
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

MAKING SIMULATION MORE ACCESSIBLE IN MANUFACTURING
SYSTEMS THROUGH A ‘FOUR PHASE’ APPROACH

Hamad I. Odhabi
Ray J. Paul

Robert D. Macredie

Center for Applied Simulation Modelling (CASM)
Department of Information Systems and Computing

Brunel University
Uxbridge, Middlesex UB8 3PH, UNITED KINGDOM

t
i

ig
e
p

o
g
a
n
i
le
n

t

t

p
b
u

o
e
l

f
e

ns
al
of
n

g

h
re
en
e

o
m
by
s,
he
se

se'
.
es
e
h

ic

f

he

x

ABSTRACT

This paper will describe an approach to the developmen
computer simulations - the 'four phase' approach - wh
aims to be more accessible than established approache
non-specialist developers in manufacturing system des
This paper will briefly review the traditional 'three phas
approach and highlight its potential drawbacks. This pa
will then go on to suggest that the benefit of the 'four pha
approach over the more established three phase appr
that it is more suited to simulations developed throu
iconic representations. Such iconic representations
seen as central to the spread of simulation modelling i
application domains such as manufacturing system des
The work reported here also suggests that comp
modelling environments can be built around those ico
representations which allow the user the opportunity
concentrate on the manufacturing system's behaviour ra
than on developing computer code to support the mod
This is achieved by the automatic generation of the co
from the iconic representation. Modelling environmen
that provide such a focus are likely to be more usable
those without a specialist simulation background.

1 INTRODUCTION

Computer simulations offer opportunities to develo
models of problem domains and activities which can
used to assess the prospective effectiveness of partic
solutions. Manufacturing system design is an ideal are
for the application of simulation, since it is often vital t
assess the implications of particular solutions prior to th
acceptance. One (non-simulation) approach is to deve
partial solutions - based on discussion and experience -
assessment, but their cost can often be very high, and
resulting solution may not meet expectations. An alte
106
 of
ch
s to
n.
'
er
se'
ach
h
re
to
gn.
te
ic
to
her
el.
de
s
by

e
lar

na

ir
op
for
the
r-

native is to develop (or model) a computer simulation o
the problem domain. Such simulations provide th
opportunity for those involved in the application domain to
explore their problem area and develop simulated solutio
which can form the basis for decisions about the physic
solutions that are required. The cost and convenience
developing simulations as an aid to decision making ca
make them an attractive proposition in manufacturin
system design.

Over the past years, the simulation modelling
community has developed approaches to modelling whic
have been aimed at making the modelling process mo
accessible to non-specialists. A key development has be
iconic representations which can be used to specify th
logic of the simulation model. Here, icons are used t
represent physical elements and activities of the syste
being modelled. These environments are underpinned
the development of graphical user interface technique
more general advances in computer graphics, and t
development of object-oriented languages on which to ba
the modelling environment.

A general problem, however, is that iconic
representations cannot easily be used with the 'three pha
method (Tocher 1963) which is widely used in simulation
The 'three' in three phase refers to the number of phas
that are executed in each cycle of the simulation. Thre
phase methods are generally simplistic formalisms whic
cannot suitably model complex behaviour of systems.
Three phase methods have an 'activity' as their bas
building block; the building block has two events that can
describe it - the start of activity event and the end o
activity event. Whilst relatively simple to understand, the
limited components of three phase methods (such as t
popular Activity Cycle Diagrams, or ACDs) mean that they
are not very good for accurately modelling the comple
behaviour often associated with manufacturing system
9

Odhabi, Paul and Macredie

b

s

s
h
a
d
a
.
ic
t

is
e
e
in
 t
x

h
a
e
s
h
e

fo
l

 f
a

e

is

h

e
r
s

i
r

ee
and
d to
 are
ve
ey
ts,
me
her
e

 or

ch,
ter
nd

sed
ies.
nd

s
lex
gest
ing
91a,
ols
ns.
ity
el

nto
ce
ese

re
s
nd
the
ve

by
l.

n a

 of
bin'
uce
ve
for
design. Iconic representations, by contrast, tend to
richer, offering the modeller increased opportunity to
model complex systems behaviour through an extended
of building blocks.

This paper will describe a possible solution to thi
problem: the development of a 'four phase' method whic
supports existing iconic representations and provides a w
to implement and execute simulation models develope
using them. The four phase method is used within
modelling environment that is currently being developed
The environment supports the development of an icon
representation of the system model, and then aims
automatically generate the simulation program. Th
removes the need for direct programming by the mod
developer and has the potential to open up the developm
of simulations to non-specialists. This offers experts
fields such as manufacturing system design the scope
develop and explore their own simulations of comple
systems.

Before moving on to discuss the four phase approac
this paper will develop the central arguments through
discussion of the three phase method and ACDs, and th
limitations for modelling complex system behaviour. Thi
will be used as justification for the development of bot
iconic modelling environments and the four phas
approach that we propose.

2 THE THREE PHASE APPROACH TO
SIMULATION MODELLING

As it names suggests, the three phase method
simulation modelling divides the execution of the mode
into three phases (see Paul 1993; Paul and Balmer 1993
more detailed discussions), which can be summarised
follows:

Phase 1: Determine when the next event in the
simulation model is due. This event will usually be th
completion of a current/on-going activity. Advance the
simulation clock to the time of this event.

Phase 2: Execute the events identified in phase 1, th
will usually involve moving the entities from the activities
that have just completed into appropriate queues in t
model.

Phase 3: Attempt any events in the model that are
conditional in turn, and execute those for which th
conditions are satisfied. Repeat this process until no mo
conditional events can take place (i.e. no more activitie
can start).

These phases are repeated until the simulation
complete - when a terminating condition is reached, fo
example.
1070
e

et

y

o

l
nt

o

,

ir

r

or
s

e

e

s

2.1 Activity Cycle Diagrams (ACDs)

Activity Cycle Diagrams (ACDs) are an example of a thr
phase method. ACDs, which are based on (Pidd 1998
Tocher’s 1963) idea of stochastic gearwheels, are use
create a model of the interaction of system objects, and
especially useful when modelling systems which ha
strong queuing structures. ACDs are simple in that th
use only two symbols to describe the life cycle of objec
or entities, in the system. Entities are either idle in so
form of 'queue', or active through engagement with ot
entities in time consuming activities. After specifying th
system through an ACD, the ACD would be executed,
run, using the three phases described in section 2.

Whilst they are generally a paper based approa
ACDs can be used to underpin iconic models for compu
based simulations: the two symbol types (queue a
activity) having icons associated with them and being u
to describe the life cycle of the system’s objects or entit
'Arcs' are, where appropriate, used to join activities a
queues, so that the entities may flow through the model.

2.2 Extended Activity Cycle Diagram (X-ACDs)

The simplicity of ACDs, and their associated limitation
for developing computer based simulations of comp
systems, led researchers such as Pooley to sug
extensions to enhance the use of ACDs for specify
process based discrete event models (Pooley 19
1991b). Pooley proposed an extended set of symb
(shown in figure 1) to describe processes in simulatio
This symbol set is used to develop Extended Activ
Cycle Diagrams (X-ACDs) which can accurately mod
more complex system behaviour than simple ACDs.

As Figure 1 shows, the symbol set can be divided i
two parts: symbols which control the flow; and resour
and queue symbols. The main characteristics of th
different groups will be briefly discussed here.

The symbols which control the flow in the model a
similar in function to those used in conventional flow
charts. There are symbols to control the start a
termination of processes in the model and to 'hold'
model. 'Holds' represent activities whose duration ha
known properties. The different symbols are linked
vectors which indicate the flow of control in the mode
The algorithmic description of a process is contained i
direction graph made up from these symbols.

The second group of symbols model various types
queuing activities. The group includes 'resource' and '
symbols. As their names suggest, the symbols introd
(or resource) the model with a particular entity and remo
(or bin) entities respectively. Resource symbols can,
ddd

Making Simulation More Accessible in Manufacturing Systems Through a ‘Four Phase’ Approach

Figure 1: The X-ACD Symbol Set (Adapted from Pooley and Hughes 1991)

Delay, Usually associated with an
activity.

Source, which generate entities.

Termination.

Branch, which routes entities
according to conditions.

Enter wait queue until co-operated
as a passive resource.

Resume active existence, no longer
a passive resource.

Interruptible hold.

Resource - fixed amount
available.

Bin - on limit on
capacity.

Condition queue.

Queue.
aw
e

ria
nt

the
ces

se
eu
d
s
on
nti
on

 X
the
 se
an

s t
ch
e
 th

ld
ent.
 to
ter

ges
o of
rete

ing
and
odel
pes
rival
ons
ing

e
ble
ol
one
ent
rned
vity
sed
example, be used to model the availability of a r
material used in the manufacturing process. A resourc
limited by initial conditions, such as tonnes of raw mate
available. Bins, by contrast, can receive unlimited amou
of material. This makes them suitable for modelling
most general cases of producer-consumer pro
interaction.

The remaining symbols in the second group are u
to model different types of queue. The conditional qu
is a hybrid, combining the attributes of a resource an
decision box. A process whose flow of control reache
conditional queue is blocked until the associated conditi
are satisfied. This can be thought of as a 'wait u
construct (which is also offered by some simulati
languages).

Pooley and Hughes (1991) note that the complete
ACD symbol set has proved rich enough to allow
description of a large class of models. Accordingly, the
seems a suitable candidate for incorporation
development into an iconic modelling environment.

2.3 Hierarchy Activity Cycle Diagrams (H-ACDs)

Kienbaum and Paul (1994a) propose some modification
the X-ACD symbol set, calling the resulting approa
Hierarchical Activity Cycle Diagrams (H-ACDs). Th
objective of their work is to advance the presentation of
1071
is
l
s

s

d
e
a
a
s
l'

-

t
d

o

e

X-ACD diagramming technique, and illustrate how it cou
be used to create a usable iconic modelling environm
A key consideration of Kienbaum and Paul's work was
ensure that their modelling environment was compu
based.

Kienbaum and Paul (1994b) suggest that the H-ACD
development of the ACD technique has many advanta
in meeting the needs not only of the analysis, but als
the modelling and design phases of object-oriented disc
event simulation projects.

Figure 2 shows the H-ACD symbol set, represent
different types of processes, synchronisation, queuing
resource blocking mechanisms that can be used to m
systems. The process symbols in H-ACD include the ty
'source' and 'sink' which are used to represent the ar
(generation) and departure (termination) of transacti
through the border of the system component be
modelled.

Another symbol incorporated into H-ACD is th
'interruptable hold'. This symbol executes when a suita
interrupt signal is received. The 'transform' symb
describes a transformation process, which takes
category of entity as input and produces a differ
category as output. The 'assemble' symbol is conce
with the pre-requisite conditions necessary for an acti
to start. H-ACD also supports a 'disassemble' symbol, u
to disassemble the entities when an activity finishes.

Odhabi, Paul and Macredie
Figure 2: The H-ACD Symbol Set (Adapted from Kienbaum and Paul 1994a)

Req Rel

Atomic Process Nodes Queuing and resource blocking
mechanisms

Delay

Interrupt hold

Source

Termination of
process (a
sink)

Transform

Assemble/
Disassemble

Request/
Release
resources

Queue

Conditional
Queue (Trigger)

Resource

Bin - no limit on
Capacity

Message Queue
of
ug
s

D
er
a
l i

e
ch
e
as

ly
-
d

The H-ACD symbol set contains simple queues
various sorts, which service processes in the model thro
its life cycle. Queues are also used to represent build up
the model as a result of a block in the flow of entities.
The conditional queue that was presented in the X-AC
set, is represented in H-ACD, but is called the 'trigg
symbol. As with the comparable X-ACD symbol,
process whose flow of control reaches the trigger symbo
1072
h
in

'

s

blocked until the associated conditions are satisfied. Th
message queue provides a mechanism through whi
trigger symbols are informed of waiting entities. Resourc
and bin symbols have the same basic characteristics
their X-ACD counterparts.

The H-ACD symbol set has been used to successful
model complex systems behaviour within a computer
based modelling environment. However, the expande

Making Simulation More Accessible in Manufacturing Systems Through a ‘Four Phase’ Approach

le
This
The
 th
ited
ake
or a
f a
the

nde
The
ral

nal
 can
the

ls,
st,
e
 of

fore
rou
e,
, a

ese
 are

ase
four

es
and

 an

g
me.
ro)
with

lay
its
elay
r an
 to

e

t
h

l

s

e

n
o

.

.
e

ll
.
t

symbol set of H-ACD (and X-ACD) are not compatib
with the three-phase approach to model execution.
presents an interesting situation for the modeller.
modeller can either use a simple formalism based on
three phase method (such as ACDs) which has lim
opportunities to model complex system behaviour, or m
use of an extended iconic representation and look f
suitable method of execution. The development o
suitable method of execution will be discussed in
remainder of this paper.

3 THE FOUR PHASE APPROACH TO MODEL
EXECUTION

The alternative approach that is reported in the remai
of this paper is called the 'four phase' approach.
approach is underpinned by the following two gene
considerations:

(i) Each symbol in the H-ACD set has an inter
queue. When the symbol has completed its function it
hold any relevant entities in this internal queue until
relevant time for them to be released.

(ii) Distinctions are drawn between different symbo
with two important groups being identified. The fir
called Delay Nodes, includes the activity and sourc
symbols, which both have the common characteristic
being able to delay entities for some period of time be
sending them on to the internal queue. The second g
are the UnDelay Nodes, which includes the assembl
disassemble, request, release, branch, assign, queue
trigger symbols. The common characteristic of th
symbols is that they do not delay entities when they
required by another symbol in the model.

A diagrammatic representation of the four ph
method is shown in figure 3. We can describe the
phases of model execution as follows:

Phase 1: Check the finish times of all the Delay Nod
currently in progress. Find the earliest of these,
advance the clock to this time.

Phase 2: For the Delay Nodes, finish all the
processing scheduled to be completed at this time,
move the relevant entities into the internal queue.

Phase 3: Check all of the UnDelay Nodes identifyin
all those which should start processing at this ti
Perform the relevant processes (with duration time ze
Repeat the check until there are no UnDelay Nodes
processes to start at this time.

Phase 4: Start the processing of any relevant De
Nodes. Calculate when the Delay Node will finish
processing, and record this time. When all relevant D
Nodes have been processed, check for an interrupt o
specified finishing conditions. If the model is not due
1073
e

r

p

nd

d

.

y

terminate, return to phase 1 and being the execution cycl
again.

The implementation of the four phase approach is a
an early stage. We have used an object oriented approac
to its implementation. This is appropriate as it provides a
strong mapping between the concepts and the actua
implementation of the icons, or symbols, which are used to
make up a simulation model. Each symbol can be
implemented as an individual instance of the relevant clas
of object. For example, modelling a particular queue in the
simulation would use an instance of the queue object. Th
approach that we are currently exploring takes this
approach but also views each of the four phases as a
object. This approach requires some supporting objects t
be defined for use in housekeeping activities. The four
most important supporting objects are defined as:

(i) DelayActiveListManager: The 'DelayActive-
ListManager' maintains a list of the Delay Nodes in the
simulation that are currently active, along with the time that
each of the activities of the Delay Nodes are to complete
On completion of an activity, the DelayActiveListManager
should delete the information concerning the activity (and
therefore the relevant Delay Node) from the list.

(ii) StopActiveListManager: The 'StopActive-
ListManager' object contains only the names of the Delay
Nodes that stop particular activities during the execution of
the simulation. Where a Delay Node has stopped all of its
activities at a particular time, the StopActiveListManager
deletes this Delay Node from its list.

(iii) UnDelayNodeListManager: This object simply
maintains a list of all of the model's UnDelay Nodes.

(iv) DelayNodeListManager: Similarly, this object
maintains a list of all of the model's Delay Nodes.

The implementation of the four phases as objects in
their own right can be described as follows:

Phase1 Object: 'Phase1 Object' is responsible for
scanning through time, looking at the simulation to find the
earliest finishing time for an activity and setting the
simulation clock to that time. 'Phase1 Object' begins by
asking DelayActiveListManager to scan its list to find the
earliest finishing time. 'Phase1 Object' also initiates
StopActiveListManager, ensuring that all Delay Node
names in the simulation are added.

Phase2 Object: The 'Phase2 Object' interrogates the
StopActiveListManager to compile a list of Delay Nodes
that have activities which should be stopped at this time
'Phase2 Object' then ensures that these activities ar
stopped.

Phase3 Object: The 'Phase3 Object' integrates the
UnDelayNodeListManager to find the names of all of the
UnDelay Nodes in the simulation. 'Phase3 Object' asks a
the UnDelay Nodes to start their respective processes
This request is repeated until no Delay Node is able to star
processing.

Odhabi, Paul and Macredie
Figure 3: An Illustration of the Four Phase Method

Start

Initialisation

Time scan

End all activities in the Delay Nodes,
which should end at this time

Check all UnDelay Nodes, which
should start processing at this time

Attempt all Delay Nodes, which have
to start processing at this time

Check for interrupt or finish

Start

Phase 1

Phase 2

Phase 3

Phase 4
in
e
y
ks
e,
o

te

s
n-
s
e

he
nd
 it.
he
 of
sue
r

n
t

inal
 to
er
Phase4 Object: The 'Phase4 Object' uses the
DelayNodeListManager to keep a list of all Delay Nodes
the simulation. 'Phase4 Object' then asks all Delay Nod
to attempt to start their respective activities. If a Dela
Node is able to start an activity, 'Phase4 Object' as
DelayActiveListManager to add the Delay Node's nam
the activity identification number, and the stopping time t
its list.

4 AUTOMATING SIMULATION THROUGH THE
FOUR PHASE APPROACH

Our on-going research is looking at developing a comple
modelling environment which takes an iconic
representation similar to that offered by H-ACD and build
it into a graphical front end that can be used by no
specialists in simulation. The modelling environment aim
to provide a usable graphical interface through which th
1074
s

user can develop the model of their system. T
environment takes the iconic description of the system a
automatically generates the computer code to support
This moves the emphasis for the user away from t
complexities of developing code to represent the model
their system, and allows them to focus on the central is
of effectively modelling the potentially complex behaviou
of their system.

This also offers flexibility to users, since they ca
develop their model, exploring the effects of differen
changes and setups. This may support more effective f
solutions, since a higher resource can be allocated
developing the behaviour of the system simulation rath
than the code to support it.

Making Simulation More Accessible in Manufacturing Systems Through a ‘Four Phase’ Approach

tio
or
ith
 th
nic
o t
ed

 do
ha
en
th
 a
rise
D

c
ha
the
ng
ec
tin
lly
 th
l i

e
nt

s
ng

D:
d

M.

n
on

ree
r

.,

l
s.
.

l
s.

r
n
t

f
.
’s
.

e
n
al

in
ly

in
s

d

.
nd

n,

so
5 CONCLUSION

There are many advantages to using iconic representa
for discrete event simulation modelling, especially f
modelling highly complex behaviours associated w
many manufacturing systems. Centrally, these include
accessibility of the modelling approach to the user. Ico
representations can have a close conceptual mapping t
physical elements of the system being modell
representing them more closely than other approaches.

One drawback of iconic representations is that they
not fit with the three phase approach to simulation that
been central to much of the simulation work undertak
since the 1960s. This is because the three phase me
uses only two symbols - as characterised by ACDs -
opposed to the extended symbol set that characte
iconic representations, such as the symbol sets of X-AC
and H-ACDs.

To support the implementation of iconi
representations, this paper has proposed a four p
method for simulation execution which can be used for
H-ACD symbol set. This approach is currently bei
developed into a modelling environment using an obj
oriented language, with each phase modelled as a dis
object. The modelling environment is used to iconica
develop a model of system behaviour using the icons of
symbol set. The computer code to support this mode
automatically generated by the modelling environment.
It is hoped that the accessibility and flexibility that th
modelling environment offers will provide an importa
opportunity for those modelling complex system
behaviour, and that it will be a useful tool in manufacturi
system design.

REFERENCES

Kienbaum, G. and R. J. Paul (1994a). H-AC
hierarchical activity cycle diagrams for object-oriente
simulation modelling. In the Proceedings of the
Winter Simulation Conference (IEEE Cat. No.
94CH35705), edited by Tew, J. D., Manivannan,
S., Sadowski, D. A., Seila, A. F. (New York, USA).

Kienbaum, G. and R. J. Paul (1994b). H-ACDNET: A
object-oriented graphical user interface for simulati
modelling of manufacturing systems. Simulation
Practice and Theory, 2: 141-157.

Paul, R. J. (1993). Activity Cycle Diagrams and the th
phase method. In the Proceedings of the Winte
Simulation Conference (Cat. No. 93CH3338-1), edited
by Evans, G. W., Mollaghasemi, M., Russell, E. C
Biles, W. E. (New York, USA).

Paul, R. J. and D. W. Balmer (1993). Simulation
Modelling (Lund, Sweden: Chartwell Bratt).
1075
ns

e

he
,

s

od
s
s

s

se

t
ct

e
s

Pidd, M. (1998). Computer Simulation in Management
Science (4th edition) (Chichester, UK: John Wiley and
Sons).

Pooley (1991a). Towards a standard for hierarchica
process oriented discrete event simulation diagram
Part I: a comparison of existing approaches
Transactions of the Society for Computer Simulation,
8(1): 1-20.

Pooley (1991b). Towards a standard for hierarchica
process oriented discrete event simulation diagram
Part III: aggregation and hierarchical modelling.
Transactions of the Society for Computer Simulation,
8(1): 33-41.

Pooley, and Hughes (1991). Towards a standard fo
hierarchical process oriented discrete event simulatio
diagrams. Part II: the suggested approach for fla
models. Transactions of the Society for Computer
Simulation, 8(1): 21-31.

Tocher, K. D. (1963). The Art of Simulation (London:
English University Press).

AUTHOR BIOGRAPHIES

HAMAD I. ODHABI is a researcher in the Department o
Information Systems and Computing, Brunel University
He received a B.Sc. degree in Physics from King Saud
University, Saudi Arabia in 1988, and he received an M.Sc
degree in Simulation Modelling from Brunel University in
1994.

RAY J. PAUL holds the first U.K. Chair in Simulation
Modelling, at Brunel University. He previously taught
Information Systems and Operational Research at th
London School of Economics. He received a B.Sc. i
Mathematics, and a M.Sc. and a Ph.D. in Operation
Research from Hull University. He has published widely
in book and paper form (two books, over 200 papers
journals, edited books and conference proceedings), main
in the areas of the simulation modelling process and
software environments for simulation modelling. He ha
acted as a consultant for variety of United Kingdom
Government departments, software companies, an
commercial companies in the tobacco and oil industries.

ROBERT D. MACREDIE is a redaer in the Department
of Information Systems and Computing, Brunel University
He received a B.Sc. in Physics and Computer Science a
a PhD in Computer Science from Hull University. His
research interests are in human-computer interactio
simulation modelling, and virtual environments/virtual
reality. He has published widely in these areas, and is al
executive editor of the international journal Virtual Reality:
Research, Development and Applications.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

