches to
enabling distributed computing and have rough
analogous mechanisms for the three basic compone
object interface language, object manager, and the nam
service.

For situations involving legacy simulation model
written in different languages, HLA provides more than th
other two, in large part due to its orientation towar
simulation and its simulation-related services.  If legac
databases are involved, however, CORBA is probably t
best choice for implementing middleware to serve th
database’s information to distributed clients.  For situatio
in which much of the implementation is new, RMI is
perhaps the superior choice due to its tighter relations
with the implementing language and the superiority of Ja
as an Object-Oriented language.



A Comparison of HLA, CORBA, And RMI

t

,
il

 He
d
e
h

e
n.

d
n
h

is
 the

,
he
Distributed Simulation Modeling: 

REFERENCES

Farley, Jim (1997) Java Distributed Computing, O’Reilly,
Cambridge, MA.

Javasoft, Inc. (1997) Remote Method Invocation
Specification.

Object Management Group (1998) The Common Objec
Request Broker: Architecture and Specification.

Orfali, Robert and Dan Harkey (1998) Client/Server
Programming with Java and CORBA, John Wiley and
Sons, Inc., New York, NY.

US Department of Defense (1996)  High Level Architecture
Object Model Template, IEEE P1516.2.

US Department of Defense (1998)  High Level Architecture
Interface Specification, Version 1.3 of  IEEE P1516.1
M&S HLA – Federate I/F Spec, DRAFT 1 of 20 Apr
1998.

US Department of Defense (1996) High Level Architecture
Glossary.
825
AUTHOR BIOGRAPHIES

ARNOLD H. BUSS is a Visiting Assistant Professor of
Operations Research at the Naval Postgraduate School.
received a BA in Psychology from Rutgers University, an
MS in Systems and Industrial Engineering from th
University of Arizona, and a Ph.D. in Operations Researc
from Cornell University.  His research interests includ
simulation modeling and object-oriented software desig
He is a member of INFORMS, MORS, POMS, and IIE.

LEROY A. JACKSON , Major, US Army, is an  artillery
officer with over 20 years of enlisted and commissione
service. He earned a B.A. in Mathematics from Camero
University in 1990 and an M.S. in Operations Researc
from the Naval Postgraduate School in 1995. He 
currently assigned as an operations research analyst at
U.S. Army Training and Doctrine Command (TRADOC)
Analysis Center (TRAC) Research Activities in Monterey
California and he continues his graduate studies at t
Naval Postgraduate School.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search
	Search Results
	Print

