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ABSTRACT

We apply a Reactive Tabu Search (RTS) heuristic within
discrete-event simulation to solve routing problems f
Unmanned Aerial Vehicles (UAVs).  Our formulation
represents this problem as a multiple Traveling Salesm
Problem with time windows (mTSPTW), with the objectiv
of maximizing expected target coverage.  Incorporatin
weather and probability of UAV survival at each target a
random inputs, the RTS heuristic in the simulation search
for the best solution in each realization of the proble
scenario in order to identify those routes that are robust
variations in weather, threat, or target service times.  W
present an object-oriented implementation of this approa
using CACI’s simulation language MODSIM.

1 INTRODUCTION

We present a continuation of the research begun by Carl
(1995) into the effectiveness of Reactive Tabu Sear
(RTS) on the multiple traveling salesman problem wit
time window constraints (mTSPTW), and on how thi
approach can be used to model unmanned aerial veh
(UAV) applications (Sisson 1997).  UAV problems diffe
from those traditionally found in the General Vehicl
Routing Problem (GVRP) literature because they includ
unique stochastic inputs, such as random winds and serv
times.  The advantages of object-oriented simulation a
added to these earlier works to provide a mechanism 
extensive exploration of problems within the GVRP
family.  This paper demonstrates an application th
identifies UAV routes that are persistent throughout 
simulation’s state space.

We begin by noting that tabu search (TS) (Glover
1990, Glover and Laguna 1997) is a heuristic for providin
excellent solutions to hard combinatorial problems b
moving from one solution to another in a way that avoid
becoming trapped in local optimal solutions.  (TS recor
and returns the best solutions discovered during the sea
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and often these solutions are optimal.  It is important 
note, however, that TS does not guarantee finding 
optimal solution, nor will it recognize an optimal solutio
if it encounters one.)  Through the use of flexible memo
mechanisms for either constraining or relaxing the crite
used in the search process, and intensification a
diversification, TS represents a logical application 
adaptive, memory-based search strategies. The litera
identifies TS – and a variant called reactive tabu search
(RTS) – as powerful heuristics for the GVRP (see Lapo
1992, Battiti and Tecchiolli 1994, and Battiti 1996).  Sinc
this paper focuses on TS applications in a simulati
context, we will assume a working knowledge of TS/RT
procedures; otherwise, we refer the interested reader to
above references.

2 UAV PROBLEM FORMULATION

We begin our formulation of the UAV problem (UAVP)
using a mTSPTW baseline.  Following Carlton (1995), o
RTS seeks "near optimal" solutions to a mTSPTW with nc
customers, indexed by i or j, each requiring a service time
si.  (In the context of the UAVP, the terms “target” o
“target node” represent a “customer”.)  The starting dep
is designated 0; the terminal depot by nc.  Given nv
vehicles, if no feasible solutions are found after 
reasonable search we increase nv and restart the search
The time window for each customer i’s pick up is (ei, li),
where ei is the earliest possible arrival time and li is the
latest.  The early arrival time is treated as a “sof
constraint; i.e., vehicles arriving before ei may wait until ei

is reached.  Wi is the wait time at customer i.  The
parameter ti,j is the travel time from customer i to customer
j.  The binary decision variable Xv

i,j equals 1 if vehicle v
travels on the arc between customers i and j; otherwise it is
0.  Tour schedule variables Ai and Ti  indicate the time a
vehicle arrives at customer i and the time service starts a
customer i, respectively.  The time windows, times
between nodes, and service times are constrained to
3
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integer for computational efficiency.  Formally, we expres
the mTSPTW as
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The UAV problem modifies this formulation by
including vehicle-related route length constraints an
changing the objective function.  Given Tv as the maximum
time a vehicle can be used, route length constraints a
defined as
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The objective function is replaced by an expected
coverage function.  Formally, coverage is defined as the
number of targets that will be visited; therefore, the
expected coverage of any single target equals the
probability of surviving that target.  Notationally, for target

node v
in  (the ith target node visited in the route of vehicle

v) the expected coverage is given by

∏
=

v
i

v

n

ai

iPs )(

where av is the starting node of vehicle v's tour, and Ps(i) is
the probability of survival at target node i.  For instance,
assuming a UAV travels from target 1 to 2 to 3, and Ps(1)
= 0.9, Ps(2) = 0.8, and Ps(3) = 0.7, target 1's coverage is
0.9, target 2's is 0.9*0.8=0.72, and target 3's is
0.90*0.80*0.70=0.50.

The expected number of nodes covered along the route
of vehicle v is given by the sum of the individual node
coverages; i.e.,

∑ ∏
= =
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vv
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v
i

v

b

an

n

ai

iPs )( (2)

where bv is the ending node of vehicle v's tour and av ≤
v
in ≤ bv.  Thus, for the three node example above, the

expected number of nodes covered is 0.90 + 0.72 + 0.50 =
2.12.  The inclusion of (1) to the constraints of the
mTSPTW formulation, along with the substitution of its
objective function with the objective of maximizing (2),
defines the UAVP.

3 IMPLEMENTATION

Object-oriented programming languages facilitate the
inheritance and reuse of existing object definitions and
methods (Kassou and Pecuchet 1994).  Our paper makes
full use of this approach by using CACI’s object-oriented
language MODSIM (CACI 1997).  In MODSIM, an object
contains its own fields and routines (methods).  While the
contents of an object’s fields can only be modified by its
own methods, it can share those values with any other part
of the program.  Through inheritance, new object types
arise from existing types by inheriting the fields and
objects of the existing type.  New objects can then redefine
(or override) the inherited methods to behave differently,
as well as add original fields and methods.

This code encapsulation is useful in solving the GVRP
in that it allows different objective functions to be
efficiently introduced to a RTS solver.  Such inheritance
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and reuse advantages motivate our creation of an R
object for the UAVP by translating Carlton’s (1995) C
language code into a set of MODSIM libraries and object
These objects provide a “core” solver for the mTSP an
mTSPTW instances of the GVRP family, and with very
minor adjustments can solve UAVP problems as well.

Table 1 depicts the MODSIM structure of libraries an
objects designed to solve mTSPTW problems.  Th
pseudocode corresponds to the OBJECT, METHOD, a
PROCEDURE columns in a hierarchical fashion similar t
a path name. The heading ("main") indicates th
implementation code can be found in the main module.  
all cases, one follows the path to find the physical locatio
of the code in the right-most nonblank space.  If the code
not in the main module, the library listed refers to th
library in which the right-most nonblank identifier lies.
Dark gray spaces indicate that depth in the hierarchy 
unneeded to specify the location.

The libraries provide a general framework for
categorizing code into areas of similarity.  Here
“tabuMod” contains code for use in GVRP-related tab
heuristics.  The modules of “tsptwMod” contain code
tailored for the mTSPTW and UAV problems, and
“hashMod” holds the code for the creation and use of th
hashing structure.  As noted by Carlton (1995), man
different objective functions can be used for GVRP
problems, so “bestSolnMod” separates the cod
determining the best solution visited.  Finally, we verified
our RTS object by stepping line-by-line through the
translated code with a 4-city TSP problem to ensu
accuracy, then compared the heuristic's results to 
problem from Reinelts’ TSPLIB (1991).

Using the “portable” quality of our UAV object, we
embed it in a Monte-Carlo simulation that seeks to mod
the inherent variability of the operational environment’
parameters.  We accomplish this by creating a scenario
each replication of the simulation that has a uniqu
realization of wind magnitude and direction, target surviva
rates, and service times.  Then, beginning from an arbitra
solution, the RTS object finds the best routing solution fo
that particular scenario.  When the RTS for the curre
replication’s scenario ends (i.e., the specified number 
tabu search iterations have been accomplished), a new 
of realizations of the random variables are generated f
the scenario used in the simulation’s next replication.  Th
RTS then begins from the best solution of the jus
completed scenario; in this manner the previous routin
solution serves as a naïve forecast of the next one.  Wh
the search completes the last scenario, the frequencies
routes used in the feasible solutions are summed in a ro
frequency matrix.  The feasible solution whose routes a
most persistent (i.e., those whose sum of route frequenc
is the greatest) is termed the “Robust Tour.”
875
S

.

d

n
n
is

s

e

a

l

at

l
y

t
f
et
r

e

g

We demonstrate this technique using Sisson's (199
notional Nari dataset (Table 2).  The coordinates are stat
in miles from a fixed point.  In this case the Nari dataset 
essentially a TSP with a route length constraint of 2
hours.  The service times are stochastic and a range 
service times is possible at each target.  The minimu
service time is chosen unless a uniform random dra
between 0 and 1 results in a value less than 
predetermined probability (Pl) that the UAV may need to
loiter at the target.  If the first draw determines that a
extended service time is required, a second uniform
random draw between the minimum and maximum servic
times determines the amount of time the UAV will loiter
over the target.

We conducted a 21-day simulation of the Nar
scenario, where the winds vary between 205 and 24
degrees in orientation at a magnitude ranging between 0
20 knots.  The mean expected probabilities of survival (Ps)
for the target nodes are set to either 0.8 or 0.9.  Within th
simulation, each target node is given a 0.5 probability (Pl)
of its service (i.e., loiter) time increasing above its
minimum level, and eleven vehicles are made available fo
use.  In each replication, the RTS is limited to 500
iterations.

Figure 1 graphically depicts the tours chosen for eac
day of the 21-day simulation (the depot lies above the fir
tick mark on the horizontal axis, where we see the eleve
vehicle tours converge).  Although the shapes of the tou
do not readily yield to a visual examination, based on 
frequency analysis Day 16 contains those tours th
appeared most often.

4 CONCLUSIONS

This paper extends reactive tabu search to unmanned ae
vehicle routing through discrete-event simulations tha
incorporate the stochastic nature of real-world UAV
scenarios.  The use of RTS objects that use prove
heuristic methods within a simulation provides good
solutions to individual realizations of the target
environment, which in turn can form the basis for
identifying routing assignments that are robust to variation
in wind, loiter times, and probability of survival.
Additionally, the work described here can be applied
towards  evaluating  the  military  worth  of  new and
innovative concepts that attempt to improve UAV mission
performance.
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Table 1:  Main Module Diagram, mTSPTW.

ain module)
THOD PROCEDURE

Carlton

eMatrix
rtTour
" tourSched

PenBest compPens
" tsptwPen
" tourHVwz
" twBestTT

earch
" lookfor

" cycle

" nocycle
earch SwapNode

" compPens
" moveValTT
" "

earch insert

" tourSched
" tourHVwz

" twBestTT
earch

twLoadToFile

, and PROCEDURE
d in the main module.
dicates the reference is
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Mtsptw (ModSim m
mTSPTW Reactive Tabu Search Pseudocode SOURCE OBJECT ME
0. Intialize: Structures, vectors, parameters...................................... (main)
1. Input problem instance:....................................................................... tsptwMod timeMatrix read

a. Number of iterations = niters.......................................................... (main)
b. Compute time/distance matrix....................................................... tsptwMod timeMatrix tim

2. Select the starting tour.................................................................... tsptwMod startTour sta
a. Compute initial schedule................................................................ tabuMod "
b. Compute initial tour penalties......................................................... tabuMod " start
c. Given penalties, compute initial tour cost...................................... tabuMod "
d. Compute the initial hashing values: f(T) and thv(T)...................... tabuMod "
e. Save as initial best solution............................................................ bestSolnMod "

3. While (k <= niters)........................................................................... tsptwMod reacTabuObj s
a. Look for the incumbent tour in the hashing structure.................... hashMod "

1) If found, update the iteration when found, and increase
    the tabu length, if applicable...................................................... tabuMod "
2) If not found, add to the hashing structure, and decrease
    the tabu length, if applicable................................................. tabuMod "

b. Perform "later" insertions: I(i,d) for i = 1 to n-1, d >= 1.................. tabuMod reacTabuObj s
1) Calculate the penalties associated with an insertion............... tabuMod "
2) Calculate the value of making this insertion....................... tabuMod "

c. Evaluate all "earlier" insertions: I(i,d) for i = 3 to n, d <= -2........... " "
d. Move to the non-tabu neighbor according to an appropriate

decision criteria.  If all tours are tabu, move to the neighbor 
with the smallest move value, and reduce the tabu length.......... tabuMod reacTabuObj s

e. Update the search parameters:
1) Incumbent tour schedule.................................................... tabuMod "
2) Incumbent tour hashing value............................................ tabuMod "
3) Retain the best feasible solution found and the tour with
    the smallest tour cost regardless of feasiblity........................... bestSolnMod "

f.  Increase iteration count: k = k + 1................................................. tsptwMod reacTabuObj s
4. Output results..................................................................................... tabuMod

Directions: To find where a portion of the pseudocode is executed, one can read the OBJECT, METHOD
columns like a hierarchial path name. The heading "(main)" indicates the implementation code can be foun
Dark gray spaces indicate that space's depth in the hiearchy is unneeded to specify the location and " in
identical to the last entry above it.
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Table 2:  Nari Dataset.

Coordinates (in miles) Early Late Service Time Probability
X Y Arrival Arrival Ranges (in hours) of Survival

0* 100.286 64.286 0 24 0 0 1
1 7.714 381.429 0 24 1 5 0.9
2 55.714 6 0 24 1 5 0.8
3 81.429 351.429 0 24 1 5 0.9
4 58.286 342.857 0 24 1 5 0.8
5 65.143 325.714 0 24 1 5 0.9
6 34.286 327.429 0 24 1 5 0.8
7 70.286 296.571 0 24 1 5 0.9
8 27.429 291.429 0 24 1 5 0.8
9 93.429 297.429 0 24 1 5 0.9
10 48 280.286 0 24 1 5 0.8
11 76.286 269.143 0 24 1 5 0.9
12 120 274.286 0 24 1 5 0.8
13 160.286 291.429 0 24 1 5 0.9
14 100.286 251.143 0 24 1 5 0.8
15 114 216 0 24 1 5 0.9
16 205.714 234 0 24 1 5 0.8
17 104.571 219.429 0 24 1 5 0.9
18 144 220.286 0 24 1 5 0.8
19 126.857 203.143 0 24 1 5 0.9
20 231.429 217.714 0 24 1 5 0.8
21 292.286 191.143 0 24 1 5 0.9
22 181.714 145.714 0 24 1 5 0.8
23 200.571 140.571 0 24 1 5 0.9
24 291.429 137.143 0 24 1 5 0.8
25 214.286 121.714 0 24 1 5 0.9
26 248.571 92.571 0 24 1 5 0.8
27 274.286 82.286 0 24 1 5 0.9
28 291.429 78.857 0 24 1 5 0.8
29 332.571 82.286 0 24 1 5 0.9
30 349.714 80.571 0 24 1 5 0.8
31 377.143 84 0 24 1 5 0.9
32 375.429 99.429 0 24 1 5 0.8
33 385.714 111.429 0 24 1 5 0.9
34 402.857 115.714 0 24 1 5 0.8
35 404.571 106.286 0 24 1 5 0.9
36 396 94.286 0 24 1 5 0.8
37 432 92.571 0 24 1 5 0.9
38 437.143 70.286 0 24 1 5 0.8
39 447.429 43.714 0 24 1 5 0.9
40 472.286 33.429 0 24 1 5 0.8

* Denotes  the depot.
877
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Day 1 Day 2 Day 3 Day 4

Day 5 Day 6 Day 7

Day 9 Day 10 Day 11 Day 12

Day 13 Day 14 Day 15 Day 16

Day 8

Day 17 Day 18 Day 19 Day 20

Day 21
Day 16 is chosen as the Robust Tour.

Figure 1: Tours Chosen for Nari Scenarios.
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Our research also contributes to the practica
application of RTS with the creation of the MODSIM
libraries.  Using these libraries, future code can be quick
tailored to specific members of the GVRP family.  Even i
the programmer is not using MODSIM, the libraries
provide a straightforward translation given the “strongly
typed” nature of MODSIM and the strict adherence to cod
encapsulation they embody.  Their use can reduce the u
front coding time so often required in GVRP research.
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