
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

ALTERNATIVE IMPLEMENTATIONS OF MULTITRAJECTORY SIMULATION

John B. Gilmer Jr.
Frederick J. Sullivan

Wilkes University
P.O. Box 111

Wilkes-Barre, PA 18766, USA

l
p

o
d
i

+
s

e

c
n

a
d

e
a

I

e

e

ad
ach
t,

ts
es
an
 to
ese

us
te
he
n
ot.
he
in
t.
 in
 of
ABSTRACT

Multitrajectory Simulation allows random events in a
simulation to generate multiple trajectories and explicit
manage the set of trajectories. The original prototy
combat simulation used to demonstrate and test the conc
used code embedded in the functional modules, e.g. th
that implement "move", "shoot", etc. A much improve
method provided a class library that hid the messy deta
When a random choice is made, a random choice meth
appears to return twice (or more) for a given call, once
the context of the original state, and once each for the n
trajectories. These techniques both have significa
shortcomings. For example, the second (more preferab
technique really needs to be able to overwrite the C
"this" variable, an option unavailable on C++ compiler
Since these issues surfaced, three addition
implementation techniques have been developed. Th
include periodic copying of states to provide referenc
copies and duplication of trajectories up to the bran
point, reformulation of the simulation into a discrete eve
style, and reformulation into a tail recursive style. W
review these techniques. Each has advantages
disadvantages. Multitrajectory simulation is not depen
dent on the particular limitations of any one method.

1 BACKGROUND

The goal of multitrajectory simulation is to explore th
outcome space of a simulation, that is, the set of
possible outcomes, more systematically and le
expensively (for a given quality of understanding) than ca
be achieved with conventional stochastic simulation.
some senses this could be considered a variance reduc
technique, but the analysis goals may be formulated n
only in terms of better estimates of statistical properties
the outcome set, e.g. a mean and variance for a Measur
Effectiveness(MOE), but also representative instances
extreme behavior or other "interesting" cases.

The heart of the proposed method is to explicitly trac
each possible trajectory, as illustrated in Figure 1. Wh
86
y
e
ept
se

ls.
od
in
ew
nt
le)
+
.
al
se
e
h
t

e
nd
-

ll
ss
n
n
tion
ot
of
 of
of

k
n

an event that would normally be stochastic occurs, inste
of one outcome, multiple outcomes are generated, e
constituting a trajectory having its own state. In concep
such a multiple trajectory simulation is integrated with i
support system in such a way that its use provid
outcomes with probabilities associated with each,
accounting for the key events or circumstances leading
the differences, and some measure of confidence in th
results.

Draw number

Conventional Simulation:

Multi-Trajectory Simulation:

State Random
Event

State

Random
Event

State
P=.2State

P=.3
State
P=.1

Each replication gives only one outcome,
randomly determined

Each replication gives numerous outcomes,
characterized by their probabilities

Figure 1: Concept for Explicitly Tracking Trajectories

This conceptual ideal must be compromised in vario
ways if the approach is to be practical: Discre
distributions must be used; in practice, choices in t
military simulation domain of interest have usually bee
binary, for example whether a target is acquired or n
Only some types of events that might be treated with t
multitrajectory technique actually are resolved that way
a given run, to limit the focus of investigation and effor
Fnite resources and the potential exponential explosion
the number of trajectories makes necessary some form
5

Gilmer, Jr. and Sullivan

ed
ns
ati
the
 an
el

of
 O
itly
r t
the
 it
in

ate
y a
 tw
lys
me

eas
pin

g
ry
as
" i
. I
t b
ple
 4

let".
nit

en
a
 to
ew

),
ion
 also
ults

ory
e of
ory
sing
 of
ted
tive.
the

of
ely
ent
management in which not all trajectories are follow
This is no worse than limiting the number of replicatio
for stochastic simulation. Indeed, by having a system
way of managing the treatment of uncertainty in
simulation support software, the analysis can be better
more efficiently tailored, without changing the mod
software proper (Gilmer and Sullivan, 1996).

Two techniques have been used which trade
coverage for the sake of keeping resources bounded.
is the "truncation" management technique that explic
decides, for each event in some trajectory, whethe
resolve the event in multitrajectory fashion (resulting in
creation of a new trajectory) or to instead resolve
deterministically or stochastically. This is illustrated
Figure 2.

Random Event
State State

Only one
trajectory

p=.1 p=.07

Trajectory “truncated”
No new state created

Figure 2: Trajectory Truncation

The second approach is to look for and consolid
states that are "similar", where similarity is judged b
metric that estimates the sum of differences between
given states, as shown in Figure 3. During an ana
"run", simulation trajectory management sacrifices so
trajectories, perhaps those of lowest probability or of l
interest with respect to some MOE, for the sake of kee
the number of trajectories within bounds.

State
State

Only one
trajectoryp=.1

p=.1 (.11)

Trajectory “merged”
One represents both.

State
p=.01

Distance
is small

“Merge”

Figure 3: Trajectory Merge, or Consolidation

2 SAMPLE MULTITRAJECTORY SIMULATION

Much of this research has been conducted usin
simplified, unclassified surrogate for the milita
simulations of interest. The simulation "eaglet" w
designed to resemble the Corps level simulation "Eagle
important respects, but to be of manageable simplicity
includes Lanchester square law combat, movemen
nominally battalion sized units along routes with multi
paths, decisionmaking, and artillery support. Figure
866
.

c

d

f
ne

o

o
is

t
g

a

n
t
y

illustrates the smallest scenario we have used with "eag
Two Blue units attack a Red unit. A second Red u
counterattacks from the flank.

2

1

3

4

Figure 4: "eaglet" Scenario with Multitrajectory Routes

Note that the route objects show multiple paths; wh
there are multiple links from a given node,
multitrajectory event occurs for the choice of which path
follow. Figure 5 illustrates the process of creating a n
trajectory when this happens.

Unit 1
on link 12

.8 probability

.4

State 0
link 12

link 24

link 25

Node 2

.6

Unit 2
elsewhere

other units

State prior to Unit 1's
arrival at Node 2

State after Unit 1's
arrival at Node 2,
original state copy
and trajectory

Unit 2
elsewhere

other units

State after Unit 1's
arrival at Node 2,
new state for the
alternative trajectory

Note: State 1 would
have been created in
an earlier bifurcation.

p=.8
Unit 1
on link 24
Unit 2
elsewhere

other units

p=.48
State 0

Unit 1
on link 25

State 2

other units

p=.32

Unit 2
elsewhere

Figure 5: New Trajectory Creation for a Move Event

Multitrajectory attrition (variations in combat losses
decisionmaking (whether a decision rule fires), acquisit
(whether a unit sees another) and acquisition loss have
been implemented. Figure 6 illustrates some of the res
from previous research showing how the multitraject
approach compared to stochastic runs, for the cas
movement events (only) being resolved in multitraject
fashion. The shading of squares is darker with increa
sum of the probabilities of states having Measures
Effectiveness values within that square. In this limi
scenario, the multitrajectory approach can be exhaus
As the number of stochastic runs increases,
multitrajectory distribution is approached.

With larger scenarios and a greater variety
multitrajectory events, it is not possible to exhaustiv
develop the outcome set. Multitrajectory managem

Alternative Implementations of Multitrajectory Simulation

r a
en

xed
ally.
ing
stic
 Th
her

ith a
s o
are
ee
his
te a
the
OE

of
 the

e
nd
d
.
e
t
it
ry
er
e
fit
s
n

y
 as
g

y
g
 is

n
.
e
e

becomes more important. Figure 7 illustrates this fo
larger scenario. In this case, the simplest managem
approach is used: all events are multitrajectory until a fi
limit is reached, then events are resolved deterministic
Event outcomes of lower probability that give interest
results come too late to be captured, while stocha
resolution at least gives a sampling of these outcomes.
multitrajectory outcome set has a total probability hig
than that of the stochastic set, but is not representative.

Figure 8 shows outcomes for this same scenario w
better management technique, and for several type
event. Improved management techniques that
sensitive to model Measures of Effectiveness have b
developed (Al-Hassan, Gilmer, and Sullivan, 1997). T
allows the decision on whether to generate or trunca
new trajectory to be based on how "interesting" it is, in
sense of whether it has an extreme value of some M
Research into scaling issues and improvement
management techniques is underway, but is outside
scope of this paper.
867
t

e

f

n

.

3 THE APPROACHES

This section gives an overview of the various
multitrajectory techniques. In choosing among thes
techniques, the issues are efficiency, transparency, a
feasibility. Efficiency concerns the resources (time an
memory) consumed when the method is operating
Transparency concerns the degree to which th
programmer (of the simulation functional modules) mus
be conscious of the multitrajectory approach and take
into account when coding. For all methods, it is necessa
to explicitly recognize stochastic events as decisions rath
than merely random number draws. Beyond that, th
degree to which the code may have to be convolved to
the requirements of the method differ. Feasibility concern
whether the technique can be implemented for a give
machine and language.

3.1 "Gilmer's method"

This was the original implementation of multitrajectory
simulation. It is included for the sake of completeness.

When an event takes place, it is likely to be deepl
embedded in nested functions. The new state is created
an image of the old one at the event, deep in the callin
hierarchy. But the new state will have been only partiall
processed for the time step (or event) that was bein
processed. The time step must be finished. This re-entry
explicitly programmed. So, at the beginning of each
routine, an if-test is needed to determine if this is a
original entry or a re-entry for a partially processed state
If the latter local variables such as counters must b
initialized to values appropriate to the state of the routin
when the event took place. Figure 9 illustrates.

Gilmer, Jr. and Sullivan

e

o

c

b
n
n
n

h
e

he
be
e

the
n

 at
.

 it
at
sy
the

y
t

ber
for

for
s

are
he

no
me
ed

to
st
ct

ng

sses
3
on
original
state

tn n+1

What
seems to
happen:
New state starts
at the instant of
the event

What actually happens:
reentry via control
structures embedded in the
model functional code

t

original
state

cloned
state

Code that by-
passes earlier
work for the
new state

Figure 9: Processing Events Using "Gilmer's Method"

The structure of the code is essentially unchang
from what might be written by a programmer unaware o
multitrajectory techniques, but must have the contr
structures to choose the method for event resolution, and
manage the reentry. Figure 10 illustrates.

The actual code is much, much messier. This examp
does not show more complicated resolution methods su
as those that check the state limit, MOE's, or run in a
"event following" mode (which follows the event record
trace of an earlier run). This method can be improved
using choice policy routines to determine resolutio
method for a given event. There appears to be
feasibility problem. This method is less preferable tha
those which hide messy choice and reentry details.

3.2 "Sullivan's Method":

This technique was developed by Sullivan as a part of t
original project to investigate the multitrajectory techniqu
(Sullivan and Gilmer, 1996).

Unit::lose_aquisition(State *ps){
 (various declarations, etc.)
 //Handle the reentry case: The state has reentry info.
 if(ps->status_unit()==Id&&
 ps->status_event()==LOSE_ACQ)
 i=ps->status_itteration();
 else i=0;
 int n=N_acquired;
 for(;i<n;i++){
 if(lose_acq_evt==DETERMINISTIC){
 Acquisition_list[i]=0;
 N_acquired--;}
 else if(lose_acq_evt==STOCHASTIC){
 rand_num=rand()/32768.0;
 if(rand_num<pct_lose){
 Acquisition_list[i]=0;
 N_acquired--;}}
 else if(lose_acq_evt>=MULTITRAJECTORY){
 if(ps->status_event()==LOSE_ACQ&&
 ps->status_unit()==Id&&
 p_s->status_itteration()==i){
 Acquisition_list[i]=0;
 N_acquired--;
 ps->create_status(0,Id,0);}//reset status
 else{
 p_new_state=new State(ps,pct_lose);}}}

Figure 10: Example of Code for "Gilmer's Method"
868
d
f
l
to

le
h

n

y

o

e

When a multitrajectory event takes place, a copy of t
stack is made. When the new state is finally ready to
executed, the stack is reinitialized to duplicate th
condition it was in when the state was created and
context saved with a call to setjmp. A call to longjmp the
puts execution back into the simulation functional code
that point. This amounts to "throwing" a continuation
From the functional model programmer's perspective,
looks like the choice returns twice (or more) for events th
are resolved with the multitrajectory technique. The mes
details are hidden in base classes upon which
simulation is built. Figure 11 illustrates.

original
state

tn n+1

What seems to happen:
New state starts at the
instant of the event

What actually happens: reentry
via throw using copy of stack

t

original
state

cloned
state

Figure 11: Origination of New Trajectories Using
"Sullivan's Method"

The simulation functional code structure is ver
similar to that of a non-multitrajectory simulation, excep
for the use of choosers rather than random num
generator calls. Figure 12 shows how the code looks
the same acquisition loss event as illustrated earlier.

Note the use of the variable "self" as a substitute
"this" in the references to Unit object member
"Acquisition_list" and "N_Acquired" that follow the
chooser call. Any pointers in the stack upon restoration
pointed to the wrong state, and need to be fixed. (T
initial reference to "N_acquired" is not a problem, since
multitrajectory event can have occurred yet.) Thus, so
discipline is necessary to ensure that pointers are fix
after a potentially multitrajectory event. (This we refer
as the "this problem", since the "this" variable is the be
example of a pointer that no longer points to the corre
place. Unfortunately, the C++ compilers that we are usi
(primarily g++) do not allow "this" to be modified.) The
chooser and other messy details are hidden in base cla
upon which the simulation object is built. Figure 1
illustrates this, which also applies to most implementati
methods.

Alternative Implementations of Multitrajectory Simulation

e
n

t

h
s

o
r

r,

s

c

th
h

a
n

e
e

tes
he
ion
al
ke

es
the
cal
a
the
an
s
de
an
e.
e

se

re
er

can
of
to
 is
ver
ays
l

is
 is
is

y to
a
y
 the
y is
Unit::lose_aquisition(State *ps){
 (various other declarations, etc.)
 n=N_acquired;
 for(i=0;i<n;i++)
 DiscreteChoice ch[2]={{pct_lose,0},{1.-pct_lose,1}};
 Chooser C_Ch->Initialize (ch,2,LOSE_ACQ);
 Unit *self=this;
 choice = Sim.RandomChoice(C_Ch);
 self=ps->get_new_this(Id);
 if(choice ==0){
 self->Acquisition_list[i]=0;
 self->N_acquired--;}}}

Figure 12: Illustration of "Sullivan's Method"

Simulation State Chooser

Discrete
Chooser

Continuous
Chooser

Base
Classes

Simulation State
Eaglet Eaglet AcquireDecide

Chooser Chooser

Derived
Classes

has

Functional
Model
Classes

Unit Route

Task

Rule

Node

Link

Descriptor
The simulation
builder works with
the derived and
functional model
classes. The
multitrajectory
details are mostly
in the base classes.

Note: Avoid pointers as state
 variables; use ID’s instead.

Figure 13: Classes for Multitrajectory Simulation

This technique is efficient, but the code to copy th
stack and execute second return is typically machi
platform dependent. Only a very small amount of machin
dependent code is needed. (We use setjmp and longjm
but must work around the limitation that longjmp is
supposed to be used to jump out of, rather than into, nes
function calls. This gets messy, but the mess is hidden
the base classes.) Furthermore, we have found no way
implement this technique in Java without changes to t
virtual machine. The practicality of making such change
has not yet been investigated. Otherwise, this meth
would seem preferable to the others. This method is mo
fully described in an earlier paper (Sullivan and Gilme
1996).

3.3 "Koch's Method"

This method was suggested by John Koch of Wilke
University as a simpler alternative to Sullivan's method.

At some point prior to when multitrajectory events
may occur, a copy is made of each state. This referen
copy remains unchanged as the trajectory executes. T
executing trajectory keeps a record, at each event, of
choices made. (This is generally done anyway to allow t
option to re-play a particular trajectory.) When a
multitrajectory event occurs, the reference state rather th
the current state is copied, together with a record of eve
869
e
e
p,

ed
in
to
e

d
e

e
he
e
e

n
ts

up until that point, and the choice to be made for th
current event in the new trajectory. At a convenient tim
when the new trajectory begins to execute, it re-execu
all events up until the creation event starting at the time t
reference state was copied. Upon arrival at the creat
event, it begins to follow a divergent path from the origin
state. It may, in turn, generate yet more trajectories in li
manner. Figure 14 illustrates.

original
state

original
state

cloned
state

t t
n n+

1

What seems to happen:
New state starts at the
instant of the event

What actually happens: A
new clone made from the
reference copy is processed
along the same path up to the
event of divergence.

told

reference
copy

Duplicated
Processing

cloned
copy

at
told

Figure 14: Illustration of Koch's Method

The frequency with which reference copies of stat
are made is a tradeoff. In the worst case, all go back to
original state. This approach is no worse than classi
stochastic simulation, in which multiple runs start from
same initial state. (Indeed, it is in practice better since
cloning of states will typically be cheaper than creating
initial state from text or other input data.) With Koch'
method no extra burdens are put on the functional co
programmer, other than the use of "choosers" rather th
random numbers and thresholds within the model cod
There is no reentry or "this" problem. Thus, the cod
would look much like that of Figure 12, except that the u
of "self" is not necessary.

However, this method does require the use of mo
memory. Indeed, one must periodically double the numb
of states by making reference copies. So this method
take up to twice as much memory for a given number
trajectories. It also requires expenditure of CPU time
make the copies, one of which, the reference copy,
wasted for each time step for each state. (One cannot e
used the reference copy as a clone, since there is alw
the possibility of another multitrajectory event that wil
need to refer to the reference copy.)

This method has not yet been prototyped, but
considered relatively low risk. The most important issue
how to record and later follow the event record, which
not an entirely trivial issue.

We have already been using event records as a wa
generate "leftist" tree mode multitrajectory runs. In
"leftist mode" run, the event record from a trajector
generated by an earlier run is used to resolve events for
reference state (State 0). At each event, a new trajector

Gilmer, Jr. and Sullivan

r
u
ve
e

fo
n
th
il

e
i
o
d

C
o

th
nt

e

S

l

h

generated for the other possibilities. These new trajecto
do not bifurcate further. They attempt to contin
resolving events consistent with the outcomes in the e
record; if synchronization is lost they becom
deterministic. Figure 15 illustrates. This mode allows,
a given trajectory, a comparison between the refere
trajectory and alternatives that are similar except for
outcome of a given event. The technique would be sim
in an implementation of "Koch's Method".

Second simulation
run:
Multitrajectory, Leftist
tree (event
following
mode for
Trajectory
“X”

State limit reached

Initial
State

First simulation run:
Multitrajectory,
With “hard”
state
limit

Initial
State

Trajectories that are truncated

X X

Figure 15: Event Following in "Leftist Tree" Mode

4. "Burlington Method"

This technique was prototyped for the "ACP" (Advanc
Conceptual Prototype) simulation, developed by Ben W
of SAIC, to prototype innovations in Command Contr
representation. Conversion of this simulation to a
multitrajectory capability was performed by SAI
Burlington personnel as part of the "Course of Acti
Analysis" (COAA) project.

The concept, shown in Figure 16, is to design
simulation code so that potentially multitrajectory eve
directly correspond to events in the sense of that term
"Discrete Event Simulation" (DES). Events are dispatch
only in the simulation executive

original
state

original
state

cloned
state

t tn-2 n+1

What actually happens and what seems to happen are the
same, since the events of the simulation at the dispatch (DE
level are the multitrajectory events (and any that may be
multitrajectory). Events embedded deeply in model code are
prohibited.

told
tn-1 tn

Figure 16: Illustration of the "Burlington Method"
87
ies
e
nt

r
ce
e

ar

d
se
l
d

n

e
s
 in
d

)

When a multitrajectory event occurs, additional states
are created and the functional code is called for each
outcome. The executive would include a dispatcher that
would function, in effect, as shown in Figure 17. For
simplicity, we show a version that only handles Boolean
events. Note that for at least some kinds of events, the
probability may have to be determined at the time of event
execution, rather than when the event is scheduled.

State::Dispatch(Event *pe){
 State *ps;
 float r;
 int method=choice_method(pe);
 float probability=pe->eval_p(this,method);
 if(probability==0.)
 pe->Do_event(0,this,1.0);
 if(probability==1.)
 pe->Do_event(1,this,1.0);
 else if(method==STOCHASTIC){
 r=rand()/32768.0;
 if(r<probability)
 pe->Do_event(0,this,probability);
 else
 pe->Do_event(1,this,1.-probability);
 else if(method==MULTITRAJECTORY){
 ps = new State(this,1.-probability)
 modify_probability(probability)
 pe->Do_event(1,this,probability)
 pe->Do_event(0,ps,1.-probability)}}

Figure 17: Multitrajectory Discrete Event Dispatch

The limitation of this method is that the simulation
must be entirely written in a discrete event style, with
events scheduled for lightweight tasks such as perception
trials, adding overhead in processing and memory usage to
handle the events. Any events that may be multi-trajectory
for some analysis must be treated this way.

Given that this method has been implemented for a
different simulation, it has not been possible to make
analytic comparisons to assess the cost of the additiona
overhead. There are no "this" problems or other known
implementation barriers, other than the need to have a DES
structure. One reason for implementing a time stepped
"eaglet" was that this was regarded as the more difficult,
and more general, problem.

3.5 "Sullivan's Prime (2nd) Method"

Sullivan developed this technique after failing to find an
acceptable technique for implementing his original method
in Java. It is similar to the original Sullivan's method in
the use of a chooser object, but also has similarities to the
Burlington method in that it forces a particular style for the
simulation code. The central idea is that an event is
controlled by a multichoice object which embodies all the
choices which can be made. When an event occurs, a
multichoice object is obtained, and each of its choices is
then processed. Code which does the processing for eac
choice must come after the choice is obtained, and
therefore the choice cannot be embedded in a loop. In
general, therefore, loops must be implemented as
0

Alternative Implementations of Multitrajectory Simulation

in

e

e
o
o

e
th
u
n

w

e
d

e
d
s
r.

e

d
n
the

n
e

it
l
a
ed
recursions, so that the continuation of the loop process
appears explicitly at the end.

An example is used to illustrate this. If we could writ
loops, the code would look as shown in Figure 18.

State::timeStep() {
 for (i = 0; i < UNIT_COUNT; i++) {
 for (j = 0; j < UNIT_COUNT; j++) {
 Multichoice acqMC = acquireChooser.getChoices();
 choice = acqMC.nextChoice();
 while (choice != null) {
 if (choice) {
 units[i].acquire(units[j]);}
 choice = acqMC.nextChoice();}}
 units[i].shoot();
 units[i].decide();
 if (units[i].atNode()) {
 Multichoice mvMC = moveChooser.getChoices();
 choice = mvMC.nextChoice();
 while (choice != null) {
 units[i].changeLink(choice);
 choice = mvMC.nextChoice();}}
 else {
 units[i].followCurrentLink();}}}

Figure 18: Conceptual model, Sullivan's Prime Method

In this example, we loop over the units to do targ
acquisition, combat, and decision making. We then lo
over the units again to do movement. The chooser meth
getChoices returns successive choices each time it
called, and null when the choices are exhausted.

This doesn't work, because we don't finish the tim
steps for newly created states, since the continuation of
time step goes back to the top of the loop. Instead, we t
the loops into recursive calls and put the continuatio
inside the recursive call. See Figure 19. This example
then further transformed into the recursive style as sho
in Figure 20.

State::timeStep() {
 i = 0;
 while (i < UNIT_COUNT; i++) {
 j = 0;
 while (j < UNIT_COUNT; j++) {
 Multichoice acqMC = acquireChooser.getChoices();
 ch = acqMC.acquireChooser.getChoices();
 while (ch != null) {
 if (ch.getValue()) {
 units[i].acquire(units[j]);}
 ch = acqMC.nextChoice();}}
 units[i].shoot();
 units[i].decide();
 if (units[i].atNode()) {
 Multichoice mvMC = moveChooser.getChoices();
 ch = mvMC.nextChoice();
 while (ch != null) {
 units[i].changeLink(ch.getValue());
 ch = mvMC.nextChoice();}}
 else {
 units[i].followCurrentLink();}}}

Figure 19: Sullivan's Prime Method, Example with
Transformation to While Loops
e.

871
g

t
p
d
is

e
rn

is
n

State::timeStep() {
 processUnits(0);}

State::doUnits(int i) {
 if (i < UNIT_COUNT) {
 doOtherUnits(i, 0);}}

State::doOtherUnits(int i, int j) {
 if (j < UNIT_COUNT) {
 MultiChoice acqMC = acquireChooser.getChoices();
 doAcquireChoices(i, j, acqMC);}}

State::doAcquireChoices(int i, int j, Multichoice
acqMC){
 Choice ch = acqMC.nextChoice();
 if (ch != null) {
 State self = currentState();
 if (ch.getValue()) {
 self.units[i].acquire(self.units[j]);}
 if (j < UNIT_COUNT) {
 doOtherUnits(i, j + 1);}
 else {
 self.units[i].shoot();
 self.units[i].decide();
 if (self.units[i].atNode()) {
 Multichoice mvMC =
 moveChooser.getChoices();
 doMoveChoices(i, mvMc);}
 else {
 self.units[i].followCurrentLink();
 doUnits(i + 1);}}
 doAcquireChoices(i, j, acqMC);}}

State::doMoveChoices(i, MultiChoice mvMC) {
 Choice ch = mvMC.nextChoice();
 if (ch != null) {
 State self = currentState();
 self.changeLink(ch.getValue());
 doUnits(i + 1);
 doMoveChoices(i, mvMC);}}

Figure 20: Sullivan's Prime Method with Recursion

The essential part of the transformation is that th
continuation of an event (any code which is execute
following the event) has to explicitly follow the event,
rather than implicitly as in a loop. The advantage of th
original Sullivan's Method is that continuations are handle
by low-level programming magic, whereas in the Sullivan'
Prime method, they must be handled by the programme
Note that in Sullivan's (original) Method new states ar
reentered following completion of all existing states
(although this doesn't have to be true), while in this metho
new states are reentered immediately following completio
of the state that generated them, and thus resembles
Burlington Method as seen in Figure 16.

This recursive style would have to be pervasive
throughout the simulation. Programmers used to a
iterative style, or from outside the computer scienc
discipline where recursion is highly prized, may have
difficulty writing code in this style. Sullivan believes, but
has not yet demonstrated with a working prototype, that
is possible to build a translator that will convert more usua
style code into the required form for this method. Such
translator has been beyond the scope of research perform
to date.

This approach to multitrajectory simulation will
require a larger stack than would normally be the cas

Gilmer, Jr. and Sullivan

e
e
s

a
n

l
d

it

d
e
.

r

S

,
he

.

.

r

 J.
nt
 In
d

n

 /
at

nd
he
m
er

n
g
in
(The fact that g++ implements tail recursion as a loop
helps.) The "this" problem of Sullivan's Method can be
present here as well, but can be dealt with by the sam
disciplines. This is a minor consideration compared to th
programming style issues. No language dependen-cie
would prevent a Java implementation. Efficiency should
be similar to that of the other faster techniques.

4 CONCLUSION

All of the methods have in common the need to write the
model functional code in a manner that makes clear that
choice is being made when a random event occurs. Eve
without multitrajectory techniques, the analyst gains
explicit control over treatment of events, without having to
directly embed control features in the model functiona
code. Choice policies can be standardized, or customize
to apply different criteria for different kinds of units,
circumstances, or resource usage. There is an explic
mechanism for calculating end state probability (given the
scope of variability selected by the analyst).

Multitrajectory capability can be implemented with a
variety of techniques, each having advantages an
disadvantages. At this time Koch's method appears to b
the most straightforward, but is wasteful of resources
Sullivan's method would be preferred except for the "this"
problem complications and the lack of a Java
implementation approach. If rewriting a simulation into a
style that may differ from a conventional procedural
approach can be tolerated, either the Burlington method o
Sullivan's Prime method should be considered.

ACKNOWLEDGMENTS

This project continues research that was funded by the U
Army Research Office under Grants DAAH04-95-1-0350
and DAAG55-97-1-0360, with the sponsorship of the US
Army Concepts Analysis Agency. Mr. Gerry Cooper and
Col.. Andrew Loerch have been very helpful in advice and
assistance. We also thank Dr. Robert Alexander of SAIC
whose interest and support have been essential to t
development of this research, and whose COAA team
developed the "Burlington Method".

REFERENCES

Gilmer, John B. Jr., and Frederick J. Sullivan, 1996
Combat Simulation Trajectory Management. In
Proceedings of the 1996 Military, Government, and
Aerospace Simulation Conference, ed. Michael J.
Chinni, 236-241. Society for Computer Simulation,
San Diego, California.

Sullivan, Frederick J., and John B. Gilmer, Jr., 1996
Managing Multiple Trajectory Simulation. In
Proceedings of the High Performance Computing
872
Conference, ed. Adrian Tentner, 320-323. Society fo
Computer Simulation, San Diego, California.

Al-Hassan, Sadeq, John B. Gilmer Jr., and Frederick
Sullivan, 1997. A Simulation State Manageme
Technique Sensitive to Measures of Effectiveness.
Proceedings of the 1997 Military, Government, an
Aerospace Simulation Conference, ed. Michael J.
Chinni, 95-100. Society for Computer Simulation, Sa
Diego, California.

Working papers and other documents, and simulation
analysis screen shots, can be found
http://calvin.mathcs.wilkes.edu/mts.

BIOGRAPHIES

JOHN B. GILMER, JR worked in the development of
combat simulations, with a focus on C2 representation a
parallelism, at BDM, Inc. He was the chief designer of t
Corban combat simulation. He has a Ph.D. in EE fro
VPI and currently teaches Electrical and Comput
Engineering at Wilkes University.

FREDERICK J. SULLIVAN teaches Computer Science
at Wilkes University, and earlier did so at Rose-Hulma
and SUNY Binghamton. His expertise is in operatin
systems and object oriented software. His Ph.D. is
Mathematics, from LSU.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

