Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds

ARRAY-DRIVEN SIMULATION OF REAL DATABASES

William S. Keezer

LEXIS-NEXIS
P.O. Box 933
Dayton, OH 45401, U.S.A.

ABSTRACT workloads. Similar to our work, they parameterized the

A method to represent actual relational databases with ransactions though not with the methods we will present.
arrays for simulation modeling of their performance as part 10 our knowledge, there have been no attempts to publish
of a software/hardware system has been created. Thethe simulation of actual databases with real workloads.

method includes a representation using arrays of the Our primary concerns are CPU, disc I/O resource

simplified, efficient submodel with a small network that Memory _has not been_ an important constraint. Since_any
gives accurate, detailed results from a detailed RDBM will compete with the other transaction processing

runtime or complexity of the overall model. and dynamically model these activities. Furthermore, since
RDBM'’s often have many tables of various sizes, we want
1 INTRODUCTION to be able to represent the workload in a realistic manner,

varying accesses for different combinations of tables and
operations on those tables. We also want be able to easily
change table representations as database designers change
their configurations.

Our first attempt to model a relational database was
yery specific to our application. The database parameters
implementations. We have reported on our method of and processes in the model were hard-coded, which made

creating realistic workloads (Keezer, Fenic, and Nelson, '€Viewing and updating difficult. The CPU delay and 1/O

1992), our methods of supporting software development calculations were made throughout_ the s_imulation,
(McBeath and Keezer, 1993), and an efficient method of wherever there were database transactions. This made the

simulating UNIX disc /O (Nelson, Keezer, and Schuppe, model very specific to our application and added overhead

1996). In this paper we report on our method for simulating to thg simulation. A more easily maintainable, more
relational databases(RDB's) and relational database 9€N€"iC, and more structured model was needed.
managers (RDBM's), which can form an extremely This paper presents the |mportar_1t features of th_e
significant part of the performance of an OLTP system. method that was developed. The main features of this
In the last several years over thirty papers have Method are:
appeared in which simulation was used to study relational - Tables are represented as sets of parameters
database performance. The greatest number of these - In-coming transactions are defined as sets of
studies used simulation to evaluate some algorithm or parameters which direct basic operations on different
approach to relational operations, e.g., the join process tables.
(Kitsuregaws, Harada, and Takagi, 1993), query processing - Resource consumption is simulated by a small
(Pakzad, Jin, and Miller, 1991) (Fan, Su, 1993), and network of atomic operations, such as acquiring and
hardware configurations (Abdelguerfi and Sood, 1991) utilizing CPU or performing disc accesses.

In our work, modeling on-line transaction processing
systems (OLTP's), response time and resource utilizations
(CPU and disc) of transactions, as well as modeling groups
of transactions with varying arrivals are important in
assessing the success of software system designs an

(Zhu, Han, and Hurson, 1992). A few papers used - Operations on tables are defined in terms of the
simulation to validate queuing analyses. Jhang, Kim, and atomic operations.
Dean (1990) used simulation to evaluate the performance . The entire simulation of the relational database is

of rglational algorithms on multicomputer architectures. isplated from the rest of the model, allowing it to be used
Their purpose was to measure relative performance for 55 53 submodel elsewhere.

defined queries. They explicitly did not model various

1461

Keezer

The paper will first present an overview of the Whenever a table is accessed, the B-tree is read in
essential features of relational databases, followed by aseveral steps to find the correct location of the data. The
presentation of the structure of the model. We will then first step is to read the root page and determine which of
present some results and discussion followed by a the pages it indexes contains the correct value range. This

summary and conclusions. step is repeated for each level between the root and data
pages. Then finally, read the data page. When a page at

2 IMPORTANT FEATURES OF RELATIONAL any level is read, it is scanned sequentially for the index or
DATABASES record of interest. In cases where the database is modified

(adding, deleting, or modifying a record) the operation is

Three excellent sources for information on databases arerecorded in a log (RDBIlog) which is used to recover data
Weiderholder (1977), James Martin's text (Martin, 1977), In cases of failure.
and C. J. Date's text (1991). Weiderholder deals mostly =~ There is one other concept necessary to our
with non-relational databases and their performance. understanding of the storage structure and indexing, which
Martin and Date deal primarily with relational databases is clustering vs. non-clustering. Clustered data is stored
and their design and implementation. physically close together on the disc. For an employee

In Chapter 1 of his book, C.J. Date (1991) describes record example, if the most frequent access is by employee
relational systems as ones in which the user perceives thelD, then the records should be stored on disc in either
data as tables with operators that generate new tables fronfiscending or descending employee ID order, and the
the old, as when one extracts data for a report. Some of theemployee ID index would be said to be clustered. Any
products that are relational in nature include DB2, indices to other data values would be unclustered, in that
SQL/DS, 0S/400 Database Manager, RDB/VMS, the sequential indices in their pages would point to data
ORACLE, INGRES, SYBASE, and INFORMIX. The pages that are spread over the physical disc space in a more
differences in these products are primarily in the orless random fashion.
implementation of the actual atomic operations and minor Database designs are compromises (Date,1991). A
details in the storage of the tables and memory design that provides efficient updates may not allow rapid
management. For purposes of this paper, the importantang flexible queries. Queries are fastest when most of the
parts, the representation of the tables and their gata requested are indexed, requiring multiple indices for
manipulation, are more similar than different among the every record added. If many records are added in an
products. update, this overhead can drastically effect the
performance of the system. On the other hand, if updates
are fast and efficient, the queries may suffer from lack of

) o)) indexing and large numbers of sequential reads of data may
The key to accessing data as if it were in tables is the o required to obtain the desired information.

indexing of the values by which the data will be
referenced. [n RDB'S a set of B-trees o_f indices to da}ta iS5 5 Stored Transactions
created. An index in this case is essentially a sorted list of

the values of interest associated with the address of theData in RDB's is accessed by a language called SQL or a
record(s) containing that value. variant thereof. Any one access requires a series of SQL

In ﬁtonn? tthe %ats tand"mdt[ces, |?d|V|dudaI re?lo:jds are statements which perform the necessary operations to
generally not stored, but coliections ot records cafe IO&u~:]esretrieve, insert, remove, or modify the data. It is the SQL
are stored. A page is a unit of memory and disc storage that

. . Lo which provides the view to the user that the data is in
may vary with the product, but is a power of two in size,

e.g., 2048 or 4096 bytes. The capacity of a page is as man))a;l?[lﬁs tzoug? Itis a;:;cﬁgll?/ stored as lﬂdfxfdt recortds. Ons
records as can fit intact on the page. The addresses of2! the advantages of this language 1s that statements can be

pages are kept in the indices. Both index pages and datagrouped into procedures and stored as part of.the database.
pages have similar structures, the main difference is that an-urthermore, once the procedures are established and the
index record (or row) is not necessarily of the same length database populated, the procedures may be optimized and
as a data record. Generally it is smaller, and normally more Compiled in their optimized form and then called during
rows are stored on an index page than on a data pageruntime, similar to a subroutine. In this manner, an
There is always a single root page which forms the start of incoming transaction only has to call the proper procedure
the B-tree There can be different numbers of levels in an to accomplish all its desired results.

index. There can be tables with only a root page, or tables

with five or more levels of indexing. Generally, no more

than five levels are implemented, because performance and

storage considerations become paramount.

2.1 Index Structure

1462

Array-Driven Simulation of Real Databases

2.3 Operations On Data [There are a number of other implementations of this
operation. For an excellent review see Mishra and Eich

For the purposes of our models, we found that all of the (1992).]

SQL commands used in our stored procedures could be

implemented with five operations, FETCH, STORE, 3 STRUCTURE OF THE SIMULATION MODEL

REMOVE, CHANGE, and COMBINE. The FETCH

operation does just as it sounds; it finds records by The model contains four major parts, the representations of

descending the index tree, starting at the root level. We usethe transactions, the representations of the tables, the

this operation as the beginning of all other operations, and subroutines for calculating resources, and the simulation

as a substitute for such SQL statements as SELECT or IFnetwork itself. ~This section starts with a high level

EXISTS. description of the overall simulation process, then follows
The STORE operation reads down the tree to find the with more detailed descriptions of the various parts of the

correct location for the record operation, and then adds amodel.

record. After the addition of a record there is further work,

in that there may not be space in the data page for the new3.1 Process Description

record. In such a case, a new page is created and half the

data from the old page is moved to the new page, and theA transaction is sent to the relational database, which

record is inserted on the correct page. The indices for thetriggers a stored procedure. This stored procedure

old page must be updated to reflect the change in valueaccomplishes the desired access to the data as a

range, and a new index to the new page must be inserted i.ompination of SQL logic steps and table operations. The

the index page. This in turn may cause further addition of regyits are returned to the requester. In our model, the

index pages at the next higher level, potentially on up to purposes of the RDB model were to properly compete for

Fhe ;%Otal,? t?ﬁ cgs;a of av\?pllé of thf roodt F)I&}[%e’ agg.iher Iefvelresources and to expend clock time in the approximately
IS added to the b-lree. WWe do not mode! tne adaition of & .. ¢ amounts, using a small network. Though we

level. There IS a variation on the STORE.operatlon wher_1 returned no results to the model, it would be possible to do
records come into the system in sequential order of their
clustered index. In such a case, the system would not create’:
a new page until the current page is full, and would not
move data to the new page, but would only put the new
record in the first slot. The remaining index maintenance is
the same.

The REMOVE operation also reads down the index

The flow in the model is based on table operations,
stepping through them sequentially. When a request
arrives, the model finds the correct stored procedure
parameters, loads the first table’s descriptive parameters,
and loads the transaction’s parameters for that operation.
The resource consumption for the table operation is

]Eree tohﬂnz the correct I%cart]mnf. 'Ill'he'record |s(;hen removeg calculated in a subroutine, and the resources are expended
rom the data page and the following records are moved j, he gimulation network. When that operation is

up. If the entire page is empty it would be deleted and its fihisheq, the entity returns to the stored procedure and
index deleted at the next higher level. The combining of gptains the next table operation and repeats the process.
partially-filed pages and the deletion of empty pages Thjs cycling continues until all the table operations are
commonly occurs only during a restructure of the database completed. When the stored procedure is completed, the

at a low-usage hour, and would not be important in the entity is returned to the requesting part of the simulation.
performance considerations.
The CHANGE operation is very similar to FETCH if 3.2 Representing Transactions
the data is in a fixed format. The index tree is read to the
correct location of the record and the correct field changed. SQL transactions are viewed as being a series of table

If, however, the data is in vqriable format, the old record is operations. Each operation has five parameters, the primary
deleted and the new record inserted. table identifier, the secondary table identifier (if the
The COMBINE operation is used when data from two gperation is a COMBINE), the number of records to be
or more tables is to be extracted and joined to form a new ccessed in the primary table, the number of instructions,
table. 'Ifthe keys are be the same, we would model such angther than table operations, in the SQL procedure to be
operation not as a COMBINE in our sense, but as twWo executed, and the operation identifier. If the number of
FETCHES with extra processing to do the data merge. records to be accessed is a variable for this step in the
If the two tables have no common keys, for each row on nprocedure, then this value can be a negative number pointing
one table, every row in the other table would have to be readyg the |ocation of the correct number of iterations. Since one
to extract the relevant records. In our models, this is the procedure can consist of multiple table operations, each SQL

join. This operation has major performance implications.

1463

Keezer

N represents the number of tables to be accessed, and five STORE processing follows the same logic as FETCH
is a column of the five parameters for a given table to locate the location of the new record. It then calculates
operation. The additional column is used to provide a how many pages are split or added, and how many rows
negative one as the table identifier, indicating that the or pointers are inserted or added. The subroutine then
procedure is completed. looks at the current leaf contents. If it is not equal to the
Ad hocinquiries, in principal could be provided for by capacity, it adds or inserts a pointer, based on whether
generating the necessary parameters as required andhe split value is non-zero (insert) or zero (add). If the

placing them in an array built for that purpose. page is at capacity, it is split or a page is added, and the
next level up is processed in the same manner with the
3.3 Representing Relational Tables pointer to the new page. This can cascade to the root level

of the tree. However, this model does not split the root,
Tables were parameterized with a set of sixteen values, twosince this would create a new level for the table index

of which were left unused for possible later expansion. tree. . .
The following is a list of the Table Definitions in the CHANGE follows the FETCH logic to find the
model storage array. location for the update. It then calculates the modification
1. Table Identifier process as a pointer or row addition, and then exits.
2. Number of pointers in the root, zero if a flat file Updates are assumed not to create splits or adds, even
3. Number of pointers in the rightmost page of the though there may be variable length fields involved.
first branch REMOVE is identical to STORE with the signs
4. Number of pointers in the rightmost page of the changed for the page content updates. The logic is also
second branch reversed for determining page removal. If the page is
5. Number of pointers in the rightmost page of the €mpty, a pointer is removed from next level, but a disc
third branch write for the empty page is not charged.
6. Number of pointers in the rightmost leaf COMBINE has a totally different process from the
7. Capacity of the first branch other four operations. RDB’s do joins in a stepwise
8. Capacity of the second branch manner, if more than two tables are involved. It nests the
9. Capacity of the third branch tables in a hierarchy based on their size at the time the
10. Capacity of the leaf procedure was compiled, the smallest innermost and the
11. First branch contents after a split; if zero, the keys largest outermost. RDB then steps through ALL rows of

are sequentia' and pages are added, not sp“t If the innermost table once for EACH row of the next table
negative, the Steady state has equa' numbers Ofout, and creates a temporary table for that result. It then

deletions and additions and few splits takes the next table out and steps through it, scanning all
12. Second branch contents after a split; if zero add, if Fows of the temporary table once for each row in the
negative insert but don't split outer table, as before. This process continues until all
13. Third branch contents after a split; if zero add, if tables have been joined.
negative insert but don't split In modeling the COMBINE process, the model
14. Leaf contents after a split; if zero add, if negative assumes that any temporary tables will have the same
insert but don't split number of rows as the outer table of the join that created
15-16. Left for expansion it. The number of rows scanned is the total number of
rows in the inner table multiplied by the number of rows
3.4 Calculating Resources Used in the outer table. This would be a worst case, as there

may be constraints on which rows of the outer table are
Wjoined. They all have to be read, however. For the

many pages are to be read from disc, and how many page rocess, the outer table is the Table ID in row one of the

total are read by the process To determine the number ofProcedure set in the storage array, and the inner table is
ages read in processing, the subroutine steps through thethe Inner Table ID in row two.
hag P 9 P 9 The next calculations are performed for each table in

current capacity values, from root to leaf (the lowest level the JOIN. The first calculation made is the number of

n thbe mtiex tree), gnd czufnts tg? non-zelzrohlevels.bThetjeaveS in each table. This is tAlkeproduct of the current
number of pages to be read from disc equals the number o, yienis of the root and all branches. The sum of the

levels above two. (We assume that the root and the first | mper of leaves becomes the number of pages to read
level are always memory-resident, and all higher levels fom gisc for tables with leaves in levels 3, 4 or 5. The

must be read from disc). CPU consumption is based on thepext calculation is the number of leaves times the number
number of instructions executed for each step in addition to of rows per leaf. For tables that are split to add leaves,

table operations. use the average fill factor of 75% or assume the current

The processing for a FETCH operation determines ho

1464

Array-Driven Simulation of Real Databases

contents are representative (pessimistic for >75% and
optimistic for <75%). For tables that add leaves, calculate
the number of leaves less one, then multiply it times the
capacity of a leaf, then add the current capacity to that. The
sum of the rows for each of the tables is the number of

Consume CPU for pages added
Else

Consume CPU for pages split

Consume CPU for pages inserted
End If

rows scanned.

The remaining calculation is the number of pages to be
written to disc for the final table. Assume a generic row
size, multiply that times the number of rows in the outer
table, and divide by 2K or 4K depending on page size.
Since join operations are generally used to create tables
for output to printers or CRT's, 200 bytes/row or less
would be a reasonable number. Using a value of 200 bytes
and a page size of 2K would lead to about 10 rows per
page. Since there is some overhead per page, simply
dividing the number of rows by 10 would provide a
reasonable estimate of the number of pages in the resulting
table from a COMBINE.

If data has been modified
(STORE, CHANGE, DELETE)
Increment RDBlog contents by the RDBlog entry

Calculate the number of log pages to write.
Calculate the number of disc writes.
Add one write per log page.
If a page is split
Writes are added equal to the twice number of
pages split
Add the number of inserted pointers less the
number of pages split
If the page is not split

3.5 Simulating the Consumption of Resources Writes are added equal to the number of pages

added
There are nine values necessary to simulate the Add the number of pointers added less the number
resource consumption of table operations. Not all of them of pages added

Execute the number of disc writes calculated.
Return to the correct operation routine.

are used in every operation. The values are the RDBIlog
entry size, the number of instructions executed in the
stored process, the number of pages to be read from disc,
the total number of pages read (memory and disc) for There are two daemons to be simulated in the RDB
processing, the number of pages split, the number of pagessub-model. The RDBlog daemon writes one or more
added (not part of the split, used in sequential key table), RDBlog pages whenever the criteria of the RDBM are met.
the number of rows/pointers modified/added, and the The memory daemon flushes pages to disc whenever the
number of rows/pointers inserted, and the number of rows RDBM criteria are met. The concept for both daemons is to
scanned. These resources are consumed in a small subdetect when writes are needed, then queue the necessary
network described in the pseudocode which follows. This number of page-requests as write 1/0Os.
network would vary with the various RDBM products,
since it closely reflects their implementations. 4 CREATING PARAMETERS
Obtain the RDB manager
Obtain a CPU
Consume CPU to setup the operation
Release the manager
(Disc I/O is under the operating system)

If disc reads are required to obtain data

While disc reads are >0

Execute single appropriate disc I/O simulation.

Decrement disc reads required

4.1 Defining the Stored Procedures

Stored procedures consist of executable statements and
table operations. The table operations in turn require CPU
and disc resources. The monitors for the RDBM may give
information on how these procedures are compiled and
optimized. For example, in SYBASE one can use SET
PLAN to find the order of execution of statements and the
exact order of table operations. SET IO gives the number

End While of real I/O’s and logical I/O’s (memory reads) occurring
End If during table operations. There are also monitors which can
Obtain the RDB manager give elapsed times and CPU utilizations.
Wait for CPU One must be careful in interpreting these data,

especially if determined on databases under development.
The listing of the compiled procedures may be difficult, as
they are not executed in the exact order listed in the SQL
code; called subroutines execute immediately after the
calling instruction. This nesting of execution steps can
lead to confusion, if not carefully followed. There may be

Consume CPU for number of instructions executed

Consume CPU for pages read

Consume CPU for rows scanned

If pages are added (zero value for pages split)
Consume CPU for pointers added

1465

Keezer

more logical I/O than will occur in production, or there can little difference in the work to scan half a page, e.g. the

be access paths, which are optimal for the partly populated difference between scanning 30 and 40 entries. In our work

database, but are very inefficient for the full database. The we had a number of tables with three levels and between

monitoring process adds to both the CPU and the elapsed40 and 48 index rows per page. Since the data rows were

time, and these values should be considered upper bounds.similar in size, the leaves were similar, and all were
From these data, the number of instructions executed represented as one table. The same would hold true for

and the order and type of table operations can be placed insecondary index table leaves.

the stored procedure vectors. The number of real vs.

logical I/O’s is determined by assuming only the root and 4.3 Calibrating the Performance

the first level of indexing are in memory. This assumption

has appeared to be almost universally applicable in the Calibration of the model is of course critical to its success

author’s experience, because fan-out at the third level of in predicting resource consumption. The values requiring

indexing creates far too many pages to fit a significant calibration were for CPU consumption by various table

number of them in memory. The CPU utilizations were operations and for disc I/Os.

determined by benchmarks. When we first created the model, the disc I/O values at
the hardware level were obtained from manufacturer’s data
4.2 Defining the Data Tables for average seek, latency, and data transfer rates. Since

that time, a generalized model for I/O has been developed
The performance of an RDB is the sum of the atomic that simulates each individual 1/0O (Nelson, Keezer, and

operations necessary to access the various tables. ThesgCcnuPPe, 1996). If the RDBM does its own disc accesses,
depend on the number of levels in the tables, how many an estimate or a measurement of the CPU time to handle

rows of indices there are on each page, and how manyg o C B e e e of measure of
pages are memory resident. This is obtained from the P g sy '

database desianers. but generally treating each tablethe CPU time to generate the request is required. There will
9 ' 9 y g also be the expenditure of CPU by the operating system for

separately will be too unwieldy bgcause of the large each /0. This value would be whatever is used in the rest
number of tables. Frequently there will be groups of tables of the model.

with similar structure for indices and data pages, and there We were faced with the challenge of calibrating the

may also be tables that will not be used at all during the cpyy consumption for the table operations. For this we

period being simulated. For example, one transaction we ysed a custom benchmark consisting of a series of record
modeled had 10 different tables. One accounted for over storage Operations with many repetitions and with the

65% of the accesses. The another 30% of the accesses wergumber of records varying over an order of magnitude. We
to tables with similar key structure and levels of indexing, plotted the response time against the number of records.
so that the transaction was simulated with only two The slope of the line indicated the storage time per record.
modeled tables. We found that there was little or no queuing time in the
The most important parameter is the number of levels elapsed time and that to a good approximation, it was all
in the B-tree. It is not possible to simulate a three-level CPU time.
table with a two- or four-level table because every level We then used this CPU time value to determine the
over two requires a disc read. Modeling a three-level table cost of table operations. There were seven values of
with a two-level table will use insufficient resources and interest: row read, page read, row addition, page addition,
modeling it with a four-level table will use too many. instruction execution, page splitting, and row insertion.
The next parameter is whether the index is primary or With one CPU value and seven unknowns, we took reading
secondary. Primary indices generally have the data pagesa row of data as the smallest operation and built upon it.
clustered with them and have a different leaf (bottom level) We chose to equate reading a page header in memory and
structure than secondary indices, even if the number of processing its data (page read) to reading five rows of data.
levels is identical. Primary indices may be inserted or We set adding a row of data to the end of a page as
added depending on data clustering and sequentially ofequivalent to 10 row-reads. This .helped account for the
keys. Secondary indices are always inserted. One mayRDB log work that an add operation generates. We then

combine similar secondary indices into one table model, Made adding a new page to a table the equivalent of five
but not primary and secondary. page reads to cover the overhead of creating and allocating

The third parameter has the most room for combining & N€W page image in memory. Additionally, in random
tables. It is the number of index rows in the root and t@bles splitting a page added a further 2.5 times the page
branches and the number of data or index rows in the add cost, because half the data must be copied to the new

leaves (depending on whether it is a primary or secondary Pag€. Inserting a row in a page had an additional 2.5 row
index tree). If the number of levels are the same, there is €2d COSt to cover the cost of pulling down the rows on the

1466

Array-Driven Simulation of Real Databases

page that would follow the new rows. Finally, execution of maintenance of the transactions, the database structure, and
a stored instruction that had already been compiled wasthe relational manager simulations were entirely separate.
taken as twice the cost of reading a row. As can be imagined, this greatly simplified the overall
By determining the operations required to add a record maintenance of the RDB model.
to the database, and then equating that to row-reads, one Even though we modeled the RDB in much more
can find the total number of equivalent row-reads. This is detail than previously, the smaller number of nodes, and
set to the CPU cost of adding a record, and the CPU costthe reuse of attribute space in the sub-model prevented the
per row-read is calculated. One can then back-calculate torun-time of the overall simulation from increasing.
find the costs of the other operations. We found that it Furthermore, the accuracy as mentioned earlier was
took the equivalent of 181.4 rows read in 7.8 msec, giving exceptionally good. Part of the increased accuracy was due
a CPU cost of 0.043 CPU msec per row read. After the to the deliberate choice to model the measured elapsed
back-calculations to find the other six values, the only times in the calibration runs as if they were all due to CPU
operation that had not been calibrated was the row delete.time. This provided a compensation for the use of
This was taken to require the same cpu costs as an add. It isleterministic values in the model and the lack of explicit
important to note that the particular ratios we used worked modeling of the operating system background functions.
well for us, but may not work for all systems and all One new use of match nodes in SLAMSYSTEM came
RDBM's. The general approach, however, would work for from this effort. We used the match node to isolate the sub-
all systems and could be refined depending on the availablemodel from the rest of the system in order to reuse the
metrics for calibration. attribute space. In cases where the results of the sub-model
Later comparisons of the CPU utilizations of the RDB are desired but further processing will occur to the original
system estimated by this model to actual tests of entity, we would recommend this over a straight
implemented code showed the model estimates were withinhierachical addition of submodels since in order to
3-5% of the total system CPU actually utilized, e.g., the preserve attribute values, it would be quite possible to
model predicted 7-9% of system CPU for the RDB and the explode the attribute space with a negative impact on run-
actual utilizations were 7-11%. time.

5 RESULTS AND DISCUSSION 6 SUMMARY AND CONCLUSIONS

The method we developed to parameterize relational We have described a method for modeling relational
databases has a number of benefits. One is that thedatabases that is flexible, accurate, and efficient in its use
generated data and calibration of operations has allowedof resources. This method may be used to model various
the estimation of the performance of databases with relational databases without changing the simulation
spreadsheets in many instances, allowing a sufficient network, and can model different relational database
estimate to be made without developing and running a managers with changes to only a small portion of the
model. In those cases where a simulation is required, it is network. The process of gathering the data and calibrating
relatively easy to change the database simulation to reflectthe model enables static estimates of performance using
the new or different configuration. To define completely spreadsheet techniques, where a model run is not justified.
the structural parameters of the relational database and theAdditionally, we have created a novel use for the
operating parameters of the database manager requires SLAMSYSTEM match node as a means of subnetwork
fairly large effort. However, at early stages of the design of isolation, allowing complete freedom in reusing attributes
the database, generic place-holder values can be used, thef entities. Though our purpose has been to simulate the
values of which are estimated from past experience. performance of relational databases, there is no reason
The structure of the model was quite different from these techniques cannot be used for any indexed database
our earlier efforts. We consumed all the resources in a with appropriate modifications.
small network which was executed after the calculation of
the resources to be consumed. These calculations wereACKNOWLEDGEMENT
performed in compiled user subroutines, e.g. the EVENT
node or USERF in SLAMSYSTEM. The remainder of Great appreciation is expressed to former colleague and
the network in the RDB model was mainly routing of one-time co-author, Darby F. McBeath. Her comments

parameterizing the database structure and the operationsgyearted during the building of models have been a
we also parameterized the stored procedures for theiemendous asset.

incoming transactions. Thus an incoming transaction was
linked to a set of vectors that defined the sequence of
operations and tables to be manipulated. As a result, the

1467

Keezer

REFERENCES

Abdelguerfi, M. and Sood, A.K. 1991. A fine-grain
architecture for relational database aggregation
operationslEEE Micro 11 6, 35-43.

Date, C. J. 1991. An Introduction to Database Systems,
Vol. 1. 5th ed. New York, New York: Addison-
Wesley Publishing Co.

Fan, J.-J.., and Su, K.-Y. 1993. The effect of database
filters on the performance of bufferred relational
database systemsformation Systems 18, 99-109.

Jhang, H., Kim, T. G., and Dean, R. H. 1990. Modelling
relational databases on multicomputer architectures.
Proceedings of the 1990 Summer Computer
Simulation Conferen¢ead. B. Svrcek and J. McRae,
Society for Computer Simulation.

Keezer, W.S., Fenic, A.P. and Nelson, B.L. 1992.
Representation of User Transaction Processing
Behavior with a State Transition MatriRroceedings
of the 1992 Winter Simulation Conferencsd. J.J.
Swain, D. Goldsman, R.C. Crain, and J.R. Wilson,
1223. IEEE, Piscataway, NJ, 1992. p. 1223

Kitsuregawa, M., Harada, L., and Takagi, M. 1993.
Algorithms and performance evaluation of join
processing on KD-tree indexed relatiosansactions
of the Institute of Electronics Information and
Communication Engineers D-1 J76D4, 172-183.

Martin, J. 1977.Computer Data Base Organizatio@nd
ed. Englewood Cliffs, NJ: Prentice-Hall.

Mishra, P. and Eich, M.H. 1992. Join processing in
relational databases.ACM Computing Surveys 24
no.1, 63-113.

McBeath, D.L., and Keezer, W.S. 1993. Simulation in
Support of Software Developmemtroceedings of the
1993 Winter Simulation Conferenoed. G.W. Evans,

M. Mollaghasemi, E.C. Russell, and W.E. Biles, 1143.
IEEE, Piscataway, NJ, 1993. p. 1143.

Nelson, B. L., Keezer, W. S., and Schuppe, T. F. 1996. A
Hybrid Simulation-Queueing Module for Modeling
UNIX I/O in Performance AnalysisProceedings of
the 1996 Winter Simulation Conferenced. J.M.
Charnes, D.M. Morrice, D. T. Brunner, and J.J.
Swain, 1238. IEEE, Piscataway, NJ: p. 1238.

Omiecinski, E., Liu, W., and Akyildiz, I. 1991. Analysis of
a deferred and incremental update strategy for
secondary indexesinformation Systems 1@o. 3,
345-356.

Pakzad, S. Jin, B.. and Miller, L.L. 1991. Design and
analysis of an intelligent support system for large
databasesProceedings of the Twenty-Fifth Hawaii
Intgernational Conference on System Science&-

58.

Weiderholder, G. 197 Database DesignNew York, NY:

McGraw-Hill Book Co.

1468

Zhu, J., Han, J.Y., and Hurson, A. R. 1992. A

multiprocessor organization for very large relational
databases. Proceedings of the 34th Midwest
Symposium on Circuits and System870-973.

Products and services referenced in this paper may be
trademarks or registered trademarks of their respective
companies.

AUTHOR BIOGRAPHY

WILLIAM S. KEEZER is currently a Senior Systems
Engineer focusing on mainframe storage management
and has been with LEXIS-NEXIS for over eleven years.
He holds B.S. and Ph.D. degrees from the University of
Oklahoma, and is a member of the ACM.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

