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ABSTRACT

This paper discusses the concept of validation a
proposes a multistage validation framework for traffi
simulation models.  The framework consists of conceptu
validation and operational validation.  The operation
validation involves two levels of statistical tests: a two
sample t test and a two-dimensional two-sampl
Kolmogorov-Smirnov test.  The validation experienc
employing the proposed framework demonstrates the f
that while a model can be valid for one level of detail, 
can be invalid for another.  The validation results als
illustrate that the proposed multistage validation procedu
can account for the complexity of the validation task an
its conclusions.

1 INTRODUCTION

Traffic system operation is characterized by the flow 
mobile elements (users and vehicles) through faciliti
(roadways and control devices).  The flow of the mobi
elements is a complex interactive process that is a funct
of facility design, user objectives, perceptions an
reactions of drivers, and vehicle dynamics.  A traffi
system simulation is a symbolic software model for
conducting experiments on a traffic system.  The purpo
of the experiments is to design and modify the facilities 
optimize safety and efficiency of traffic flow.

Since the emergence of Intelligent Transportatio
Systems (ITS) in the early 1990s, simulation has beco
an invaluable tool for evaluating ITS strategies.  Whi
considerable research efforts have been devoted to 
development of traffic simulation models, validation
which is an integral part of the “model development lif
cycle,” has not received enough attention.  In fact, most
the simulation models developed in the traffic engineerin
community do not have guidelines for validation.  Fo
instance, it is usually the users’ responsibility to choose
number of parameters to vary in order to study the way t
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simulation behaves, and to understand the significance
any differences between observed measures from the r
world and simulated measures of effectiveness (MOE’s
However, no specifications are provided for making thos
parameter adjustments and interpreting those differences

In this paper, we review validation methods in th
literature and propose a multistage validation framewo
for traffic simulation models.  In the next section, the
concept of validation is discussed.  Section 3 proposes
validation framework.  In Section 4, we present 
validation experience, while Section 5 summarizes th
paper.

2 VALIDATION

Validation is generally defined as the act of determinin
whether a simulation model reasonably represents 
approximates the real system for its intended use (Fishm
and Kiviat 1968, Sargent 1982, Law and Kelton 1991
Validation is a purpose-specific task.  Balci and Sarge
(1981) argue that a simulation model should be develop
for a specific purpose or application and its adequacy 
validity should be evaluated only in terms of that purpos
with regard to the relevant experimental frame(s
Moreover, since increasing the validity of a model beyon
a certain level may be quite expensive (e.g., more da
collection may be required), it is more cost-effective for 
simulation model to be validated relative to those MOE’
that will actually be used for decision making (Law an
Kelton 1991).  Thus, the purpose of the model determin
what aspects of the model to validate and their levels 
detail.

Determining the validity of a simulation model is not a
binary decision in which the model is simply deemed vali
or invalid; rather, validity should be considered one o
degree depending on the model's purpose.  Shannon (19
suggests that since no model is absolutely correct in t
sense of a one-to-one correspondence between itself 
real life, simulation modeling is probably not a search fo
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absolute truth or correctness but rather a succession
theories that will progressively approach the truth.  In fa
Schlesinger et al. (1979) go a step further to defin
validation as a substantiation that a computerized mo
within its domain of applicability possesses a satisfacto
range of accuracy consistent with the intended applicat
of the model.

3 MULTISTAGE VALIDATION FRAMEWORK

Since no single test can ever demonstrate the sufficienc
a simulation to reflect real-world behavior, the approach
transferring model confidence involves many layers a
tiers with several tests being performed at different sta
and levels (Figure 1).

Level  1
Comparing
Two Means

Model
Walkthrough

Level  2
Two-Dimensional

Distribution

Model
Survey

Operational
Validation

Conceptual
Validation

Multistage Validation

Choose MOE’s
Based on the

Purpose of the
Model

Two-Sample
t Test

Kolmogorov-
Smirnov Two-

Dimensional Two-
Sample Test and

One-Sample  t Test

Figure 1:  Multistage Validation Framework

In fact, the validation process is often divided into tw
stages: conceptual and operational. Conceptual valida
assesses simulation models against sound and acce
theoretical foundations.  The operational validation proc
involves comparisons between model predictions a
measured real-world system behavior.  While they are t
distinct processes, conceptual validation is not necessa
a precursor to operational validation.  Rather, concept
validation is a concurrent and reoccurring process t
takes place in conjunction with operational validatio
Conceptual validation may be reexamined to expla
anomalous or inconsistent behavior detected dur
operational validation.
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3.1 Conceptual Validation

Conceptual validation consists of identification an
evaluation of the model’s underlying theory (usual
described in the model’s documentation and support
academic literature) and comparisons of the methodolo
of the model with that of alternative approaches.  It resu
in a qualitative assessment of a model’s theoreti
underpinnings, as well as its implementation, evaluated
the light of sound and accepted theoretical methods.  
traffic simulation models, the focus of conceptua
validation is on the underlying traffic flow theory.  The
primary methods employed during conceptual validatio
are model survey and model walkthrough.

3.1.1  Model Survey

The purpose of validation in this paper is to transf
confidence in model performance to the traffic engineeri
community.  Thus, an important step is to engage t
community, which is the end user of the traffic simulatio
models, in a continuing dialog regarding the methodolog
data requirements and results of traffic model validatio
The community brings three important perspectives 
traffic model validation:
• Researchers supply the information regarding t

development of new and improved theoretical model
• Developers provide the implementation of th

concepts into useable software and continue 
maintain and modify the traffic models.

• Practitioners apply the models to real-world problem
and provide feedback regarding their modelin
experience.

Without the experience and opinions of the members 
this community, the validation effort will not be able t
address the concerns of the end users of the models.
practice, a questionnaire may be sent to these member
conduct this survey.

3.1.2  Model Walkthrough

A model walkthrough involves a small group of qualifie
individuals or “experts,” who carefully review and revis
the model’s logic and documentation.  This group may a
contrast existing logic with alternative methods as well 
review the basic structure of the model.

3.2 Operational Validation

The procedures associated with operational validation 
designed to present quantitative measurements of 
consistency between model prediction and operatio
measurements from real-world systems.  The mo
definitive test of a simulation model's operational validi
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is establishing that its output data closely resemble 
output data that would be expected from the actual 
proposed) system using identical inputs (Law and Kelt
1991, Carson 1986).  In particular, Law and Kelton (199
point out that if the two sets of output data compa
“favorably,” then the model of the existing system 
considered “valid.” (The accuracy required from the mod
will depend on its intended use and the utility function 
the manager.)

Validating a simulation model is essentially validatin
a set of MOE’s, which are chosen by users to reflect mo
performance based on the intended application of 
model.  Users believe that if these MOE’s are valid, th
the model tends to be valid for its purpose.  In fac
operational validation comprises two phases.  First, us
identify the MOE’s.  This can be accomplished b
discussion with “system experts.”  Second, operation
tests for the chosen MOE’s are conducted.  While it 
often ignored in the validation discussion, the first phase
very important, because it establishes a set of refere
points for the second phase.  If the reference points are
chosen correctly, no matter what operational tests o
conducts in the second phase, conclusions regarding 
validity of the model will be flawed.

There is a wide array of methods available for th
second phase of operational validation.  These meth
include sensitivity analysis (Law and Kelton 1991
analysis of variance (Garratt 1974, Van Horn 1971), ch
square tests (Gerlough and Huber 1975), regress
analysis (Van Horn 1971, Taylor 1979), Wilcoxon signe
rank test (Emshoff and Sisson 1970), Theil's inequal
coefficient (Theil 1961), spectral analysis (Fishman a
Kiviat 1968, Emshoff and Sisson 1970), and th
standardized time series technique (Chen and Sarg
1987, Schruben 1983).  However, there is no complet
definitive approach.  The decision of choosing a speci
approach is often based on the characteristics of the mo
(or the system) and its intended use.

In this section, we propose a two-level statistic
procedure for traffic simulation models.  The leve
identify the progression of the validation process a
different applicabilities of the model, and impose differe
requirements on the extent of the data collection.

3.2.1  First Level: Comparing Two Means

The first validation level involves comparison of averag
of standard traffic flow characteristics (e.g., throughpu
speed, density, and volume) between the simulation a
the real world.  The procedure is illustrated as follows:

Step 1: Users choose validation MOE’s (e.g., speed a
headway), which must be representative of the mod
performance for the intended application of the model.
1081
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Step 2: For each MOE defined in Step 1 and each real-
world data set, repeat Steps 2.1-2.4:

Step 2.1: Users choose the level of significance (LOS) o
the test based on the purpose of the model for the spec
MOE.

Step 2.2: To account for the variability of simulation
results, multiple (independent) simulation runs are
conducted based on different random number seeds.  Th
the average measures of these simulation results a
computed.

Step 2.3: A two-sample t test is conducted.  The null
hypothesis in this test is that the MOE measured from th
system and the MOE computed from the simulation mode
are the same, and the alternative hypothesis is that they 
different.  The p-value is then computed.

Step 2.4: If the p-value is less than the predefined LOS
then the null hypothesis is rejected and the alternativ
hypothesis is accepted, indicating that the model is invali
otherwise, the model will be regarded as valid for th
chosen MOE at the LOS.

Step 3: If the model is valid for all the chosen MOE’s for
all the real-world data sets, the model is considered val
for its intended purpose.  Otherwise, the model is invali
for that purpose.

3.2.2  Second Level: Two-Dimensional Distribution

In the first level, comparison is conducted with respect to 
single MOE.  However, the chosen MOE’s are sometime
correlated.  For instance, when other conditions are th
same, higher speed tends to be correlated with low
headway.  Moreover, while it may be sufficient for
macroscopic traffic models, the first-level test may be
insufficient for microscopic traffic models, which model
individual vehicles at a higher level of detail, i.e., in more
detail.  Finally, the assumption that the data are distribute
normally may not be applicable for some data sets.

To overcome the above difficulties, we introduce the
two-dimensional (e.g., speed vs. headway) two-samp
Kolmogorov-Smirnov (K-S) test as our second-level tes
The K-S test is a nonparametric test, which does n
require explicit distributional assumptions about the
underlying processes.  It can be employed to test wheth
the values from the real world and those from the
simulation are from the same distribution.

The K-S test is not well-defined in more than one
dimension.  The version of the K-S test for compariso
between two two-dimensional distributions is due to
Fasano and Franceschini (1987).  The significance level 
an observed value d  of the test statistic D  (as a disproof
ddd
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of the null hypothesis that the distributions are the same
given approximately by the formula (Press et al. 1992):

)
)/75.025.0(11

()(yProbabilit
2 Nr

dN
QdD KS

−−+
=>

where

KSQ = a complex monotonic function (see Press et al. 1992

for details);
D  = K-S statistic, defined as the maximum value of t
absolute difference between the two two-dimensio
cumulative distribution functions;

21

21

NN

NN
N

+
= , where 1N  and 2N  are sample sizes;

2

2
2

2
12 rr

r
+= , where 1r  is the sample coefficient o

correlation between the two variables for the fir
distribution, and 2r  is the sample coefficient of correlatio

between the two variables for the second distribution.
The two-dimensional K-S statistic provides a

indication of the consistency between the real world a
the simulation.  The )(yProbabilit dD >  has a value

between zero and one, with zero indicating differe
distributions and unity indicating perfect correlation.  Pre
et al. (1992) point out that “when the indicated probabili
is greater than 0.20, …the implication that the data a
model (or two data sets) are not significantly different
certainly correct.”  Thus, this probability can be used
test the agreement between the real-world and 
simulation data.  The procedure in this level of validation
summarized as follows:

Step 1: Users choose two-dimensional MOE pairs (e.
headway vs. speed), which must be representative of
model performance for the intended application of t
model.

Step 2: For each MOE pair, repeat Steps 2.1-2.4:

Step 2.1: Users choose the LOS of the test based on 
purpose of the model for the specified MOE pair.

Step 2.2: For all the real-world data sets and all th
different simulation runs based on each real-world data 
conduct the two-dimensional two-sample K-S test betw
the real world and the simulation, and generate a K
statistic matrix.

Step 2.3: Conduct a one-sample t test for the mean of the
K-S statistic matrix (values in the matrix are assumed to
independent and identically distributed).  Informally, t
hypothesis to be tested in this paper is as follows:

0H : )(yProbabilit dD >  = 0.2

1H : )(yProbabilit dD >  < 0.2 (i.e., the model is invalid)
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Then compute the one-sample t statistic and the associated
p-value.

Step 2.4: Compare the p-value with the predefined LOS.  
the p-value is less than the LOS, we reject the n
hypothesis, indicating that the model is statistical
significant from the real world; otherwise, the model tend
to be valid at the LOS for the specified MOE pair.

Step 3: If the model is valid for all the chosen MOE pairs
the model is considered valid for its intended purpos
Otherwise, the model is invalid.

3.3 Data Collection

Collecting valid data is essential for the success 
operational validation.  The approach for traffic dat
collection is to take detailed measurements of traffic flo
during a given time period.  Data collection plans a
prepared based on the desired level of detail and 
condition that the data collection is not intrusive to norm
traffic operations.  Subject to resource limitations, day-t
day measurements, with approximately the same traf
demand volume and conditions, are required to incorpor
the variability inherent in real-world behavior.  Fo
instance, to study morning rush-hour behavior, one c
take measurements from Tuesday to Thursday during 
same time period (e.g., 7:00 am - 8:00 am) for two weeks

4 VALIDATION EXPERIENCE

In this section, we present an effort to validate CORSI
(CORridor SIMulation, version 1.02 beta) employing th
proposed framework.  CORSIM is currently the mos
extensive and widely used microscopic traffic simulatio
model.  In urban street networks, one of the ma
objectives of traffic study is to synchronize traffic signa
so that a platoon of cars being released from one sig
arrives at the next one without interruption.  To achieve t
above objective and account for traffic instability, a traffi
simulation model must mimic the behavior of platoo
dispersion accurately.  In this paper, we attempt to valid
this behavior in a real-world traffic setting.  This is
achieved by observing the progression of platoo
dispersion from an upstream node (or intersection) to
downstream node, and comparing the observation to t
from CORSIM.

4.1 Conceptual Validation

4.1.1 Model Survey

The model survey was sent to various members of 
traffic engineering community.  Some of the key commen
are summarized in Table 1.  These comments helped
2
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understand and address the salient issues in our valid
effort.

Table 1:  Key Comments from the Model Survey

It should be demonstrated that various sub-systems (e
car-following and lane-changing logic) of the model wor
reasonably well.  An understanding of the differenc
between actual and predicted MOE’s is necessary.  T
inputs having the greatest influence on output and the
uncertainty should be identified.
In the validation process, all parameters and their rang
for various scenarios should be considered.  A hierarc
of the critical parameters may be useful.
In data collection, the level of detail and the variables 
be collected are very important. Increased use of pro
cars, video technology, differential GPS will have a
impact on the data collection.

4.1.2  Model Walkthrough

We conducted an investigation of the theory a
assumptions underlying the CORSIM model and 
submodels.  In particular, the mathematical, logical a
causal relationships used in the model were examin
Moreover, a literature review of recent traffic modelin
theories was performed.

Because the validity of the model is dependent on
specific uses, our investigation found that CORSIM 
conceptually “valid” for most practical purpose
However, the model still needs enhancement.  
example, we discovered that the GM “car-following” log
is more robust than the Pitt car-following logic, which 
currently used in the model, and therefore recommen
employing the GM logic in future modifications o
CORSIM.

4.2 Operational Validation

4.2.1  Test Scenario and Data Collection

The test site was selected at a link on the Union Boulev
between Austin Bluff and Academy Boulevard, Colora
108
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Springs, Colorado.  Union Boulevard is an arterial that ha
three lanes, and the specified link has a length of about 1
miles.  The test scenario and the data collection points a
illustrated in Figure 2.  Three video cameras were set up 
observe and record the progression of platoons
Microscopic data (e.g., speed and headway) associat
with individual vehicles can be collected at several points
within the section of interest.

Five platoons were identified for comparison after data
collection and reduction.  In CORSIM, each platoon
composition and dispersion scenario is coded based o
real-world information.  For each platoon, ten independen
simulation runs were conducted.

4.2.2 First Level: Comparing Two Means

We chose speed and headway as validation MOE’s, an
LOS at 0.1 for the purpose of model application.  The
average MOE’s of the ten simulation runs for each
individual vehicle were computed.  We repeated the abov
process for all the platoons and reported the results alon
with the corresponding real-world data.  This generate
Table 2 (speed) and Table 3 (headway).  In these tw
tables, we performed two-sample t tests between the
simulation and the real-world data for each platoon, an
computed the corresponding p-values.

Video
Camera 2

Video
Camera 1

Still
Camera

Point
Detectors

Arterial

Cross
Street

Cross
Street

Video
Camera 3

Figure 2:  Test Scenario and Data Collection
3
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Table 2:  Comparison of Mean Speed (feet/second) for Different Platoons
Platoon 1 Platoon 2 Platoon 3 Platoon 4 Platoon 5

Vehicle ID Field Model Field Model Field Model Field Model Field Model
1 53.33 47.40 59.26 51.70 59.26 48.40 64.00 53.40 61.54 51.80
2 53.33 49.80 61.54 54.10 66.67 65.00 59.26 53.10 59.26 59.50
3 53.33 51.90 80.00 58.20 64.00 68.30 66.67 55.90 57.14 58.60
4 55.17 52.20 55.17 55.40 55.17 62.40 48.48 60.80 53.33 59.80
5 55.17 54.50 55.17 51.10 55.17 58.30 50.00 57.70 55.17 58.50
6 55.17 55.70 53.33 52.90 57.14 64.90 50.00 66.10 61.54 63.50
7 57.14 56.70 53.33 56.10 53.33 63.00 72.73 55.30 66.67 60.30
8 57.14 58.20 53.33 64.10 53.33 58.80 66.67 54.30 66.67 63.80
9 57.14 59.00 55.17 62.20 64.00 63.10 59.26 56.30 66.67 64.80
10 61.54 60.10 61.54 60.30 59.26 62.80 64.00 61.00 66.67 61.20
11 61.54 63.40 61.54 58.20 64.00 59.30 64.00 64.50 66.67 64.30
12 61.54 65.80 64.00 54.80 61.54 57.90 76.19 60.00 61.54 58.50
13 69.57 71.30 55.17 54.40 57.14 62.30 59.26 60.70 61.54 59.20
14 69.57 75.40 53.33 55.30 61.54 58.20 59.26 56.20 59.26 55.30
15 53.33 60.30 66.67 64.20 64.00 58.30
16 51.61 55.40 57.14 56.40
17 66.67 59.30 53.33 57.30
18 64.00 57.50
19 61.54 54.80
20 64.00 55.30
21 57.14 54.30
22 57.14 55.90
23 55.17 54.20
p-Value 0.98 0.11 0.42 0.16 0.27

Table 3:  Comparison of Mean Headway (seconds) for Different Platoons
Platoon 1 Platoon 2 Platoon 3 Platoon 4 Platoon 5

Vehicle ID Field Model Field Model Field Model Field Model Field Model

1 0.80 0.68 1.10 3.83 1.60 7.38 5.00 3.98 4.00 4.65
2 0.80 0.94 1.20 1.33 1.50 3.02 1.30 1.08 2.60 1.64
3 0.90 1.04 2.10 1.71 0.80 2.21 3.40 1.42 3.30 1.55
4 0.90 1.17 3.70 2.24 3.20 3.64 2.20 2.75 2.50 2.80
5 1.00 1.24 0.80 2.10 3.00 4.80 1.60 3.88 1.50 4.22
6 1.40 1.40 1.00 1.89 2.00 2.52 1.50 1.71 2.90 2.06
7 1.40 1.54 1.10 2.78 1.50 2.95 1.80 2.48 3.40 1.75
8 1.60 1.78 0.60 2.22 0.90 3.11 1.00 1.85 2.10 1.18
9 1.70 2.09 2.40 1.58 4.10 1.40 1.40 2.45 2.30 2.06

10 1.80 2.24 4.90 1.63 3.90 2.77 1.80 2.83 1.50 2.25
11 2.00 2.80 2.60 2.90 0.80 2.09 2.00 1.82 2.30 2.34
12 2.10 3.59 0.70 1.17 0.70 2.27 2.20 2.59 1.80 2.57
13 2.90 5.22 2.90 1.77 1.60 1.61 2.00 1.58 1.40 1.56
14 5.80 6.62 1.20 1.16 2.00 2.68 0.80 2.53 2.20 2.50
15 1.10 1.74 4.30 1.60 4.70 1.54
16 1.70 3.04 3.50 2.81
17 2.10 1.53 2.30 1.73
18 2.60 1.53
19 1.00 1.65
20 2.20 1.45
21 0.70 2.23
22 3.30 1.87
23 1.90 2.48

p-Value 0.38 0.64 0.17 0.76 0.89
he p-
d at
) for
For headway comparisons, the p-values range fro
0.17 to 0.89 for five platoons; thus, the null hypothesis ca
not be rejected, so the simulation and the real world are n
significantly different at level 0.1 with respect to headway
108
m
n
ot
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The same conclusion can be reached for speeds (t
values range from 0.11 to 0.98).  Since CORSIM is vali
LOS = 0.1 for the chosen MOE’s (headway and speed
4
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all the real-world data sets, we believe that the mod
valid for its intended purpose.

4.2.3 Second Level: Two-Dimensional Distribution

Here we chose speed and headway as a validation 
pair, and LOS at 0.1 for the purpose of model applica
Further, we conducted the K-S two-dimensional two-sam
test in a C++ environment to post-process the data from
the real world and CORSIM.  For each of the five plato
and its corresponding simulation runs, a K-S statistic
headway-speed distribution was computed, and a 
statistic matrix was generated (Table 4 and Figure 3).

We then conducted a one-sample t test for the mean o
the K-S statistic matrix: average = 0.133, stdev = 0.1
degrees of freedom = 49, t = -2.87, p-value = 0.003.  S
the p-value (0.003) is less than the LOS (0.1), we rejec
null hypothesis that the mean of the K-S matrix is at le
0.2, and unfortunately conclude that the model is invali
the specified LOS for the specified MOE pair.  Thus, 
model tends to be invalid for the purpose specified in 
test.  It should be noted, however, that the CORSIM m
used in this test is version 1.02 beta, and a more-re
enhanced version may perform better than the one us
this paper.

The computational results for this two-level proced
illustrate the fact that while a model can be valid for 
level of detail, it can be invalid for another. In this t
case, CORSIM (1.02 beta) is valid for a lower level
detail test (one-dimensional comparison), but invalid fo
higher level of detail test (two-dimensional distributio
Since the requirements of the level of detail are determ
by the purpose of the model, we conclude that the mod
valid for some purposes (e.g., simulate macroscopic tr
behavior), while invalid for others (e.g., simulate deta
microscopic vehicle behavior).  Thus, the resu
demonstrate that the proposed multistage valida
procedure can account for the complexity of validation t
and its conclusions.

5 SUMMARY

In this paper, we reviewed the concept of validation 
simulation models, and proposed a validation framew
for traffic simulation models.  The framework consists
conceptual and operational validation processes.  
ddddd
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Table 4:  p-values for K-S Two-Dimensional Two-Sample
Tests

Platoon 1 Platoon 2 Platoon 3 Platoon 4 Platoon 5

RUN1 2.00E-01 4.85E-02 6.98E-02 3.48E-01 2.80E-02

RUN2 2.98E-01 2.70E-05 1.08E-01 2.41E-01 1.30E-01

RUN3 2.01E-01 2.12E-02 1.61E-01 9.12E-01 1.30E-01

RUN4 2.00E-01 3.25E-02 6.98E-02 3.47E-01 8.10E-02

RUN5 2.00E-01 3.26E-02 4.40E-02 2.41E-01 8.08E-02

RUN6 2.08E-03 1.02E-01 4.40E-02 1.62E-01 2.79E-02

RUN7 4.56E-04 1.10E-03 1.47E-03 1.29E-02 1.02E-03

RUN8 4.20E-03 4.86E-02 6.99E-02 1.62E-01 4.85E-02

RUN9 4.55E-04 3.26E-02 1.08E-01 4.79E-01 2.07E-04

RUN10 1.30E-01 3.50E-01 4.45E-01 1.62E-01 2.79E-02

Figure 3:  Histogram from K-S Two-Dimensional Two-
Sample Tests

operational validation involves two levels where statistica
tests are performed in a systematic manner.  In particular,
t test and a K-S test are conducted at different levels 
detail.  These levels correspond to the desirable degree 
accuracy of the model and its applicability.  A test cas
was selected to validate CORSIM’s prediction of platoon
dispersion.  The results demonstrate that validation is not
binary decision, but rather a decision based on the mode
intended use.  The validation experience further illustrate
the necessity and advantages of the proposed multista
validation procedure.
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