Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

ALTERNATIVE IMPLEMENTATIONS OF MULTITRAJECTORY SIMULATION

John B. Gilmer Jr.
Frederick J. Sullivan

Wilkes University
P.O. Box 111
Wilkes-Barre, PA 18766, USA

ABSTRACT an event that would normally be stochastic occurs, instead

of one outcome, multiple outcomes are generated, each
Multitrajectory Simulation allows random events in a constituting a trajectory having its own state. In concept,
simulation to generate multiple trajectories and explicitly such a multiple trajectory simulation is integrated with its
manage the set of trajectories. The original prototype support system in such a way that its use provides
combat simulation used to demonstrate and test the concepbutcomes with probabilities associated with each, an
used code embedded in the functional modules, e.g. thoseaccounting for the key events or circumstances leading to
that implement "move”, "shoot", etc. A much improved the differences, and some measure of confidence in these
method provided a class library that hid the messy details. results.

When a random choice is made, a random choice method

appears to return twice (or more) for a given call, once in Conventional Simulation:

the context of the original state, and once each for the new

trajectories. These techniques both have significant State State

shortcomings. For example, the second (more preferable)

technique really needs to be able to overwrite the C++

"this" variable, an option unavailable on C++ compilers. |Draw numb8g

Since these issues surfaced, three additional Each rep”cat on gi\/es 0n|y one outcome,
implementation techniques have been developed. These randomly determined

include periodic copying of states to provide reference

copies and duplication of trajectories up to the branch . . . S

point, reformulation of the simulation into a discrete event Multi-Trajectory Simulation: State

review these techniques. Each has advantages and

I nd reformulation in il recursiv le. W =
style, and reformulatio to a tail recursive style e State | Rando pP=.2
Event

disadvantages. Multitrajectory simulation is not depend- P=3
dent on the particular limitations of any one method. Iit_atle
1 BACKGROUND Each replication gives numerous outcomes,

characterized by their probabilities

The goal of multitrajectory simulation is to explore the
outcome space of a simulation, that is, the set of all Figure 1: Concept for Explicitly Tracking Trajectories
possible outcomes, more systematically and less
expensively (for a given quality of understanding) than can This conceptual ideal must be compromised in various
be achieved with conventional stochastic simulation. In ways if the approach is to be practical: Discrete
some senses this could be considered a variance reductiorlistributions must be used; in practice, choices in the
technique, but the analysis goals may be formulated not military simulation domain of interest have usually been
only in terms of better estimates of statistical properties of binary, for example whether a target is acquired or not.
the outcome set, e.g. a mean and variance for a Measure o©nly some types of events that might be treated with the
Effectiveness(MOE), but also representative instances of multitrajectory technique actually are resolved that way in
extreme behavior or other "interesting" cases. a given run, to limit the focus of investigation and effort.

The heart of the proposed method is to explicitly track Fnite resources and the potential exponential explosion in
each possible trajectory, as illustrated in Figure 1. When the number of trajectories makes necessary some form of

865

Gilmer, Jr. and Sullivan
management in which not all trajectories are followed. illustrates the smallest scenario we have used with "eaglet".
This is no worse than limiting the number of replications Two Blue units attack a Red unit. A second Red unit
for stochastic simulation. Indeed, by having a systematic counterattacks from the flank.
way of managing the treatment of uncertainty in the
simulation support software, the analysis can be better and
more efficiently tailored, without changing the model
software proper (Gilmer and Sullivan, 1996).

Two techniques have been used which trade off
coverage for the sake of keeping resources bounded. One
is the "truncation” management technique that explicitly
decides, for each event in some trajectory, whether to
resolve the event in multitrajectory fashion (resulting in the
creation of a new trajectory) or to instead resolve it
deterministically or stochastically. This is illustrated in
Figure 2.

It

2]

Figure 4: "eaglet" Scenario with Multitrajectory Routes
State Random Event State| Note that the route objects show multiple paths; when
p=.1 p=.07 there are multiple links from a given node, a
trajectory multitrajectory event occurs for the choice of which path to
Trajectory “truncated” foII_ow. Figure 5 |_Ilustrates the process of creating a new
No new state created trajectory when this happens.

Only one

8 probabilit
pIink 12 Y

Figure 2: Trajectory Truncation

The second approach is to look for and consolidate on link 12 . - | lon link 24
states that are "similar", where similarity is judged by a Unit 2 Unit 2
metric that estimates the sum of differences between two | lelsewherg 4 elsewhere

other unit§

State after Unit 1's
arrival at Node 2,
original state copy
and trajectory

Note: State 1 would

given states, as shown in Figure 3. During an analysis other unit§ Piink 25

‘run”, simulation trajectory management sacrifices some gate prior to Unit 1
trajectories, perhaps those of lowest probability or of least arrival at Node 2
interest with respect to some MOE, for the sake of keeping

the number of trajectories within bounds. State after Unit 1's
arrival at Node 2,

“ ” new state for the have been created jn
Mer alternative trajector an earlier bifurcation.
State On_ly one
p=1 trajeqg)) State Figure 5: New Trajectory Creation for a Move Event
St p=.1(.11
p=.011 Trajectory “merged” Multitrajectory attrition (variations in combat losses),
Distance One represents both. decisionmaking (whether a decision rule fires), acquisition
. (whether a unit sees another) and acquisition loss have also
is small been implemented. Figure 6 illustrates some of the results
from previous research showing how the multitrajectory
Figure 3: Trajectory Merge, or Consolidation approach compared to stochastic runs, for the case of
movement events (only) being resolved in multitrajectory
2 SAMPLE MULTITRAJECTORY SIMULATION fashion. The shading of squares is darker with increasing

sum of the probabilities of states having Measures of
Much of this research has been conducted using a Effectiveness values within that square. In this limited
simplified, unclassified surrogate for the military scenario, the multitrajectory approach can be exhaustive.
simulations of interest. The simulation "eaglet” was As the number of stochastic runs increases, the
designed to resemble the Corps level simulation "Eagle” in multitrajectory distribution is approached.
important respects, but to be of manageable simplicity. It With larger scenarios and a greater variety of
includes Lanchester square law combat, movement by multitrajectory events, it is not possible to exhaustively
nominally battalion sized units along routes with multiple develop the outcome set. Multitrajectory management
paths, decisionmaking, and artillery support. Figure 4

866

Alternative Implementations of Multitrajectory Simulation

Random selection Random selection Multitrajectory et et b e

g : : 800 states, choice policy 6: ment, Decisionmaking, and
648 Stochastic 3240 Stochastic selection (After 160 states, only Acquisition, limit of 800

. Replications Replications 648 States at end states with p>.00013 have states, choice policy 6.
! (22 seconds) (12 seconds) . eventsresolved M.T.; other (Beyond 160 states, M.T.
9‘[LH < el L] S, events are stochastic) only if p>.00013)

NG | R j £ ¥ et i

ol < AR

SlF + J i i.’ I 3 . | | 5_{ bl

é Al A ¥ EAEET K 3§“p" f ﬁ =115 ‘

?hl _,6]; » 8 & 3 _;‘ 3 '.--' . ‘.- d 4 4T, n: 2 &

ell .is e s | Py WA e E¥ 1 1 R 8

"E " it (] ‘st‘ “ 2. s £ - ¥ L] 1 —g 1

;.‘} A i .-= z :o [: -:‘._ .i;'; : i .-‘ g

P U aillifYehtinte M e = -

“ : s 115 » % 2 . e ® o 1
§ s Il . 3 5 e b SR
Blue Losses (about 30 to about 70) Blue Losses: 40 to 120
! I Figure 8: Larger Scenario Outcomes with Improved

Figure 6: Small Scenario Outcomes for "eaglet" Trajectory Management

becomes more important. Figure 7 illustrates this for a

larger scenario. In this case, the simplest management3 THE APPROACHES

approach is used: all events are multitrajectory until a fixed))))

limit is reached, then events are resolved deterministically. This section gives an overview of the various

Event outcomes of lower probability that give interesting Multitrajectory techniques. In choosing among these

results come too late to be captured, while stochastic techniques, the issues are efficiency, transparency, and

resolution at least gives a sampling of these outcomes. Thefeasibility. Efficiency concerns the resources (time and

multitrajectory outcome set has a total probability higher memory) consumed when the method is operating.

than that of the stochastic set, but is not representative. ~ Transparency concerns the degree to which the
programmer (of the simulation functional modules) must

Stochastic Movement, Multitrajectory Movement, be conscious of the multitrajectory approach and take it

800 replications, treated 800 states, choice policy 3: into acpqunt When_coding. For_ all methods, it i_s necessary
as each equally probable. ~ All events are resolved M.T. to explicitly recognize stochastic events as decisions rather
until 800 is reached, then than merely random number draws. Beyond that, the
s all events are deterministic. . .
ST Comotemunwa]| degree t_o which the code may hgve to be c_o_n_volved to fit
L epeerid | [the requirements of the method differ. Feasibility concerns
<||- =78 Redunis 22,255 . . .
S|, e were desroyed) TN whether the technique can be implemented for a given
. el .
] | A machine and language.
% o '.}:\ %y - . o, '
g 3.1 "Gilmer's method"
] e
L] &
E - This was the original implementation of multitrajectory

simulation. It is included for the sake of completeness.
When an event takes place, it is likely to be deeply
Figure 7: Larger Scenario Outcomes with an Inadequate embedded in nested functions. The new state is created as
Trajectory Management Technique an image of the old one at the event, deep in the calling
hierarchy. But the new state will have been only partially
processed for the time step (or event) that was being
Figure 8 shows outcomes for this same scenario with a Processed. The time step must be finished. This re-entry is
better management technique, and for several types oféXPlicitly programmed. So, at the beginning of each
event. Improved management techniques that arefoutine, an if-test is needed to determine if this is an
sensitive to model Measures of Effectiveness have beenoriginal entry or a re-entry for a partially processed state.
developed (Al-Hassan, Gilmer, and Sullivan, 1997). This _If.'ghe_ latter local vanableg such as counters must'be
allows the decision on whether to generate or truncate alinitialized to values appropriate to the state of the routine
new trajectory to be based on how "interesting” it is, in the When the event took place. Figure 9 illustrates.
sense of whether it has an extreme value of some MOE.
Research into scaling issues and improvement of
management techniques is underway, but is outside the
scope of this paper.

Blue Losses: 40 to 120

867

Gilmer, Jr. and Sullivan

t t When a multitrajectory event takes place, a copy of the
n+l stack is made. When the new state is finally ready to be
original original executed, the stack is reinitialized to duplicate the
state - > state condition it was in when the state was created and the
context saved with a call to setjmp. A call to longjmp then
What . . T . .
ceems o —— cloned puts execution back into the simulation functional code at
happen: state that point. This amounts to "throwing" a continuation.
New state starts — " _ From the functional model programmer's perspective, it
at the instant of Code that by- \r’g';ﬁttric\’};aé'gn':iﬁpens- looks like the choice returns twice (or more) for events that
the event Fav%sfkegof?g“eef structures embedded ireth are r_esolved w_ith the r_nultitrajectory technique. The_ messy
model functional code details are hidden in base classes upon which the
new state . L - . .
simulation is built. Figure 11 illustrates.
Figure 9: Processing Events Using "Gilmer's Method" t ¢
n n+1
The structure of the code is essentially unchanged = ="
. . original original
from what might be written by a programmer unaware of state L g [
multitrajectory techniques, but must have the control
structures to choose the method for event resolution, and to cloned
manage the reentry. Figure 10 illustrates. B ate

The actual code is much, much messier. This example \what seems to happen:
does not show more complicated resolution methods such New state starts at the ~ What actually happens: reentry
as those that check the state limit, MOE's, or run in an instant of the event via throw using copy of stack
"event following" mode (which follows the event record
trace of an earlier run). This method can be improved by Figure 11: Origination of New Trajectories Using
using choice policy routines to determine resolution »gyllivan's Method"
method for a given event. There appears to be no
feasibility problem. This method is less preferable than

: X . _ The simulation functional code structure is very
those which hide messy choice and reentry details.

similar to that of a non-multitrajectory simulation, except
for the use of choosers rather than random number
generator calls. Figure 12 shows how the code looks for

. .) the same acquisition loss event as illustrated earlier.
This technique was developed by Sullivan as a part of the Note the use of the variable "self* as a substitute for

original project to investigate the multitrajectory technique i in the references to Unit object members

(Sullivan and Gilmer, 1996). "Acquisition_list" and "N_Acquired" that follow the
chooser call. Any pointers in the stack upon restoration are

3.2 "Sullivan's Method":

Unit::lose_aquisition(State *ps){ pointed to the wrong state, and need to be fixed. (The
(various declarations, etc.) initial reference to "N_acquired" is not a problem, since no
/Handle the reentry case: The state has reentry info. o _acq p !
if(ps->status_unit()==1d&& multitrajectory event can have occurred yet.) Thus, some
ps;zz‘;‘s@i}’f“i:t(ej;'i-c%_E—AcQ) discipline is necessary to ensure that pointers are fixed
else i=0; - ' after a potentially multitrajectory event. (This we refer to
'fg‘r('};':qff?{“"edi as the "this problem", since the "this" variable is the best
if(lose_acq_evt==DETERMINISTIC){ example of a pointer that no longer points to the correct
ﬁcquisitﬁongliitliFO: place. Unfortunately, the C++ compilers that we are using
acquired--; . . el g
clse if(‘ﬁose acq_evi==STOCHASTIC){ (primarily g++) do not allow "this" to be modified.) The
yfne(lnd_cinum=rand()/|327ﬁ8.0: chooser and other messy details are hidden in base classes
if(rand_num<pct_lose
Acquisition _listfi=0: upon which the simulation object is built. Figure 13
N_acquired--;}} illustrates this, which also applies to most implementation
else if(lose_acq_evt>=MULTITRAJECTORY){ methods

if(ps->status_event()==LOSE_ACQ&&
ps->status_unit()==1d&&
p_s->status_itteration()==i){
Acquisition_list[i]=0;
N_acquired--;
ps->create_status(0,1d,0);}//reset status
else{
p_new_state=new State(ps,pct_lose);}}}

Figure 10: Example of Code for "Gilmer's Method"

868

Alternative Implementations of Multitrajectory Simulation

Unit::lose_aquisition(State *ps){

. : up until that point, and the choice to be made for the
(various other declarations, etc.)

n=N_acquired; current event in the new trajectory. At a convenient time
for(i=0i<n;i++) when the new trajectory begins to execute, it re-executes
DiscreteChoice ch[2]={{pct_lose,0},{1.-pct_lose,1}}; I t til th ti t starti t the ti th
Chooser C_Ch->Initialize (ch,2,L OSE_ACOQ); all events up until the creation event starting at the time the
U'?it,*SE_'f#hiS: SomGhor o reference state was copied. Upon arrival at the creation
vkt At event, it begins to follow a divergent path from the original
if(choice ==0){ state. It may, in turn, generate yet more trajectories in like
self->Acquisition_list[i]=0; . .
self->N_acquired—-}}} manner. Figure 14 illustrates.
Figure 12: lllustration of "Sullivan's Method" at tid th t2+
\tOld original original
Base ISimuIatiodI State I Chooser I r state state
Classes -
Nbas/ Discrete] [Continuou ioned] Dubii —
choosedl Chooser referencr clone icats clone
Derived | copy copy | Procgssin state
Classes Eaglet l Eaglet | | Decide] JAcquire u What actually happens: A
Simulatio State | | Choosef] Choosgr new clone made from the
L The simulation What seems to happen: reference copy is processed
Function |DEL”9‘°'| builder works with New state starts at the along the same path up to the
Model the derived and instant of the event event of divergence.
Classes functional model
classes. The . . . ,
multitrajectory Figure 14: lllustration of Koch's Method
Note: Avoid pointers as state details are mostly . . .
variables; use ID’s instead. in the base classes. The frequency with which reference copies of states
are made is a tradeoff. In the worst case, all go back to the
Figure 13: Classes for Multitrajectory Simulation original state. This approach is no worse than classical

stochastic simulation, in which multiple runs start from a
This technique is efficient, but the code to copy the Same initial state. _(Inde_ed, it is in practice better sir_lce the
stack and execute second return is typically machine cloning of states will typically be cheaper than creating an
platform dependent. Only a very small amount of machine initial state from text or other input data.) Wlth Koch's
dependent code is needed. (We use setjmp and |Ongjmp,method no extra burdens are put on the functional code
but must work around the limitation that longjmp is Programmer, other than the use of j‘choosers" rather than
supposed to be used to jump out of, rather than into, nested@hdom numbers and thresholds within the model code.
function calls. This gets messy, but the mess is hidden in There is no reentry or "this" problem. Thus, the code
the base classes.) Furthermore, we have found no way towould Iopk much like that of Figure 12, except that the use
implement this technique in Java without changes to the Of “Self” is not necessary. _
virtual machine. The practicality of making such changes However, this method does require the use of more
has not yet been investigated. Otherwise, this method Meémory. Indeed, one must periodically double the number
would seem preferable to the others. This method is more Of states by making reference copies. So this method can
fully described in an earlier paper (Sullivan and Gilmer, t@ke up to twice as much memory for a given number of

1996). trajectories. It also requires expenditure of CPU time to
make the copies, one of which, the reference copy, is
3.3 "Koch's Method" wasted for each time step for each state. (One cannot ever

used the reference copy as a clone, since there is always
This method was suggested by John Koch of Wilkes the possibility of another multitrajectory event that will
University as a simpler alternative to Sullivan's method. ~ Need to refer to the reference copy.) .

At some point prior to when multitrajectory events This method has not yet been prototyped, but is

may occur, a copy is made of each state. This referenceconsidered relatively low risk. The most important issue is
copy remains unchanged as the trajectory executes. TheOW to record and later follow the event record, which is
executing trajectory keeps a record, at each event, of thenOt an entirely trivial issue.
choices made. (This is generally done anyway to allow the We he}'ve alrfady been using event records as a way to
option to re-play a particular trajectory.) When a gengrate leftist" tree mode multitrajectory runs. In a
multitrajectory event occurs, the reference state rather thanleftist mode” run, the event record from a trajectory
the current state is copied, together with a record of events9enerated by an earlier run is used to resolve events for the

reference state (State 0). At each event, a new trajectory is

869

Gilmer, Jr. and Sullivan

generated for the other possibilities. These new trajectories When a multitrajectory event occurs, additional states
do not bifurcate further. They attempt to continue are created and the functional code is called for each
resolving events consistent with the outcomes in the eventoutcome. The executive would include a dispatcher that
record; if synchronization is lost they become would function, in effect, as shown in Figure 17. For
deterministic. Figure 15 illustrates. This mode allows, for simplicity, we show a version that only handles Boolean
a given trajectory, a comparison between the reference events. Note that for at least some kinds of events, the
trajectory and alternatives that are similar except for the probability may have to be determined at the time of event
outcome of a given event. The technique would be similar execution, rather than when the event is scheduled.

in an implementation of "Koch's Method".
State::Dispatch(Event *pe){

i X . . X State *ps;
First simulation run: Second simulation float r;
Multitrajectory, run: int method=choice_method(pe);
With “hard” Multitraiectory. Lefti float probability=pe->eval_p(this,method);
state ard X treue (efygrfto Y, L€ X if(probability==0.)
i ~ pe->Do_event(0,this,1.0);
limit following if(probability==1.)
mode for pe->Do_event(1,this,1.0);

i else if(method==STOCHASTIC){
Traject r=rand()/32768.0;
if(r<probability)
pe->Do_event(0,this,probability);
else

Initial Initial pe->Do_event(1,this,1.-probability);
State State else if(tmethod==MULTITRAJECTORY){
ps = new State(this,1.-probability)
modify_probability(probability)
. . . pe->Do_event(1,this,probability)
State limit reached Trajectories that are truncated pe->Do_event(0,ps, 1.-probability)}}

Figure 15: Event Following in "Leftist Tree” Mode Figure 17: Multitrajectory Discrete Event Dispatch

The limitation of this method is that the simulation
must be entirely written in a discrete event style, with
events scheduled for lightweight tasks such as perception
trials, adding overhead in processing and memory usage to
handle the events. Any events that may be multi-trajectory
for some analysis must be treated this way.

4. "Burlington Method"

This technique was prototyped for the "ACP" (Advanced
Conceptual Prototype) simulation, developed by Ben Wise
of SAIC, to prototype innovations in Command Control

representation. Conversion of this simulation to add) . :
multitrajectory capability was performed by SAIC Given that this method has been implemented for a

Burlington personnel as part of the "Course of Action differe.nt simulat.ion, it has not been possible to mgke
Analysis” (COAA) project. analytic comparisons to assess the cost of the additional

overhead. There are no "this" problems or other known
implementation barriers, other than the need to have a DES
structure. One reason for implementing a time stepped
"eaglet" was that this was regarded as the more difficult,
and more general, problem.

The concept, shown in Figure 16, is to design the
simulation code so that potentially multitrajectory events
directly correspond to events in the sense of that term in
"Discrete Event Simulation” (DES). Events are dispatched
only in the simulation executive

3.5 "Sullivan's Prime (2nd) Method"

told h2thi f th+1
orainal inal Sullivan developed this technique after failing to find an
ginal origina ;) ; Y
state state acceptable technique for implementing his original method
in Java. It is similar to the original Sullivan's method in
cloned the use of a chooser object, but also has similarities to the
state Burlington method in that it forces a particular style for the
simulation code. The central idea is that an event is
What actually happens and what seems to happen are the controlled by a multichoice object which embodies all the
same, since the events of the simulation at the dispatch (DES) choices which can be made. When an event occurs, a
level are the multitrajectory events (and any that may be multichoice object is obtained, and each of its choices is
multitrajectory). Events embedded deeply in model code are then processed. Code which does the processing for each
prohibited. choice must come after the choice is obtained, and
therefore the choice cannot be embedded in a loop. In
Figure 16: lllustration of the "Burlington Method" generaL therefore, |00p3 must be imp|emented as

870

Alternative Implementations of Multitrajectory Simulation

recursions, so that the continuation of the loop processing State:timeStep() {
.. processUnits(0);}
appears explicitly at the end.

An example is used to illustrate this. If we could write State:doUnits(inti) {
if (i < UNIT_COUNT) {

loops, the code would look as shown in Figure 18. doOtherUnits(i, 0):}}
State::timeStep() { State::doOtherUnits(int i, int j) {
for (i=0; i < UNIT_COUNT; i++) { if (j < UNIT_COUNT) { . ‘
for (j = 0; j < UNIT_COUNT; j++) { MuIthh_ou:e ac_qMC_ = acquireChooser.getChoices();
Multichoice acqMC = acquireChooser.getChoices(); doAcquireChoices(i, j, acqMC);}}
choice = acqMC.nextChoice();))) o) o
while (choice != null) { State::doAcquireChoices(int i, int j, Multichoice
if (choice) { ach_C){)
units[i].acquire(units[j]);} Choice ch = acgMC.nextChoice();
choice = acqMC.nextChoice();}} if (ch = null) {
units[i].shoot(); State self = currentState();
units[i].decide(); if (ch.getvalue()) { o
if (units[i].atNode()) { _self.units[i].acquire(self.units[j]);}
Multichoice mvMC = moveChooser.getChoices(); if (j < UNlT—_CO_U_NT) {
choice = mvMC.nextChoice(); doOtherUnits(i, j + 1);}
while (choice != null) { else { o
units[i].changeLink(choice); self.units[i].shoot();
choice = mvMC.nextChoice();}} self.units[i].decide();
else { if (self.units[i].atNode()) {
units[i].followCurrentLink();}}} Multichoice mvMC =

moveChooser.getChoices();
. . . doMoveChoices(i, mvMc);}
Figure 18: Conceptual model, Sullivan's Prime Method else {
self.units[i].followCurrentLink();
i . doUnits(i + 1);}}
In this example, we loop over the units to do target doAcquireChoices(i, j, acgMC);}}

acqwsmon,_combgt, and decision making. We then loop State::doMoveChoices(i, MuliChoice myMC) {
over the units again to do movement. The chooser method choice ch = mvMC.nextChoice();
getChoices returns successive choices each time it is f S(ggt;g:lf”z{c UrrentState():
called, and null when the choices are exhausted. self.changeLink(ch.getvalue():
This doesn't work, because we don't finish the time doUnits(i+1); .
steps for newly created states, since the continuation of the @°Mevechoices(, mmcy}
time step goes back to the top of the loop. Instead, we turn Figure 20: Sullivan's Prime Method with Recursion
the loops into recursive calls and put the continuation

inside the recursive call. See Figure 19. This example is The essential part of the transformation is that the
then further transformed into the recursive style as shown continuation of an event (any code which is executed

in Figure 20. following the event) has to explicitly follow the event,
rather than implicitly as in a loop. The advantage of the
State::timeStep() { original Sullivan's Method is that continuations are handled
i=0; . by low-level programming magic, whereas in the Sullivan's
e < UNIT_COUNT:) { Prime method, they must be handled by the programmer.
whilé'(j<.UNIT_COUNT; i) { . Note that in Sullivan's (original) Method new states are
Multichoice acqMC = acquireChooser.getChoices(); reentered following completion of all existing states
ch = acgMC.acquireChooser.getChoices(); . . . H
while (ch = null) { (although this doesn't havg to be_ true), Whlle_m this method
if éﬁﬂs%ﬁt;/:'ﬁﬁgz u{nits[i])'} new states are reentered immediately following completion
ch:vaMg_nextChoice’o;}} of the state that generated them, and thus resembles the
3212{3322."520 Burlington Method as seen in Figure 16.
if (units[i].atNode() { This recursive style would have to be pervasive
Multichoice mvMC = moveChooser.getChoices(); throughout the simulation. Programmers used to an
i (o 1o o gheteet: iterative style, or from outside the computer science
units[i].changeLink(ch.getValue(); discipline where recursion is highly prized, may have
e|sceh{= mvMC.nextChoice().}} difficulty writing code in this style. Sullivan believes, but
units[i].followCurrentLink();}}} has not yet demonstrated with a working prototype, that it

is possible to build a translator that will convert more usual
style code into the required form for this method. Such a
translator has been beyond the scope of research performed
to date.

This approach to multitrajectory simulation will
require a larger stack than would normally be the case.

Figure 19: Sullivan's Prime Method, Example with
Transformation to While Loops

871

Gilmer, Jr. and Sullivan

(The fact that g++ implements tail recursion as a loop Conferencged. Adrian Tentner, 320-323. Society for

helps.) The "this" problem of Sullivan's Method can be Computer Simulation, San Diego, California.

present here as well, but can be dealt with by the sameAl-Hassan, Sadeq, John B. Gilmer Jr., and Frederick J.
disciplines. This is a minor consideration compared to the Sullivan, 1997. A Simulation State Management
programming style issues. No language dependen-cies Technique Sensitive to Measures of Effectiveness. In

would prevent a Java implementation. Efficiency should Proceedings of the 1997 Military, Government, and
be similar to that of the other faster techniques. Aerospace Simulation Conferenced. Michael J.

Chinni, 95-100. Society for Computer Simulation, San
4 CONCLUSION Diego, California.

All of the methods have in common the need to write the Working papers and other documents, and simulation /

model functional code in a manner that makes clear that aanalysis screen shots, can be found at

choice is being made when a random event occurs. Evenhttp://calvin.mathcs.wilkes.edu/mts.

without multitrajectory techniques, the analyst gains

explicit control over treatment of events, without having to BIOGRAPHIES

directly embed control features in the model functional

code. Choice policies can be standardized, or customizedJOHN B. GILMER, JR worked in the development of

to apply different criteria for different kinds of units, combat simulations, with a focus on C2 representation and

circumstances, or resource usage. There is an explicitparallelism, at BDM, Inc. He was the chief designer of the

mechanism for calculating end state probability (given the Corban combat simulation. He has a Ph.D. in EE from

scope of variability selected by the analyst). VPl and currently teaches Electrical and Computer
Multitrajectory capability can be implemented with a Engineering at Wilkes University.

variety of techniques, each having advantages and

disadvantages. At this time Koch's method appears to beFREDERICK J. SULLIVAN teaches Computer Science

the most straightforward, but is wasteful of resources. at Wilkes University, and earlier did so at Rose-Hulman

Sullivan's method would be preferred except for the "this" and SUNY Binghamton. His expertise is in operating

problem complications and the lack of a Java systems and object oriented software. His Ph.D. is in

implementation approach. If rewriting a simulation into a Mathematics, from LSU.

style that may differ from a conventional procedural

approach can be tolerated, either the Burlington method or

Sullivan's Prime method should be considered.

ACKNOWLEDGMENTS

This project continues research that was funded by the US
Army Research Office under Grants DAAH04-95-1-0350
and DAAG55-97-1-0360, with the sponsorship of the US
Army Concepts Analysis Agency. Mr. Gerry Cooper and
Col.. Andrew Loerch have been very helpful in advice and
assistance. We also thank Dr. Robert Alexander of SAIC,
whose interest and support have been essential to the
development of this research, and whose COAA team
developed the "Burlington Method".

REFERENCES

Gilmer, John B. Jr., and Frederick J. Sullivan, 1996.
Combat Simulation Trajectory Management. In
Proceedings of the 1996 Military, Government, and
Aerospace Simulation Conferenced. Michael J.
Chinni, 236-241. Society for Computer Simulation,
San Diego, California.

Sullivan, Frederick J., and John B. Gilmer, Jr., 1996.
Managing Multiple Trajectory Simulation. In
Proceedings of the High Performance Computing

872

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

