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ABSTRACT
A method to represent actual relational databases w
arrays for simulation modeling of their performance as p
of a software/hardware system has been created.  
method includes a representation using arrays of 
transactions accessing the database.  This leads 
simplified, efficient submodel with a small network th
gives accurate, detailed results from a detai
representation of the database without an increase
runtime or complexity of the overall model.

1 INTRODUCTION

In our work, modeling on-line transaction processi
systems (OLTP's), response time and resource utilizat
(CPU and disc) of transactions, as well as modeling gro
of transactions with varying arrivals are important 
assessing the success of software system designs
implementations. We have reported on our method
creating realistic workloads (Keezer, Fenic, and Nels
1992), our methods of supporting software developm
(McBeath and Keezer, 1993), and an efficient method
simulating UNIX disc I/O (Nelson, Keezer, and Schupp
1996). In this paper we report on our method for simulat
relational databases(RDB's) and relational datab
managers (RDBM's), which can form an extreme
significant part of the performance of an OLTP system.

In the last several years over thirty papers ha
appeared in which simulation was used to study relatio
database performance.  The greatest number of t
studies used simulation to evaluate some algorithm
approach to relational operations, e.g., the join proc
(Kitsuregaws, Harada, and Takagi, 1993), query proces
(Pakzad, Jin, and Miller, 1991) (Fan, Su, 1993), a
hardware configurations (Abdelguerfi and Sood, 199
(Zhu, Han, and Hurson, 1992).  A few papers us
simulation to validate queuing analyses. Jhang, Kim, 
Dean (1990) used simulation to evaluate the performa
of relational algorithms on multicomputer architecture
Their purpose was to measure relative performance 
defined queries. They explicitly did not model variou
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workloads. Similar to our work, they parameterized 
transactions though not with the methods we will pres
To our knowledge, there have been no attempts to pu
the simulation of actual databases with real workloads.

Our primary concerns are CPU, disc I/O resou
utilizations, and overall response time.  In our syste
memory has not been an important constraint. Since
RDBM will compete with the other transaction process
activities for the CPU and disc access, we must accur
and dynamically model these activities. Furthermore, s
RDBM’s often have many tables of various sizes, we w
to be able to represent the workload in a realistic man
varying accesses for different combinations of tables 
operations on those tables. We also want be able to e
change table representations as database designers c
their configurations.

Our first attempt to model a relational database 
very specific to our application.  The database parame
and processes in the model were hard-coded, which m
reviewing and updating difficult. The CPU delay and I
calculations were made throughout the simulati
wherever there were database transactions. This mad
model very specific to our application and added overh
to the simulation.  A more easily maintainable, m
generic, and more structured model was needed.

This paper presents the important features of 
method that was developed. The main features of 
method are:

· Tables are represented as sets of parameters
· In-coming transactions are defined as sets

parameters which direct basic operations on diffe
tables.

· Resource consumption is simulated by a sm
network of atomic operations, such as acquiring 
utilizing CPU or performing disc accesses.

· Operations on tables are defined in terms of 
atomic operations.

· The entire simulation of the relational database
isolated from the rest of the model, allowing it to be u
as a submodel elsewhere.
1
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The paper will first present an overview of t
essential features of relational databases, followed b
presentation of the structure of the model. We will th
present some results and discussion followed b
summary and conclusions.

2 IMPORTANT FEATURES OF RELATIONAL
DATABASES

Three excellent sources for information on databases
Weiderholder (1977), James Martin's text (Martin, 197
and C. J. Date's text (1991). Weiderholder deals mo
with non-relational databases and their performa
Martin and Date deal primarily with relational databa
and their design and implementation.

In Chapter 1 of his book, C.J. Date (1991) descr
relational systems as ones in which the user perceive
data as tables with operators that generate new tables
the old, as when one extracts data for a report. Some o
products that are relational in nature include D
SQL/DS, OS/400 Database Manager, RDB/VM
ORACLE, INGRES, SYBASE, and INFORMIX. Th
differences in these products are primarily in 
implementation of the actual atomic operations and m
details in the storage of the tables and mem
management. For purposes of this paper, the impo
parts, the representation of the tables and t
manipulation, are more similar than different among 
products.

2.1 Index Structure

The key to accessing data as if it were in tables is
indexing of the values by which the data will 
referenced. In RDB's a set of B-trees of indices to da
created. An index in this case is essentially a sorted li
the values of interest associated with the address o
record(s) containing that value.

In storing the data and indices, individual records 
generally not stored, but collections of records called p
are stored. A page is a unit of memory and disc storage
may vary with the product, but is a power of two in si
e.g., 2048 or 4096 bytes. The capacity of a page is as 
records as can fit intact on the page. The addresse
pages are kept in the indices.  Both index pages and
pages have similar structures, the main difference is th
index record (or row) is not necessarily of the same le
as a data record. Generally it is smaller, and normally m
rows are stored on an index page than on a data 
There is always a single root page which forms the sta
the B-tree  There can be different numbers of levels in
index.  There can be tables with only a root page, or ta
with five or more levels of indexing. Generally, no mo
than five levels are implemented, because performance
storage considerations become paramount.
1462
Whenever a table is accessed, the B-tree is read
everal steps to find the correct location of the data. T
irst step is to read the root page and determine which
he pages it indexes contains the correct value range. T
tep is repeated for each level between the root and d
ages.  Then finally, read the data page. When a page
ny level is read, it is scanned sequentially for the index
ecord of interest. In cases where the database is modi
adding, deleting, or modifying a record) the operation 
ecorded in a log (RDBlog) which is used to recover da
n cases of failure.

There is one other concept necessary to o
nderstanding of the storage structure and indexing, wh

s clustering vs. non-clustering. Clustered data is stor
hysically close together on the disc. For an employ
ecord example, if the most frequent access is by emplo
D, then the records should be stored on disc in eith
scending or descending employee ID order, and 
mployee ID index would be said to be clustered. An

ndices to other data values would be unclustered, in t
he sequential indices in their pages would point to da
ages that are spread over the physical disc space in a m
r less random fashion.

Database designs are compromises (Date,1991).
esign that provides efficient updates may not allow rap
nd flexible queries. Queries are fastest when most of 
ata requested are indexed, requiring multiple indices 
very record added. If many records are added in 
pdate, this overhead can drastically effect th
erformance of the system. On the other hand, if upda
re fast and efficient, the queries may suffer from lack 

ndexing and large numbers of sequential reads of data m
e required to obtain the desired information.

.2 Stored Transactions

ata in RDB's is accessed by a language called SQL o
ariant thereof. Any one access requires a series of S
tatements which perform the necessary operations
etrieve, insert, remove, or modify the data. It is the SQ
hich provides the view to the user that the data is 

ables though it is actually stored as indexed records. O
f the advantages of this language is that statements ca
rouped into procedures and stored as part of the datab
urthermore, once the procedures are established and
atabase populated, the procedures may be optimized 
ompiled in their optimized form and then called durin
untime, similar to a subroutine. In this manner, a
ncoming transaction only has to call the proper procedu
o accomplish all its desired results.
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2.3 Operations On Data

For the purposes of our models, we found that all of
SQL commands used in our stored procedures coul
implemented with five operations, FETCH, STOR
REMOVE, CHANGE, and COMBINE. The FETC
operation does just as it sounds; it finds records
descending the index tree, starting at the root level. We
this operation as the beginning of all other operations,
as a substitute for such SQL statements as SELECT 
EXISTS.

The STORE operation reads down the tree to find
correct location for the record operation, and then ad
record. After the addition of a record there is further w
in that there may not be space in the data page for the
record. In such a case, a new page is created and ha
data from the old page is moved to the new page, an
record is inserted on the correct page. The indices fo
old page must be updated to reflect the change in v
range, and a new index to the new page must be inser
the index page. This in turn may cause further additio
index pages at the next higher level, potentially on u
the root. In the case of a split of the root page, another 
is added to the B-tree. We do not model the addition 
level. There is a variation on the STORE operation w
records come into the system in sequential order of 
clustered index. In such a case, the system would not c
a new page until the current page is full, and would
move data to the new page, but would only  put the 
record in the first slot. The remaining index maintenanc
the same.

The REMOVE operation also reads down the in
tree to find the correct location. The record is then remo
from the data page and the following records are mo
up. If the entire page is empty it would be deleted an
index deleted at the next higher level. The combining
partially-filled pages and the deletion of empty pa
commonly occurs only during a restructure of the data
at a low-usage hour, and would not be important in
performance considerations.

The CHANGE operation is very similar to FETCH
the data is in a fixed format. The index tree is read to
correct location of the record and the correct field chan
If, however, the data is in variable format, the old recor
deleted and the new record inserted.

The COMBINE operation is used when data from 
or more tables is to be extracted and joined to form a 
table.  If the keys are be the same, we would model su
operation not as a COMBINE in our sense, but as 
FETCHES with extra processing to do the data merge.

If the two tables have no common keys, for each row
one table, every row in the other table would have to be
to extract the relevant records. In our models, this is
COMBINE operation, referred to in the literature as an o
join. This operation has major performance implicatio
1463
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[There are a number of other implementations of this
operation.  For an excellent review see Mishra and Eic
(1992).]

3 STRUCTURE OF THE SIMULATION MODEL

The model contains four major parts, the representations o
the transactions, the representations of the tables, th
subroutines for calculating resources, and  the simulatio
network itself.  This section starts with a high level
description of the overall simulation process, then follows
with more detailed descriptions of the various parts of the
model.

3.1 Process Description

A transaction is sent to the relational database, whic
triggers a stored procedure. This stored procedur
accomplishes the desired access to the data as 
combination of SQL logic steps and table operations. Th
results are returned to the requester. In our model, th
purposes of the RDB model were to properly compete fo
resources and to expend clock time in the approximatel
correct amounts, using a small network. Though we
returned no results to the model, it would be possible to d
so.

The flow in the model is based on table operations
stepping through them sequentially. When a reques
arrives, the model finds the correct stored procedure
parameters, loads the first table’s descriptive  parameter
and loads the transaction’s parameters for that operatio
The resource consumption for the table operation is
calculated in a subroutine, and the resources are expend
in the simulation network.   When that operation is
finished, the entity returns to the stored procedure an
obtains the next table operation and repeats the proces
This cycling continues until all the table operations are
completed. When the stored procedure is completed, th
entity is returned to the requesting part of the simulation.

3.2 Representing Transactions

SQL transactions are viewed as being a series of tab
operations.  Each operation has five parameters, the prima
table identifier, the secondary table identifier (if the
operation is a COMBINE), the number of records to be
accessed in the primary table, the number of instructions
other than table operations, in the SQL procedure to b
executed, and the operation identifier.  If the number o
records to be accessed is a variable for this step in th
procedure, then this value can be a negative number pointin
to the location of the correct number of iterations.  Since on
procedure can consist of multiple table operations, each SQ
transaction is represented by an (N + 1) by 5 array, where
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N represents the number of tables to be accessed, and 
is a column of the five parameters for a given tab
operation.  The additional column is used to provide 
negative one as the table identifier, indicating that th
procedure is completed.

Ad hoc inquiries, in principal could be provided for by
generating the necessary parameters as required 
placing them in an array built for that purpose.

3.3 Representing Relational Tables

Tables were parameterized with a set of sixteen values, t
of which were left unused for possible later expansion.

The following is a list of the Table Definitions in the
model storage array.

1. Table Identifier
2. Number of pointers in the root, zero if a flat file
3. Number of pointers in the rightmost page of th

first branch
4. Number of pointers in the rightmost page of th

second branch
5. Number of pointers in the rightmost page of th

third branch
6. Number of pointers in the rightmost leaf
7. Capacity of the first branch
8. Capacity of the second branch
9. Capacity of the third branch
10. Capacity of the leaf
11. First branch contents after a split; if zero, the ke

are sequential and pages are added, not split.
negative, the steady state has equal numbers
deletions and additions and few splits

12. Second branch contents after a split; if zero add,
negative insert but don’t split

13. Third branch contents after a split; if zero add, 
negative insert but don’t split

14. Leaf contents after a split; if zero add, if negativ
insert but don’t split

15-16. Left for expansion

3.4 Calculating Resources Used

The processing for a FETCH operation determines ho
many pages are to be read from disc, and how many pa
total are read by the process  To determine the number
pages read in processing, the subroutine steps through
current capacity values, from root to leaf (the lowest lev
in the index tree), and counts the non-zero levels. T
number of pages to be read from disc equals the numbe
levels above two. (We assume that the root and the fi
level are always memory-resident, and all higher leve
must be read from disc).  CPU consumption is based on 
number of instructions executed for each step in addition
table operations.
1464
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STORE processing follows the same logic as FET
to locate the location of the new record. It then calcula
how many pages are split or added, and how many r
or pointers are inserted or added.  The subroutine 
looks at the current leaf contents. If it is not equal to 
capacity, it adds or inserts a pointer,  based on whe
the split value is non-zero (insert) or zero (add). If 
page is at capacity, it is split or a page is added, and
next level up is processed in the same manner with
pointer to the new page. This can cascade to the root 
of the tree. However, this model does not split the ro
since this would create a new level for the table in
tree.

CHANGE follows the FETCH logic to find the
location for the update. It then calculates the modificat
process as a pointer or row addition, and then e
Updates are assumed not to create splits or adds, 
though there may be variable length fields involved.

REMOVE is identical to STORE with the sign
changed for the page content updates. The logic is 
reversed for determining page removal. If the page
empty, a pointer is removed from next level, but a d
write for the empty page is not charged.

COMBINE has a totally different process from t
other four operations. RDB’s do joins in a stepw
manner, if more than two tables are involved. It nests
tables in a hierarchy based on their size at the time
procedure was compiled, the smallest innermost and
largest outermost. RDB then steps through ALL rows
the innermost table once for EACH row of the next ta
out, and creates a temporary table for that result. It 
takes the next table out and steps through it, scannin
rows of the temporary table once for each row in 
outer table, as before. This process continues unti
tables have been joined.

In modeling the COMBINE process, the mod
assumes that any temporary tables will have the s
number of rows as the outer table of the join that cre
it. The number of rows scanned is the total numbe
rows in the inner table multiplied by the number of ro
in the outer table. This would be a worst case, as t
may be constraints on which rows of the outer table
joined. They all have to be read, however. For 
process, the outer table is the Table ID in row one of
procedure set in the storage array, and the inner tab
the Inner Table ID in row two.

The next calculations are performed for each tabl
the JOIN.  The first calculation made is the number
leaves in each table. This is the Π-product of the curren
contents of the root and all branches. The sum of 
number of leaves becomes the number of pages to 
from disc for tables with leaves in levels 3, 4 or 5. T
next calculation is the number of leaves times the num
of rows per leaf.  For tables that are split to add lea
use the average fill factor of 75% or assume the cur
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contents are representative (pessimistic for >75% 
optimistic for <75%). For tables that add leaves, calcu
the number of leaves less one, then multiply it times 
capacity of a leaf, then add the current capacity to that.
sum of the rows for each of the tables is the numbe
rows scanned.

The remaining calculation is the number of pages to
written to disc for the final table. Assume a generic r
size, multiply that times the number of rows in the ou
table, and divide by 2K or 4K depending on page s
Since join operations  are generally used to create ta
for output to printers or CRT's, 200 bytes/row or le
would be a reasonable number. Using a value of 200 b
and a page size of 2K would lead to about 10 rows 
page. Since there is some overhead per page, si
dividing the number of rows by 10 would provide 
reasonable estimate of the number of pages in  the resu
table from a COMBINE.

3.5 Simulating the Consumption of Resources

There are nine values necessary to simulate 
resource consumption of table operations. Not all of th
are used in every operation. The values are the RDB
entry size, the number of instructions  executed in 
stored process, the number of pages to be read from 
the total number of pages read (memory and disc)
processing, the number of pages split, the number of p
added (not part of the split, used in sequential key tab
the number of rows/pointers modified/added, and 
number of rows/pointers inserted, and the number of r
scanned. These resources are consumed in a small
network described in the pseudocode which follows. T
network would vary with the various RDBM product
since it closely reflects their implementations.

Obtain the RDB manager
Obtain a CPU
Consume CPU to setup the operation
Release the manager

 (Disc I/O is under the operating system)
If disc reads are required to obtain data

While disc reads are >0
Execute single appropriate disc I/O simulation.
Decrement disc reads required

End While
End If

Obtain the RDB manager
Wait for CPU
Consume CPU for number of instructions executed
Consume CPU for pages read
Consume CPU for rows scanned
If pages are added (zero value for pages split)

Consume CPU for pointers added
146
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Consume CPU for pages added
Else

Consume CPU for pages split
Consume CPU for pages inserted

End If
If data has been modified

(STORE, CHANGE, DELETE)
Increment RDBlog contents by the RDBlog entry

size.
Calculate the number of log pages to write.
Calculate the number of disc writes.
Add one write per log page.

If a page is split
Writes are added equal to the twice number of
pages split
Add the number of inserted pointers less the
number of pages split

If the page is not split
Writes are added equal to the number of page
added
Add the number of pointers added less the numbe
of pages added

Execute the number of disc writes calculated.
Return to the correct operation routine.

There are two daemons to be simulated in the RDB
sub-model. The RDBlog daemon writes one or more
RDBlog pages whenever the criteria of the RDBM are met
The memory daemon flushes pages to disc whenever th
RDBM criteria are met. The concept for both daemons is to
detect when writes are needed, then queue the necess
number of page-requests as write I/Os.

4 CREATING PARAMETERS

4.1 Defining the Stored Procedures

Stored procedures consist of executable statements a
table operations.  The table operations in turn require CP
and disc resources.  The monitors for the RDBM may give
information on how these procedures are compiled an
optimized.  For example, in SYBASE one can use SET
PLAN to find the order of execution of statements and the
exact order of table operations.  SET IO gives the numbe
of real I/O’s and logical I/O’s (memory reads) occurring
during table operations.  There are also monitors which ca
give elapsed times and CPU utilizations.

One must be careful in interpreting these data
especially if determined on databases under developmen
The listing of the compiled procedures may be difficult, as
they are not executed in the exact order listed in the SQ
code; called subroutines execute immediately after th
calling instruction.  This nesting of execution steps can
lead to confusion, if not carefully followed.  There may be
5
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more logical I/O than will occur in production, or there c
be access paths, which are optimal for the partly popula
database, but are very inefficient for the full database.  
monitoring process adds to both the CPU and the elap
time, and these values should be considered upper bou

From these data, the number of instructions execu
and the order and type of table operations can be place
the stored procedure vectors.  The number of real 
logical I/O’s is determined by assuming only the root a
the first level of indexing are in memory.  This assumpti
has appeared to be almost universally applicable in 
author’s experience, because fan-out at the third leve
indexing creates far too many pages to fit a signific
number of them in memory.  The CPU utilizations we
determined by benchmarks.

4.2 Defining the Data Tables

The performance of an RDB is the sum of the atom
operations necessary to access the various tables. T
depend on the number of levels in the tables, how m
rows of indices there are on each page, and how m
pages are memory resident. This is obtained from 
database designers, but generally treating each t
separately will be too unwieldy because of the lar
number of tables. Frequently there will be groups of tab
with similar structure for indices and data pages, and th
may also be tables that will not be used at all during 
period being simulated. For example, one transaction
modeled had 10 different tables. One accounted for o
65% of the accesses. The another 30% of the accesses
to tables with similar key structure and levels of indexin
so that the transaction was simulated with only t
modeled tables.

The most important parameter is the number of lev
in the B-tree. It is not possible to simulate a three-le
table with a two- or four-level table because every le
over two requires a disc read. Modeling a three-level ta
with a two-level table will use insufficient resources a
modeling it with a four-level table will use too many.

The next parameter is whether the index is primary
secondary. Primary indices generally have the data pa
clustered with them and have a different leaf (bottom lev
structure than secondary indices, even if the numbe
levels is identical.  Primary indices may be inserted 
added depending on data clustering and sequentially
keys. Secondary indices are always inserted. One 
combine similar secondary indices into one table mod
but not primary and secondary.

The third parameter has the most room for combin
tables. It is the number of index rows in the root a
branches and the number of data or index rows in 
leaves (depending on whether it is a primary or second
index tree). If the number of levels are the same, ther
1466
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little difference in the work to scan half a page, e.g. 
difference between scanning 30 and 40 entries. In our w
we had a number of tables with three levels and betw
40 and 48 index rows per page. Since the data rows w
similar in size, the leaves were similar, and all we
represented as one table. The same would hold true
secondary index table leaves.

4.3 Calibrating the Performance

Calibration of the model is of course critical to its succe
in predicting resource consumption. The values requir
calibration were for CPU consumption by various tab
operations and for disc I/Os.

When we first created the model, the disc I/O values
the hardware level were obtained from manufacturer’s d
for average seek, latency, and data transfer rates.  S
that time, a generalized model for I/O has been develo
that simulates each individual I/O (Nelson, Keezer, a
Schuppe, 1996).  If the RDBM does its own disc acces
an estimate or a measurement of the CPU time to ha
the I/O’s is required. Where the RDBM utilizes th
operating system to access disc, an estimate or measu
the CPU time to generate the request is required. There
also be the expenditure of CPU by the operating system
each I/O. This value would be whatever is used in the 
of the model.

We were faced with the challenge of calibrating t
CPU consumption for the table operations. For this 
used a custom benchmark consisting of a series of re
storage operations with many repetitions and with 
number of records varying over an order of magnitude. 
plotted the response time against the number of reco
The slope of the line indicated the  storage time per rec
We found that there was little or no queuing time in t
elapsed time and that to a good approximation, it was
CPU time.

We then used this CPU time value to determine 
cost of table operations. There were seven values
interest: row read, page read, row addition, page addit
instruction execution, page splitting, and row insertio
With one CPU value and seven unknowns, we took read
a row of data as the smallest operation and built upon
We chose to equate reading a page header in memory
processing its data (page read) to reading five rows of d
We set adding a row of data to the end of a page
equivalent to 10 row-reads. This helped account for 
RDB log work that an add operation generates. We t
made adding a new page to a table the equivalent of 
page reads to cover the overhead of creating and alloca
a new page image in memory. Additionally, in rando
tables splitting a page added a further 2.5 times the p
add cost, because half the data must be copied to the
page. Inserting a row in a page had an additional 2.5 
read cost to cover the cost of pulling down the rows on 
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page that would follow the new rows. Finally, execution o
a stored instruction that had already been compiled w
taken as twice the cost of reading a row.

By determining the operations required to add a reco
to the database, and then equating that to row-reads, o
can find the total number of equivalent row-reads. This 
set to the CPU cost of adding a record, and the CPU co
per row-read is calculated.  One can then back-calculate
find the costs of the other operations.  We found that 
took the equivalent of  181.4 rows read in 7.8 msec, givin
a CPU cost of 0.043 CPU msec per row read. After th
back-calculations to find the other six values, the onl
operation that had not been calibrated was the row dele
This was taken to require the same cpu costs as an add. 
important to note that the particular ratios we used worke
well for us, but may not work for all systems and al
RDBM's. The general approach, however, would work fo
all systems and could be refined depending on the availab
metrics for calibration.

Later comparisons of the CPU utilizations of the RDB
system estimated by this model to actual tests o
implemented code showed the model estimates were with
3-5% of the total system CPU actually utilized, e.g., th
model predicted 7-9% of system CPU for the RDB and th
actual utilizations were 7-11%.

5 RESULTS AND DISCUSSION

The method we developed to parameterize relation
databases has a number of benefits. One is that t
generated data and calibration of operations has allow
the estimation of the performance of databases wi
spreadsheets in many instances, allowing a sufficie
estimate to be made without developing and running 
model. In those cases where a simulation is required, it 
relatively easy to change the database simulation to refle
the new or different configuration.   To define completely
the structural parameters of the relational database and 
operating parameters of the database manager require
fairly large effort. However, at early stages of the design o
the database, generic place-holder values can be used,
values of which are estimated from past experience.

The structure of the model was quite different from
our earlier efforts. We consumed all the resources in 
small network which was executed after the calculation o
the resources to be consumed. These calculations w
performed in compiled user subroutines, e.g. the EVEN
node or USERF in SLAMSYSTEM. The remainder of
the network in the RDB model was mainly routing of
entities to the correct procedural calls. In addition t
parameterizing the database structure and the operatio
we also parameterized the stored procedures for t
incoming transactions. Thus an incoming transaction wa
linked to a set of vectors that defined the sequence 
operations and tables to be manipulated. As a result, t
1467
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maintenance of the transactions, the database structure, 
the relational manager simulations were entirely separa
As can be imagined, this greatly simplified the overa
maintenance of the RDB model.

Even though we modeled the RDB in much mor
detail than previously, the smaller number of nodes, a
the reuse of attribute space in the sub-model prevented 
run-time of the overall simulation from increasing.
Furthermore, the accuracy as mentioned earlier w
exceptionally good. Part of the increased accuracy was d
to the deliberate choice to model the measured elaps
times in the calibration runs as if they were all due to CP
time. This provided a compensation for the use o
deterministic values in the model and the lack of explic
modeling of the operating system background functions.

One new use of match nodes in SLAMSYSTEM cam
from this effort. We used the match node to isolate the su
model from the rest of the system in order to reuse t
attribute space. In cases where the results of the sub-mo
are desired but further processing will occur to the origin
entity, we would recommend this over a straigh
hierachical addition of submodels since in order t
preserve attribute values, it would be quite possible 
explode the attribute space with a negative impact on ru
time.

6 SUMMARY AND CONCLUSIONS

We have described a method for modeling relation
databases that is flexible, accurate, and efficient in its u
of resources. This method may be used to model vario
relational databases without changing the simulatio
network, and can model different relational databas
managers with changes to only a small portion of th
network. The process of gathering the data and calibrati
the model enables static estimates of performance us
spreadsheet techniques, where a model run is not justifi
Additionally, we have created a novel use for th
SLAMSYSTEM match node as a means of subnetwo
isolation, allowing complete freedom in reusing attribute
of entities. Though our purpose has been to simulate t
performance of relational databases, there is no reas
these techniques cannot be used for any indexed datab
with appropriate modifications.
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