
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

APPLYING TEMPORAL DATABASES TO HLA DATA COLLECTION AND ANALYSIS

Thom McLean
Leo Mark

Margaret Loper
David Rosenbaum

College of Computing and Georgia Tech Research Institute
Georgia Institute of Technology

Atlanta, GA 30332, U.S.A.

n
in
el
  
n

in
ct
a
e

 to
es

an
on

ed
o
n

ra
tim

rc
al
Th
 t
te
he
u

 b
ing

lso

he
an
ta in
ns
The
h or
at
mp,
ry.
ain
icit
 and
t of
ion
n,
rnal
to
ired.
ot
of a
at

ly,
on as

ve-

e a
ote

or
ABSTRACT

The High Level Architecture (HLA) for distributed
simulations was proposed by the Defense Modeling a
Simulation Office of the Department of Defense (DOD) 
order to support interoperability among simulations as w
as reuse of simulation models. One aspect of reusability
the ability to collect and analyze  data from simulatio
executions, including a record of events that occur dur
the execution, and the states of the simulation obje
Several approaches have been developed for d
collection in distributed simulation environments.  Th
HLA presents an interesting new paradigm within which
design effective data collection and analysis techniqu
The capabilities of the Run-Time Infrastructure (RTI) c
be exploited to design efficient and flexible data collecti
tools.

Recent research on the efficient log-bas
implementations of temporal databases may enable m
efficient collection and analysis of data from simulatio
executions.  Using a distributed real-time tempo
database approach, we may be able to expand run-
analysis opportunities.

In this paper we present a list of important resea
questions regarding the utility and viability of a tempor
database data collection and analysis approach. 
questions address issues of how and where to collect
data, how to resolve temporal issues in a distribu
system, what functionality must be supported by t
temporal database, and what the relationship to the R
Time Infrastructure (RTI) should be.

1 BACKGROUND

1.1 Distributed Simulation

For this analysis, we consider a distributed simulation to
a set of logical processes which communicate by pass
827
d

l
is

g
s.
ta

.

re

l
e

h

e
he
d

n-

e

messages.  The processes communicate updates to the
states of objects they own. The processes a
communicate events, or interactions, which the receiving
processes may use to alter their execution.  T
fundamental difference between an update and 
interaction is that updates are changes to the state of da
objects which persist in the simulation, while interactio
occur at an instant, and their data does not persist. 
update and interaction messages may be passed wit
without a timestamp indicating the simulation time 
which the data within the message is valid. The timesta
if present, may be used to order the messages for delive

The processes also may collaborate to maint
synchronization.  The synchronization may be an expl
scheme of time management, such as the conservative
optimistic schema described in (Fujimoto 1990), or a se
common barriers or checkpoints which halt the execut
at a specified point.  In a real-time distributed simulatio
the processes are required to keep pace with an exte
clock.  Real-time simulations may choose not 
synchronize at all, due to the processing overhead requ
For this reason, real-time simulations frequently do n
apply a timestamp to messages they send.  The lack 
timestamp implies that the message is relevant 
simulation time t = NOW, or upon being sent.  Practical
this means that the message should be processed as so
possible.  The lack of a timestamp also implies recei
order delivery of the message.

1.2 HLA

The purpose of the development of the HLA is to provid
technical means to achieve interoperability, and to prom
reuse of various M&S components.  (DMSO 1995)  The
HLA was designed to provide a common context f
describing the interfaces between simulation federates and
the data they exchange during an execution.



McLean, Mark, Loper and Rosenbaum

c
 
s

e

s
h
a

 
e

 

it
t

.
l

o
 

s

c

re
s
e

r
 

a

t
o
b
te
t

l of

rch

eal
ge

me
e.,
an
ses
is
 in

o
the
he
ed
al
e of
hip
est
n

with
al-
data
r
ed
al

se
re
ress
ata
he
es

sis,
is

e
s
on

e
a

There are three parts to the HLA: the Object Mod
Template (OMT), the Interface Specification (I/F Spe
and the HLA Rules. (DMSO 1997)   The OMT provides
means to describe the data which will be used and pa
between federates.  The I/F Spec describes the mechan
for performing the transfer of that data.  The concr
implementation of the I/F Spec is the Run-tim
Infrastructure (RTI). The HLA Rules are a set of ba
principles which unify the architecture, and provide hig
level guidance to appropriate implementation of a feder
or federation.

The RTI provides all the basic services necessary
conduct the simulation execution.  The RTI provid
synchronization and time management services to gov
the execution.  The RTI also provides for the integration
federates which do not use the same time managem
scheme.  This permits messages to be delivered in e
time-stamp-order or receive-order, as appropriate for 
federate.

The HLA does not specifically address data collectio
either through the Rules, or the I/F Spec.  There a
however, several support services, in the RTI Managem
Object Model (MOM), which facilitate data collection
These have been exploited by various loggers and ana
applications. (Loper, McLean et al. 1997)

1.3 Temporal Databases

A temporal database supports the storage and retrieval 
temporal data objects.  Each entry in the database has
or more associated timestamps.  In a bi-temporal database
(Jensen, Clifford et al. 1992), two types of timestamps are
associated with each state of an object, the transaction-time
timestamps and the valid-time timestamp.  The transaction
timestamps record when the state of the object is curren
the database. The valid timestamps record when the 
of the object is current . Two timeslice operators are
supported in a bitemporal database, transaction timesli
and valid timeslicing.

The transaction-time timeslice, DB_T(tt), whe
tt <= NOW, returns the state of the database as it wa
time tt. The valid time timeslice, DB_V(vt), returns th
state of the world modeled by the database at time vt a
is known NOW. In addition to the two timeslice operato
traditional database operators support the retrieval
objects in the timeslices.

In a log-based implementation of a temporal datab
(Jensen, Mark et al. 1991; Jensen, Mark et al. 199
changes to a set of objects are stored in logs in transac
time order. Transaction-time timeslices are computed fr
previously computed and cached timeslices 
incrementally updating the cached timeslice with la
updates from the log, or by decrementally downdating 
cached timeslice with earlier updates from the log. Lo
ch

82
el
),
a
sed
isms
te
e
ic
-
te

to
s
ern
of
ent
her
he

n,
re,
ent

ysis

f
one

t in
tate

ing

 at

s it
s,
of

se
3),
ion-
m
y
r

he
g-

based temporal databases also support direct retrieva
change information from the logs .

A survey of temporal and real-time database resea
was presented in (Ozsoyoglu and Snodgrass 1995).

For temporal databases to be useful in support of R
Time Distributed Simulations, they must support stora
and retrieval of simulation interactions in addition to
object state updates.  Interactions, in the context of
temporal databases, occur at an instant.  This means that
the begin and end valid time for an interaction are the sa
value.  Moreover, since interactions do not persist (i.
their life-span is zero), there is no notion of change to 
interaction.  Instantaneous entries in temporal databa
have peculiar implications to timeslice operators.  Th
aspect of interactions is important and will be addressed
subsequent sections.

2 Motivation

In keeping with the goals of HLA, it is appropriate t
explore ways to more effectively collect, store and use 
data from a simulation execution.  When we examine t
nature of this data, we note properties of distribut
simulation which parallel certain concepts in tempor
databases.  Most notable is the common dominant them
Time.  Other interesting parallels exist between owners
management and concurrency control; federate inter
management and replication; and executio
synchronization and transaction serializability.

Temporal databases have been developed to deal 
notion of the changing state of data.  Recent work in re
time databases underscores the requirement to collect 
from real-time systems, without interfering with thei
operation. (Snodgrass 1990)  Data collection in distribut
simulations may be a useful application of tempor
databases.

In addressing the application of temporal databa
technology to  distributed simulation data collection, the
are several questions which must be answered.  We add
these questions from four broad perspectives: the d
collection problem, handling the temporal ambiguities, t
required functionality, and implementation approach
specific to HLA.

3 Data Collection

Data collection can be used to support after-action analy
replay, or can be used for runtime monitoring.  For th
paper, we limit our definition of data collection to th
process of gathering of information from the variou
federates during the simulation execution.  Data collecti
in this manner results in a record of the federation
execution which can be permanently preserved.  Th
Federation Object Model provides each federate 
complete list of public object and interaction classes whi
8



Applying Temporal Databases to HLA Data Collection and Analysis

a
te
ic

e
 
s

,
th
o
 
t

be
e

n
e
a
o

,
r
t
o
a
s

 o
a
.
e
e
d

ir

n

ta

y
r

t
e
n
th
t

of

ly
has

 to
e to
 in
ata

he
ns
y

h is
no
at

ta
all
the
ed
d
 to
nc

find
h is
g
nt

and
store
e
ion
n
he
ner
eful

 be
pon
gle
al
me
me
to

der
may be exchanged during the federation execution. We 
interested in preserving both the state of the federa
(which relates to the object classes) , and the events (wh
relates to the interaction classes).

To begin to address the data collection problem w
observe that, at any point in a simulation execution, there
a set of federates that are producing data of a specific cla
These federates have published the specified classes, and
in the case of objects, have registered instances with 
RTI.  At the same point, there is a complementary set 
consumers of the data, who have expressed interest
subscribing to the classes.  The RTI must transport the da
from the producers to the consumers that have subscri
to it. This process may be further refined by th
specification of regions, which define finer granularity to
the interest expression.

We have described the goals of the data collection a
the system from which the data will be collected.  Th
following questions must be answered before we c
understand the requirements for a good data collection t
design.

3.1 How much do we need to collect?

The first question regarding data collection is, intuitively
related to the amount of data collected.  There are seve
useful alternatives to consider.  Before we can assess 
viability of a temporal DB  application, we must be able t
express the collection requirement  more clearly.  We c
describe at least three alternatives for a data collection 
with implications on the amount of data they collect.

• Comprehensive Set.  We can easily define the set
all data within the federation execution.  This is 
straightforward definition, and is intuitively appealing
However, some federations produce very larg
amounts of data.   Moreover, the distribution of th
data is dynamic, which may change the require
configuration of data collection points.  Attempting to
collect a comprehensive set violates some of the sp
of HLA simulation, in that it requires data to be
produced which is not necessary for the simulatio
execution.   (Bachinsky, Tarbox et al. 1997)

• Partial Set.  An alternative to comprehensive da
collection is the definition of a partial set of the
execution data which will be recorded.  This ma
resolve issues regarding scale, but is an arbitra
approach.

• Dynamic Set.  There may be ways to express da
collection requirements in a way which can b
interpreted during the execution.  The collectio
requirements may be predicated upon the state of 
simulation execution.  This may allow direc
829
re
s
h

is
s.

e
f
by
a
d

d

n
ol

al
he

n
et

f

it

y

a

e

expression of the collection requirement in terms 
federation goals (measures of performance, etc.).

• Sufficient Set.  During the execution, the RTI is on
required to pass data in which some federate 
expressed interest.  A federate's interest set, is the set
of object instance attributes and interaction classes
which the federate has subscribed.  We may be abl
take advantage of this observation about the RTI
our data collection approach.  We observe that a d
collection mechanism may possibly interfere with t
execution by generating additional communicatio
within the RTI,  not required by the federates. B
defining the federation sufficient set, the union of all
federate interest sets, we describe all the data whic
passed during the federation execution, given 
additional data collection interference.  We note th
the federation sufficient set will contain the da
necessary to recreate the ordered delivery of 
messages received by any federate during 
execution.  The notion sufficient set is being us
effectively in current implementations of distribute
debugging tools such as Instant Replay and BEE
create repeatable execution environments (LeBla
and Mellor-Crummey 1987; Bruegge 1991).

3.2 What about the private data?

In addressing general data collection requirements, we 
that HLA has no notion of private data space, data whic
not defined in the FOM.  However, in addressin
reusability, we must note that private data is importa
also.  If, for example, the RTI is used to support save 
restore operations, then the federate must be able to re
itself to its former internal state, which may involv
restoration of private data.  There may be data collect
functionality for storing private data which is useful i
after-action review (AAR) or other post-hoc analysis.  T
ability to store and index private data in the same man
as the data received through the RTI could provide a us
capability.

3.3 How do we minimize the impact of data collection?

Regardless of the amount of data collected, there will
some additional network, and processing load placed u
the simulation system. Moreover, a centralized, or sin
collection point logging approach is likely to be impractic
for many federations.  If a distributed data collection sche
is developed, simulation network will be subjected to so
load imposed by the required coordination. Methods 
minimize the impact of data collection on the system un
test will an important contribution.



McLean, Mark, Loper and Rosenbaum

r
n

s

i
w

d
 

e
n
e
s

l
v

n
t
e

n
e

w
p

o
 

ant
e
ys

he
ill
y

k
sal
r
ll
g,
10
is
),
 the
 In
ere
hat
3;

se,
he
 to
the
e

ng
e

will
d
ys
 a

ase
e

l
ine

ta
ed
ere
g
his

of
3.4 Can current technology plausibly support data
collection requirements?

Even at a basic level, it is yet to be proven that a tempo
database approach can support the collection requireme
As has been noted in (Bachinsky, Tarbox et al. 1997), a
moderate sized federation can have storage requirement
excess of .5 terabytes, per 48 hours execution.  W
reasonably can expect that the size of federations w
grow.  We may assume that the volume of data will gro
as well.  It is unclear whether a temporal databas
implementation can scale well.

4 TEMPORAL ISSUES

The application of a temporal database to distribute
simulation data collection presents certain issues related
the order of delivery of update and interaction message
In real-time simulations, many of the messages betwe
federates will be delivered in receive-order.  The RTI, i
this case, can make no guarantees with regard to deliv
order of these messages. Additionally, in simulation
where each federate's time is managed externally, the
may not be perfect synchrony between respectiv
simulation clocks.  The data collection mechanism itse
may have an external (wallclock) time.  These facts ser
to complicate the direct application of temporal databas
technology, and lead to the following open questions.

4.1 Can we apply the concept of transaction time and
valid time to a real-time simulation?

Transaction time and valid time are explained i
Background, Section 1.3.  The transaction time relates 
the availability of the data in the database. However, if w
assumed a distributed, or federated database approach, we
may have several transaction times for the same data, o
for each point at which the data is received.  We may wa
to have a special notion of transaction time for th
producer of the update.

The notion of valid time transfers well to the HLA as
the timestamp of the update or send.  However, since 
are dealing with real-time simulations, where a timestam
is frequently t = NOW, it is likely that updates may arrive
after the beginning of valid time.  This means that for som
period of time, the correct data was not available.  N
current temporal database research addresses such
occurrence.

4.2 Can we handle runtime query processing?

Processing a query to the database may be an import
part of federations which guide their execution by runtim
analysis.  To this end, it may be desirable to develop wa
830
al
ts.

 in
e
ll

e

to
s.
n

ry

re
e
f
e
e

o

ne
t

e

e

an

to process queries while the data is being collected.  T
overhead of the query processing implementations w
help determine the overall efficacy of run-time quer
support.

Query processing is complicated by the networ
latency, as mentioned above, and the lack of a univer
time clock.  If, for example, a query is processed fo
t = NOW, it should return the current attribute values of a
the simulation objects.   If, however, an update is pendin
having been sent at some time before, say t = NOW - 
(10 milliseconds ago), and the valid time for the update 
time t = NOW - 5 (has a timestamp of 5 milliseconds ago
but it has not been received or posted to the database,
query cannot possible return the correct attribute values. 
a real-time simulation, where no timestamps are used, th
are no temporal database semantics which can tell us w
the return values should be. (Wang, Jajodia et al. 199
Clifford, Dyreson et al. 1997)

4.3 What is the state of the database at a given point of
time?

If data is collected using a federated temporal databa
there are no models for determining the state of t
database at a particular moment.  It would be desirable
have the state of the database mirror the state of 
simulation itself.  Because the individual databas
instances will receive updates and interactions at differi
times, there is no straightforward way to consolidate th
data.  Therefore, it appears that the database state 
always lag the simulation state.  This is further complicate
by message drop out, where a subscriber is not alwa
guaranteed to receive all messages transmitted using
particular transport service.  This means that the datab
will have an imperfectly mirrored state with respect to th
simulation.

5 FUNCTIONALITY

If we presume the viability of a distributed tempora
database data collection scheme, we may begin to def
basic criterion for its utility.  In this section we ask
questions relating to the functional requirements for da
collection and analysis, and relate them to the propos
temporal database implementation.  We observe that th
are three basic requirements: data logging, lo
management, and post-hoc review.  We also note that t
implementation may allow for additional capabilities in
non-linear review, data mining, and in the construction 
repeatable execution environments.



Applying Temporal Databases to HLA Data Collection and Analysis

t

ti
e
e
t
d

b
 
e
io
e
f
g

p
a
 
h
u

s
 
 

h
r
u
d
t
t
o

t,
in
l

o
b

a
y
r
 

u
ti
th

to

e
y
ve
ch.

n

e

l
as

en
an

r
e
e

ar
ta

is
to
gh

the
is
n-

h
e
f

r.
h
of

n
ist
re
we
5.1 What is needed to support run-time logging?

The temporal database will need to have some con
functions which apply to the federation execution.  W
may need commands to start and stop the collec
process.  We may need commands to establish the sch
if it cannot be derived from the federation object mod
There must certainly be a means to establish the collec
set, as described in section 3.  There may be a nee
modify the collection set during the execution.

At a fundamental level, the implementation must 
able to obtain and store the execution data at the rate
produced.  An efficient approach to this will tak
advantage of monotonically increasing local transact
time.  A log-based temporal database maintains app
only data structures. The log-based approach may o
some computational simplifications over other stora
techniques.  The state of the database, at a particular 
in time is computed by knowing a previous cached st
and incremental changes from the transaction log up to
desired point.  This technique may be a more efficient t
a traditional storage model in event log applications s
as a distributed simulation.

5.2 How can support log management?

The data collected during the federation execution i
single record of the simulation.  If the data is collected
several physical points, it may be desirable to reference
data as a unified log.  To do this, the database must sup
either logical or physical merging of the database.  T
process may be done during the execution, or afterwa
The merge is complicated by the same temporal iss
mentioned previously. We must also deal with the nee
remove duplicate entries in the log.  Because of 
differences in local transaction time, it may be difficult 
identify when duplicates actually exist.  Moreover, it is n
clear how one would establish which entry was the bes
correct one where duplicate entries have differ
timestamps. We can't expect to solve the general prob
of how to merge logs with no common wall clock, but w
may be able to determine logical approaches for HLA.

5.3 How will the data be reviewed?

At the heart of the reusability issue for this type 
simulation data is the notion that some analysis will 
performed on the data after it is collected.  It is import
that research be directed to provide useful anal
functions.  Several notional capabilities are proposed he

Since the real-time simulations are frequently used
create virtual environments for humans, a VCR is a nat
metaphor for recording execution data.  Using visualiza
applications, one can monitor the progress of 
83
rol
e
on
ma,
l.
ion
 to

e
it is

n
nd-
fer
e

oint
te,
the
an
ch

 a
at
the
port
is
ds.
es,
 to
he
o
t

 or
g
em
e

f
e

nt
tic
e.
to
ral
on
e

execution.  In DIS simulations, logs have been used 
provide VCR-like functions.

In HLA simulations, we apply the VCR metaphor to
the review of the state of the simulation objects and th
occurrence of interactions.  Several review functions ma
be appropriate for temporal database support, and ha
been explored in previous log-based database resear
These include at least:

• Play, pause and stop. The play function could be i
real or scaled time.

• Rewind and reverse. The idea of a reversal of th
simulation state is not straightforward in DIS
simulations, but can be accomplished with tempora
data base support by decremental downdate, 
mentioned in the introduction.

• Frame advance.  Since updates are only sent wh
change occurs, the period of time between changes c
be referred to as a frame.

• Zoom and focus.  When focusing on a particula
portion of the record, it may be desirable to reduce th
working set of data. This is analogous to a databas
filter.

5.4 Can non-linear review be supported?

It may be useful to review the recorded data in a non-line
manner.  The analyst may find larger portions of the da
irrelevant, or may be reviewing multiple logs
simultaneously.  There is no established research in th
area.  However, previous research has provide ways 
provide quasi-random access to database states.  Throu
periodic storage of the current state cache, the state of 
database can be rapidly determined for any timeslice.  Th
research would have to be extended to support general no
linear review.

5.5 Can data mining be supported?

Simulation executions would appear to be target ric
opportunities for innovative  data mining techniques.  On
might use inferential techniques to discover patterns o
execution which are not intuitive to an outside observe
(Jensen and Mark 1992)  However, to support suc
operations, we may need to expand current concepts 
data mining.

In this type of simulation, for instance, there is an
interesting duality between object states and interactio
events.  This is due to the fact that object instances pers
in the simulation data space, whereas interactions a
transient.  When querying the database about its state, 
1



McLean, Mark, Loper and Rosenbaum

e
s

an
ur
in
d
e
e
d

i
u
o
e
to

o
o
s
d
i

  
ic
 
m
be
io

ty
w
is
ra

s
o

h
w
 
t
a

e
t 

n

f
e,
ll

l

r

of
.
h

es

d

g

,
e
e

o

dy

.

l
d
,
l

can specify a time instant, and be returned a timeslic
This timeslice is the state of all the objects in the databa
at the specified time.  Since interactions occur at 
instant, and posses not state information, there is no nat
way to express them in a timeslice.  It is obvious that, 
order to deal with interactions, one would specify a perio
rather than a single time value.  There are no conveni
semantics for dealing with this.  In order to includ
interactions in data mining of simulation, timeslice an
other temporal operators may need to be modified.

When an object changes its state, and updates 
attribute values, the new values are recorded.  Techniq
are being developed for mining based upon queries 
change. Although this applies directly to attribute valu
updates, it is unclear how one might adapt this 
interactions.

5.6 Can this data be used to support repeatable
execution?

Achieving a repeatable distributed is difficult. At least tw
general approaches for producing repeatable executi
have been developed: log based approaches and mes
ordering approaches.  Log-based approaches record nee
simulation events as they occur, such that a replay w
provide any needed information, in a repeatable fashion.
message ordering approach assumes that the log
processes (LPs) or federates are repeatable except to
degree that relative message timing yield non-determinis
This is discussed in detail in (Bruegge 1991).  It may 
possible to use temporal replay based on local transact
time discussed here in an approach to repeatability.

6 IMPLEMENTATION ALTERNATIVES

When we consider ways to implement the functionali
described, we must decide how much of the RTI should 
use to support this data collection. In this section we ra
issues regarding the use of the RTI by the tempo
database system.

6.1 What should the architectural relationship of the
temporal database be to the RTI?

We have several choices in this regard.  A logical fir
choice might be to implement the database as one or m
federates.  This has the advantage of using the existing R
services.  We may instead choose to implement t
database completely outside the RTI, monitoring the ra
communications to collect data. This has the advantage
mitigating the penalty on the rest of the federation, bu
since there are no current "on-the-wire" standards, it m
be difficult to implement.  Thirdly, we may choose to
implement the database within the RTI itself.  We believ
that it makes sense to implement the collection as a se
832
.
e

al

,
nt

ts
es
n

ns
age
ed

ll
A
al
the
.

n

e
e
l

t
re
TI
e

of
,
y

of

collaborating analysis federates, as explained in (Jackso
and Wood 1997).

6.2 How will the RTI services be can we use?

There are several services which are intuitively useful in
the implementation of the temporal database. Certainly, i
the temporal database is implemented as an HLA federat
the basic services of join, subscribe, unsubscribe, etc., wi
be useful.  In this way the data collection connection sill be
established with the data producers.  One notably usefu
function is the RequestObjectAttributeUpdate service. This
service may find natural use in processing queries fo
NOW.

There are several open questions with respect to use 
the RTI services to support temporal database functions
Each of these questions present interesting researc
opportunities.

How do we manage time within the federated
databases?  Even though the simulation may be running
real-time, there is no reason why the databases themselv
can't maintain a time based synchronization.

How  do we ask a query?  If we support run-time
query processing, how can a query be formulated an
expressed using the RTI.

How do we process a query? The process gathering
the data together to reply to a query is a non-trivial
problem.  We need to determine whether query processin
using the RTI is viable.

How do we monitor the load on the database
management system?  When the production and
consumption of data shifts, or changes its characteristics
there will a change in the load on the various databas
instances.  We need a means to monitor or derive th
change in the load to any database instance.

How can we implement a logger protocol?  The
implementation will need an intra-database protocol to
dynamically shift collection responsibilities from one
database instance to another.  We may be able t
implement this protocol by extending the MOM concept.

Can we extend the RTI MOM?  Some of the data
needed to manage the data collection process are alrea
available in the RTI MOM.  The data collection application
can determine a federates subscription set, for example
Other information in the MOM may provide much of the
needed federate data.

7 SUMMARY

The ability to collect, and manage and review simulation
execution data is a practical aspect of reuse.  Tempora
databases appear to support flexible data collection an
analysis of simulation executions.  There are, however
several issues regarding implementation of a tempora



Applying Temporal Databases to HLA Data Collection and Analysis

ill

 fo
ep
 to
ra
 b
as

 an
g

ed

 o
e

n.
n

1,

n.

ysi

p

o

 a

tia
e.

ta
ith
e

7.
ay.

te

y

eal-

nd

.

 in
e

s
ge

,
t

tal
se

 in
 a

n
n

d
-

database in the real-time distributed simulation which w
need to be resolved.

In this paper, we have identified several open areas
research in the application of temporal database conc
to HLA data collection.  We have noted the opportunity
extend some temporal database concepts to emb
distributed simulation concepts, and how analysis may
enhanced through application of temporal datab
techniques.

REFERENCES

Bachinsky, S., G. Tarbox, et al. 1997. Data Collection in
HLA Environment. In Proceedings of the 1997 Sprin
Simulation Interoperability Workshop, Orlando, FL,
UCF-IST.

Bruegge, B. 1991. A Portable Platform for Distribut
Event Environments. .

Clifford, J., C. Dyreson, et al. 1997. On the Semantics
"Now" in Databases. ACM Transactions on Databas
Systems 22(2): 171-214.

DMSO 1995. Modeling and Simulation Master Pla
Alexandria, VA, Defense Modeling and Simulatio
Office.

DMSO 1997. HLA Interface Specification, Version 1.
Defense Modeling and Simulation Office.

Fujimoto, R. M. 1990. Parallel Discrete Event Simulatio
Communications of the ACM 33(10): October 1990.

Jackson, L. and J. R. Wood 1997. A Federate for Anal
in Advance Distributed Simulation. In Proceedings of
the 1997 Fall Simulation Interoperability Worksho,
Orlando, FL, IST-UCF.

Jensen, C. S., J. Clifford, et al. 1992. A Glossary 
Temporal Database Concepts. ACM SIGMOD Record
21(3): 35-43.

Jensen, C. S. and L. Mark 1992. Queries on Change in
Extended Relational Model. IEEE Transactions on
Knowledge and Data Engineering 4(2): 192-200.

Jensen, C. S., L. Mark, et al. 1993. Using Deffieren
Techniques to Efficiently Support Transaction Tim
The VLDB Journal 2(1): 75.

Jensen, C. S., L. Mark, et al. 1991. Incremen
Implementation Model for Relational Databases w
Transaction Time. IEEE Transactions on Knowledg
and Data Engineering 3(4): 461-473.

LeBlanc, T. J. and J. M. Mellor-Crummey 198
Debugging Parallel Programs with Instant Repl
IEEE Transactions on Computers C-36(4): 471-481.

Loper, M. L., T. McLean, et al. 1997. The HLA Federa
Compliance Testing Process, Revised. In Proceedings
of the 1997 Fall Simulation Interoperabilit
Workshop, Orlando, FL.

Ozsoyoglu, G. and R. Snodgrass 1995. Temporal and R
Time Databases: A Survey. Transactions on
Knowledge and Data Engineering 7(4).
833
r
ts

ce
e
e

f

s

r

nd

l

l

Snodgrass, R. 1990. Temporal  Databases Status a
Research Directories. SIGMOD Record 19(4):
December 1990.

Wang, X., S. Jajodia, et al. 1993. Temporal Modules: An
Approach Toward Federated Temporal Databases
ACM SIGMOD 5: 227-236.

AUTHOR BIOGRAPHIES

THOM MCLEAN  is a Research Scientist II at the
Georgia Tech Research Institute and a graduate student
the College of Computing.  He received a BS in Aerospac
Engineering from the U.S. Naval Academy in 1984, and a
MS in Computer Science from Texas A&M University in
1992.  His thesis topic is the Analysis of Real-Time
Distributed Simulations.  His other research interest
include scientific computing, meta-databases, and messa
sequence charts.

LEO MARK has been Associate Professor in the College
of Computing at the Georgia Institute of Technology since
1992.  He received a MS and PhD from Aarhus University
in Denmark. From 1986-1992, he was an Assistan
Professor at the University of Maryland, College park.  His
research interests include temporal databases, incremen
computation methods, self-describing databases, databa
generators, metadata management.

MARGARET LOPER is a Research Scientists II at
Georgia Tech Research Institute and a graduate student
the College of Computing at Georgia Tech.  She received
BS in Electrical Engineering from Clemson University in
1985, and a MS in Computer Engineering from University
of Central Florida in 1991.  Her thesis topic is Causality in
Distributed Simulations. 

DAVID ROSENBAUM  is a Research Scientist at the
Georgia Tech Research Institute.  He received an MS i
Computer Science from Georgia Tech in 1990 and a BS i
Mathematics from Michigan State University in 1983.  His
research interests include software architecture, distribute
simulation systems, virtual environments, and object
oriented data technologies.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search
	Search Results
	Print

