Proceedings of the 1998 Winter Simulation Conference

D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

BUILDING PARALLEL TIME-CONSTRAINED HLA FEDERATES:
A CASE STUDY WITH THE PARSEC PARALLEL SIMULATION LANGUAGE

C. D. Pham
R. L. Bagrodia

University of California, Los Angeles
Department of Computer Science

Los Angeles, CA

ABSTRACT

Based on the DIS result, the HLA framework has been de-
fined to achieve interoperability of independent simulators.
Concurrently, and for the most part, independent of that
effort, the parallel and distributed simulation community
has attempted to define synchronization protocols for the
correct execution of parallel simulation as-fast-as possi-
ble. Building parallel time-constrained federates within
an HLA framework is not an easy task. We identify
the potential difficulties: one or several federates, when
and how to advance the federate’s time, how to handle
RTI notifications, etc., and present our experiences with
adding HLA features into theArsec parallel simulation
language.

1 INTRODUCTION

Simulation is becoming a common way to perform the
evaluation and the study of a large variety of systems such
as large scale computer networks or battlefield applications.
As more powerful machines are available for this task, the
level of attempted complexity is always increasing. Since
high development costs are unavoidable, it is certainly
better to maximize the reuse of models and provide
interoperability instead of rebuilding new simulators for

each new test case. Starting in March 1995, the U.S.
Department of Defense (DoD) has devoted considerable
efforts to define a common technical framework for all

DoD simulation applications. This framework includes

a High Level Architecture (HLA) to achieve reuse and

interoperability of simulators. In the HLA terminology

a single simulator is referred to as a “federate”. A

“federation” is then a set of federates working together to
achieve a given goal. Any federate developed following the
HLA guidelines, by using a common software interface,

should be able to join an existing federation and its

1555

90095, U.S.A.

capabilities used by the other federates. HLA builds
upon the results of the Distributed Interactive Simulation
(DIS) experiments with the desire to incorporate advanced
time management features that were lacking in the DIS
approach.

Independent of interoperability efforts, the research
community has also devoted considerable effort to de-
velop parallel and distributed simulation concepts (PADS).
Whereas DIS was concerned with real-time simulations,
the main concern of PADS is to provide an “as fast-
as-possible” execution while ensuring that the parallel
simulation satisfies all time dependencies and causality
constraints among events. The underlying synchronization
mechanisms to achieve a correct execution can be denoted
as conservative, optimistic, or hybrid. A comprehensive
comparison between PADS and DIS can be found in
(Fujimoto, 1995).

Interoperability of independent simulators can to a
certain extent allow for the simulation of large scale
systems. However, models that include a large number of
objects, such as communication network models, can not be
decomposed into a set of independent simulators because
the cost of interoperability would be overwhelming. Also,
such a large model may not be implementable on a single
machine since the computation load is extremely high.
The idea of bringing the previously different communities,
HLA and PADS, into a closer cooperation is tempting. As
a result, an attempt is being made to incorporate the PADS
requirements into the definition of the time management
facilities of HLA (Fujimoto, 1996). Such a cooperation
would allow the creation of an HLA federation that contains
a parallel federate simulating a large system that would not
have been possibly simulated by a traditional sequential
federate. This is fundamentally different from plugging
DIS-based systems into an HLA federation because no time
constraints are taken into account in DIS-based federates.
Even if the HLA framework provides some services that

Pham and Bagrodia

can be useful for PADS, building time-constrained parallel

federates with an environment whose primary concern is

interoperability requires a careful look on how the HLA

3 BUILDING PARALLEL FEDERATES

In the PADS terminology, a synchronization algorithm

time management facilities can be handled by the parallel that only processes safe events is said to be conservative

simulator.
The parallel and distributed simulation group at UCLA
has defined thearsec language (Bagrodia, and al., 1998)

(Chandy and Misra, 1979). Safety is guaranteed by forcing
the Logical Process (LP) to block if causality may be
violated. Unfortunately, this scheme introduces deadlocks

that transparently supports several synchronization schemesthat must be avoided by sendingull-messages This
on a variety of parallel architectures. The present paper a@pproach usually requires input channels (ICs) between

describes our experiments in incorporating HLA features
into the PARSEC environment to develop HLA compliant
parallel simulations. In the process we identify lessons

logical processes. The Earliest Output Tind&J1") for an
LP is defined as the timestamp of the next possible message
generated by the LP. EadiC; has an Earliest Input Time

that were learned. The rest of the paper is organized as (E17;) that is the EOT of the LP connected to it. The

follows: Section 2 presents the HLA architecture, Section 3

EIT for an LP is defined as the minimum of tHelT;.

discusses the process of building time-constrained parallel Locally, the LP can process all events with timestamp lesser
federates, and Section 4 presents our case study using thehan its EIT. Null-messages are used in the conservative

PARSEC language. Conclusions and future work are given
in Section 5.

2 THE HLA FRAMEWORK

HLA consists of three componentsi) @ set of rules for
the federates and the federatiorij) (an Object Model
Template (OMT) that defines how the capabilities of a
federate can be described and) a software component
called the Run-Time Infrastructure (RTI) (DMSO RTI,
1998) that acts like a distributed operating system to
provide a common programming interface. With HLA,
a real system is modeled by a set of objects with a
given number of attributes. Interoperability is achieved by
using a subscription to or publication of object attributes.

approach to propagate théOT of LPs that do not send
real messages. The value of t##0OT usually includes

the LP’s lookahead. The larger the lookahead, the better
the algorithm performs. On the other hand, optimistic
approaches (Jefferson, 1985) do not search for safety but
provisions are made tooll back to an earlier coherent
state when causality is discovered to have been violated.
Causality constraints are corrected on-the-fly, when the
LP receives a message with a timestamp smaller than its
logical time. In that case, it has to roll back, undo the false
computation and use lazy or aggressive cancellations to
cancel its outgone messages. Periodic check-pointing and
anti-messageso cancel incorrect computations are then
needed as a counterpart of more freedom. In addition,
a Global Virtual Time (GVT) is required to monitor
the simulation progress and to reclaim memory used by

A federate that subscribes to a set of object’s attributes gpgglete information.

declares its interest in receiving any updates performed by
remote federates on remote instances of the given object

class. Publication of attributes of a given object class

3.1 Time Requirements

means that the federate is capable of simulating the object The RTI kernel uses a conservative approach to synchronize

and sending updated values for the object’s attributes.
Programming interfaces of the RTI are proposed
in C++, ADA and Corba IDL. We will use the C++
terminology and syntax in this paper. The RTI software
is divided in two parts: one part is federate-initiated and
the other is RTl-initiated. The first part is encapsulated in
the RTlambassador class. A number of methods are

the different federates in the federation. Each federate may
send its simulation time to the RTI so that it can compute
a Lower Bound Time Stamp (LBTS) for the federation
execution. This LBTS value is computed by taking into
account the lookahead of all the time-regulating federates
and representstfie minimum time stamp so that it can
be guaranteed that no federate will generate any more

available to create a federation or subscribe to some object’s time-stamp-order events with a lower time staripMSO
attributes for example. The second part is defined in an RTI, 1998). In the HLA Interface Specification v1.3 and

abstractederateAmbassador class and the user has to
define its own subclass ¢federateAmbassador . The
RTI services are divided in six categories) Federation
Management, if) Declaration Managementji{) Object
Management, i) Ownership Management,v) Time
Management and,v{) Data Distribution Management.
Our discussion on parallel time-constrained federates will
mainly address the use of categoriésgnd @).

1556

v1.2, a time-regulated federate must provide a lookahead
value when it wants to become time-regulated. This was
not the case in version 1.1. The definition of a federate’s
simulation time in a parallel federate is the minimum of
the local simulation time of all the LPs in the parallel
federate.

Each federate can be defined with respect to the way
it manages the time with a combination of 2 booleans: the

Building Parallel Time-Constrained HLA Federates: A Case Study with the PARSEC Parallel Simulation Language

time-regulation boolean (ON/OFF) and the time-constrained value is called the federate’s LBTS. Actually, this is the
boolean (ON/OFF). A time-regulated federate participates only service provided by the RTI v1.3)@eryLBTS), as

in the federation LBTS computation performed by the opposed to v1.2 and v1.1 where a federate can obtain the
RTI and is allowed to send time stamp order (TSO) federation LBTS (equestFederationTime). If we
messages (TSO messages sent by a non time-regulatecconsider each federate in the federation as a conservative LP,
federate are transformed in receive order messages by thethe value provided by a given federate’s caltjteeryLBTS

RTI). In other words, itsEOT is taken into account. A is simply the federate’d7IT from the RTI. For a time-
time-constrained federate should process TSO messages irconstrained federate, it is not advisable to process events
timestamp order, as opposed to receive order. The RTI will with timestamp greater than its LBTS. Exceptions may be
ensure that messages for a time-constrained federate will made for federates that run an optimistic synchronization
be delivered only when the federate’s time has advanced protocol.

sufficiently. Within the federation each federate may have

to request @imeAdvanceGrant notification from the 3.2 The Need for an Accurate GVT

RTI. The purpose of this task is two-foldzi)(to inform

the RTI of the federate’s simulation time andi)(to For a parallel federate a kind of Global Virtual Time
indirectly indicate to the RTI that the federate is ready to (GVT) computation is required to determine the smallest
receive TSO messages up to the requested time. With two timestamp in the federate. As opposed to a traditional
booleans, four separate status indications for a federate Optimistic approach where the GVT is mainly needed for
can be defined. We show in Figure 1 that a federate has fossil collection, the GVT computation needed for the
to request atimeAdvanceGrant in three cases, for ~ RTI must be performed quite frequently, otherwise the

different reasons. federate’s simulation time perceived by the RTI will not
increase sufficiently. For a time-constrained federate this

TIME-CONSTRAINED is a problem because TSO messages from the RTI may

R ON OFF be delayed and never passed to the federate.

w _ %@3@ Q,Q? For a traditional conservative simulation without a

< o@/\%\éL &L Global Control Mechanism as described in (Jha and

§ o 5 Bagrodia, 1994), this GVT computation must then be

el | & added. Optimistic federates that already have GVT
2|0 \é@ %o/\ computation features, nevertheless need to increase the

rate of the GVT computation, otherwise they may block
the other non-optimistic federates (conservative, or time-
constrained sequential federates). The exact overhead of a
frequent GVT computation is not known yet but previous

The termsuyseLF andoTHERS are defined as follows: gtydies have shown that an accurate GVT is costly. The
MYSELF means that the federate needs to request a time yagitional definition of the GVT for fossil collection in

advance grant in order to increase its simulation time as gptimistic simulators is the minimum of all the LPs’
perceived by the RTI. This is needed for the federate to gjmylation time and the timestamps of messages in transit.
receive messages from the RTI when the federate is time- For an optimistic federate, it&/V Tyoq Must now take
constrained.0oTHERS means that the federate requests the 1o account the federate’s LBTS and is then defined as
time advance grant to allow o_ther fed_erates to adyance. For GV Tfeq = min(GVT, LBTS).
instance, even if a federate is non-time-constrained but is
time-regulated, it must inform the RTI of its advancement,
otherwise, its non-increasing simulation time will cause
the RTI to delay the delivery of the TSO messages to When incorporating a parallel simulation in a federation,
the other time-constrained federates. Usually, the time- an important question is whether to declare it as a single
regulated federate will request a time advance grant to the federate, or as a collection of federates. If each LP
time of its next local event. Within the traditional definition is declared as a separate federate, the advantage is that
of PADS, conservative federates must be time-regulating each LP can join the federation with an independent
and time-constrained, whereas optimistic federates can be RTlambassador and FederateAmbassador . On a
only time-regulating. However, in practice, an optimistic distributed memory machine, this is a simple way to enable
federate will also be time-constrained; otherwise it would the distribution of the callback mechanism—otherwise
encounter numerous time errors. callback notifications that are beyond the boundaries of a
A given federate can obtain the value of the federation physical processor must be translated in some way (the
LBTS less its ownEOT'. In the HLA terminology, this RTI may provide pointer arguments that are meaningless

Figure 1. Federate status.

3.3 One Federate or Sseveral Federates?

1557

Pham and Bagrodia

from one processor to another in a distributed memory also be done on a federate basis. All these modifications
architecture). On the other hand, having too many federates add additional complexity to an approach that is already
can lead to an overwhelming overhead. If hundreds of highly complex.
LPs are expected in a parallel simulation, having hundreds
of federates is not the best solution. 3.4 Translation of RTI Notifications into Events

However, these considerations are not strong enough o]]
to completely reject the multi-federate solution. In a large The large majority of PADS simulators are designed to
communication network model, one may still want to work as event-driven simulators. Every change in_ the
split the model into a relatively small set of independent System must be made as the result of the processing of
federates, each one simulating part of the network. For & time stamped event. The callback mechanism of the
a conservative parallel simulation, the reason to definitely RT! must then be converted into events for the parallel
reject the multi-federate model is that having several federate. These events must have an associated timestamp
federates does reduce the amount of parallelism. Let that indicates the logical time at which it should be
assume that the conservative simulation consistspof Processed. The HLA framework defines two types of
LPs partitioned intom federates that have joined the events, receive order events (RO) and time stamped Qrder
federation execution, each of them being time-regulated €vents (TSO). The RO type comes from the DIS real-time

and time-constrained as in figure 2. needs. Most of PADS simulators only deal with TSO
messages. The translation of RTI notifications into events
= for the parallel federate automatically adds a timestamp to
LBTS]=mn®0T) &g every message, even those that were originally of the RO

> . type.
@ N When the RTI delivers the notifications to a federate,
o it will call user-provided functions of thd-ederate-

NN @ : Ambassador base class. These functions could simply
) ‘

encapsulate the arguments provided by the RTI into a
I Federate3)’ special event and send it to the appropriated LPs. Since

I "~ _Federate 2
Federate 1 / S B

- o each LP in the parallel federate is at a different simulation
time, the notification events must be time stamped in a
way to prevent any time causality violations. This is
)) mandatory for conservative federates and advisable for
Each federate has a differentL BT'S; perceived by optimistic federates. RO events should be time stamped
the RTI and has to take into account th&7'S;; ;»; of the with a value no lesser than the federate’s simulation time.

other (m — 1) federates. This is equivalent to adding extra TSQO notifications from the RTI carry a timestamp that
ICs in the conservative simulation that did not exist in the ghoyld be reported in the translated event.

original parallel simulation. Having several federates for
a single parallel simulation introduces extra dependencies
in a model that has originally been parallelized with a
space-time scheme to exploit the maximum number of Given the time services provided by the RTI, the parallel
parallel events. In the actual implementation of the RTI, it federate must now use them in a coordinated manner,
is not possible to explicitly specify the topology, i.e. the ie. when to advance the time and when to get messages
dependencies or the lack of dependencies between severafrom the RTI. We will now assume that the parallel
time-regulated federates. Therefore, as can be seen infederate is both time-regulated and time-constrained. For
figure 2, the LPs in federate 3 are dependent of the LPs a conservative federate, working within an HLA federation
in federate 1 even if there are no such dependencies inis equivalent for each LP in having an additional IC

Figure 2. Dependencies in a multi-federate model.

3.5 When and How to Advance the Federate Time?

the original model. with an EIT,; from the RTI. ThisEIT, is simply the
For an optimistic parallel simulation, having several federate's LBTS (but only for TSO messages from the
federates increases the complexity of th& 7.4 compu- RTI') The advancement of each LP will therefore depend

tation, as defined in the previous section. In a one-federate on the advancement ofIT,;;. The EIT for an LP
model, the native GVT computation mechanism could be will then take into account thé&IT,,; in addition to the
used to compute both the GVT for fossil collection and the EIT of its real ICs. Each LP can theoretically execute
GVTy.q that takes into account the federate’s LBTS. With all eligible events from its ICs, i.e. their timestamps are
a multi-federate model, these computations must be done smaller than the LP'sEIT, and advance accordingly in
on a federate basis, distinguishing between LPs belonging simulation time. Clearly, each LP in the parallel federate
to different federates. The fossil collection process must can not report its local simulation time to the RTI as the

1558

Building Parallel Time-Constrained HLA Federates: A Case Study with the PARSEC Parallel Simulation Language
(b) ©

next Event Request fl ushQueueRequest

federate’s time. We said previously that a kind of GVT

computation was needed. We will assume that one LP |11|4|/‘ m I
in the parallel simulation (a dedicated LP for the GVT ya

computation or one among all the existing LPs) finally E8 E B
knows the federate’s simulation time. This LP is the only 7] 7] 7]
one that can safely request a time advance grant and we | 6] Tole[7[6]
call it LPry, (Time Manager). LBTS=5 LBTS=6 LBTS=10

(6l [Bl (8] ~~={] [e] Bl

Figure 3: LP with 3 real ICs.

Requesting a time advance grant is performed mainly
by three services offered by the RTI. TtimeAdvance-
Request service is intended to be used by time-stepped
simulators whereas theextEventRequest is available
for event-driven simulators. This latter service either issues
the time advance grant to the time requested or otuttfe the RTI (figure 3b). Reporting the value 4 after blocks the
timestamp of the next TSO messages that will be delivered LP since the event with timestamp 7 is still not eligible.
to the federaté (DMSO Interface, 1998). There is one An additional step is required to increase the LBTS. If
more service, callelushQueueRequest , that allows a the LP reports before, it does not need to wait for the
federate to receive all the queued messages (RO and TSO)time advance grant unless the time it reported is greater
regardless of their timestampdlushQueueRequest than the federate’s LBTS. However, the main drawback of
is certainly useful for optimistic federates, but appears also nextEventRequest s that it only increases the LBTS
to be much more convenient for conservative federates as from one incoming TSO message’s timestamp to another.
explained below. This can decrease dramatically the number of simultaneous

As said previously, time advance grants are needed events.
to increase the federate’s time perceived by the RTI. The If we consider the use oflushQueueRequest
federate can then receive TSO messages from the RTI. the advantage is two-fold: ¢)(it is possible to report
There are two possibilities for when to request a time after without any blocking and, i) the LP can get
advance grant to time before the execution of the event as many messages as possible. There is no blocking
with timestampt or after. A sequential federate usually because ifflushQueueRequest s called, the LBTS
requests the time advance grant beforehand: assume thawill increase as all queued TSO messages are delivered
the next local event has timestampa sequential federate (see figure 3c). The only blocking situation is when the
would request a time advance grant for timebefore increase of the LBTS is delayed by some reason (messages
executing the event. In this way, the federate can get from the RTI are delayed on the network for example).
all TSO messages up to timefrom the RTI. It is the Reporting after has also the following advantage: in an
simplest way for the sequential simulator to advance the existing simulator, reporting after requires no changes in
time since it does not have to worry about the LBTS. For the simulator kernel because the additional code for HLA
a parallel federate, the LPs can report their advancement compatibility can be added as user-code. This is important

to timet to LPr,, either before or after the processing of
the event of timestamp. In a conservative federate, the
knowledge of the federate’s LBTS (the additionalT;.;;

for each LP) makes each LPregulated by the timestamp
of the next TSO message from the RTI. Let’s take as an
example the configuration depicted in figure 3a. The LP
has 3 ICs from the other LPs in the parallel simulation
and has one IC from the RTI that indicates the federate’s
LBTS.

Assume we usaextEventRequest to advance the
federate’s time. It is still safe for the LP to report the time
after since only safe events are eligible (events at timestamp
3 and 4, figure 3a). Suppose tha (BTS = 5, and i)
the timestamp reported is the minimum timestamp in the
federate: whenl Pr)y,; requests the time advance grant it
gets it immediately. To process event with timestamp 7,
reporting the value 7 before allows the increase of the
LBTS and the delivery of the event with timestamp 6 from

1559

for us in the particular case ofArsec as it will be
explained later. Of course, reporting before is always
possible. Whenever the report is done, generally speaking,
flushQueueRequest appears to be more convenient
because the TSO messages from the RTI are directly
handled by the conservative synchronization algorithm of
the federate.

For an optimistic federate, the time advance mechanism
is a little bit simpler: theGV T4 for the federate must
be computed first and a time advance grant toGhé&ls.q
requested. No rollback should occur bef6#& T.,. The
time advance grant to time can be requested before or
after the processing of the event of timebut as opposed
to conservative federates, no care needs to be taken to get
incoming TSO in time because the federate can always
roll back on time errors. However, unless the optimistic
federate monitors the federate’s LBTS (and behaves much
like a conservative federate), requesting the time advance

Pham and Bagrodia

rant after would certainly increase the probability o ile wireless multimedia networks, networks, an
grant aft Id certainl the probability of bil I ltimed tworks, ATM network d
receiving a TSO messages in the federate’s past. high-speed communication switches and protocols.
A PARSEC program is a collection of entity definitions

and C functions. An entity definition describes a class

3.6 What about the Speedup Finally? of objects. An entity instance, called simply an entity,
)) _ represents a specific object in the physical systeARSEC

The purpose of creating parallel federates is to plug into yefines a type calledname which is used to store entity-
an HLA federation as-fast-as possible simulators that can qentifiers. Each entity knows its own ename with the
handle a large and complex system in a shorter amount gelf variable. Entities communicate with each other
of time than a sequential federate. Parallel simulation using buffered message passingpARSEC uses typed
in the PADS community has. already demons’grated tha't messages; an entity definition must define the types of
such speedups can be obtained. The question now is messages that may be received by its instances. An entity
whether speedup can still be obtained within an HLA gonds a message by executingend statement. Each
federation. First, speedup in this context refers to the message is transparently time stamped with the current
comparison between the execution time of a federation gimyjation time and is deposited in the destination buffer
consisting of only sequential federates and the execution 4 the same (simulation) time at which it is sent. An entity
time of a federation, performing the same task, where accepts messages from its message-buffer by executing a
some federates are parallel. With non time-constrained p, rspc receive statement on a given message type. The
and non time-regulating federates, a speedup can certainly sjmy|ation time of an entity can be advanced only when it
be easily achieved, provided that the level of parallelism gceives a message or when it executémld statement.

is sufficient. For time-constrained and time-regulating ko the conservative synchronizatioadd _source and
federates, even if their parallel implementations perform 544 dest build the topology.

well outside the HLA framework, it is not necessary that

they still perform well within an HLA federation. As can

be seen from the previous sections, the services offered 4.1 Architecture of a Conservative Federate
by HLA are numerous but they have to be used in an

optimal way in order to give the parallel federate as much The parallel simulator built withpARSEC is a single-
freedom as possible. federate model. Callback natifications from the RTI are

At the moment, there is no common definition of translated into speciabARSEC events and sent to the
what a simulation time represents for a simulator so the rélévant entities, time stamped by the simulation clock.
simulation time can have a completely different meaning Each entity can declare its interest in receiving a given
from one federate to another. If we can define a common S€t of notifications. At the moment, the target architecture
semantic for time, still one of the problems introduced by 1S @ SparcServer 1000 with shared-memory. Therefore
the cooperation of several different simulators is the time €ach entity can access the RTI objects. Implementation on
scale difference between them. The time scale difference & distributed memory machine will be considered in the
can have a dramatic impact on the execution of a parallel future. A time manager is defined to perform the GVT
federate. For a conservative federate, the existence of atComputation and the time advance grant request.
least one federate working at a much smaller time scale N PARSEC, the time manager is simply a special
has disastrous consequences on the performance of theentity added to the source set of the other entities.
simulator. For an optimistic one, the probability of time In figure 4, each LP has one additional input channel
errors increases dramatically. Special care must be takenfrom the time manager (solid-line arrows), in addition to
when constructing a federation execution to verify that those needed for the communication with the other LPs
there is no time scale incompatibility, in which case the (dashed-line arrows). The task of the time manager is
idea of interoperability is impossible. three-fold. First, to compute the federate’s simulation time

and send it to the RTI (by requesting a time advance

grant with flushQueueRequest), second, to request
4 CASE STUDY WITH THE PARSEC LANGUAGE the federate’s LBTS from the RTI in order to enable the

other entities to advance with sufficient parallelism and,
PARSEC is a C-based language that was designed to neatly third, to periodically tick the RTI runtime in order to allow
separate the simulation model from the underlying algo- the delivery of incoming messages. For the time manager
rithm (sequential or parallel) that may be used to execute to compute the federate’s time, it is required that the other
the model. It has been used for the parallel simulation entities send to it the timestamp of the last event they
of a number of applications in diverse areas including executed (with a specially definddmeReport PARSEC
queueing networks, VLSI designs, parallel programs, mo- message). According to section 3.6, the LPs report their

1560

Building Parallel Time-Constrained HLA Federates: A Case Study with the PARSEC Parallel Simulation Language

simulation time after the processing of events. To have a
sufficiently accurate federate’s time, this should probably
be done every time an entity process an event, but it is
still safe to report only the timestamp of the last processed
event that must be smaller than the federate’s LBTS.

Federate 1
EOT 1
RTI
&

LBTSj = min(EOT i)
i#]j
\

EOT 3

Federate 3

Figure 4: The time manager.

Actually, only entities that are likely to send/receive
TSO messages to/from the outside, i.e. to/from the RTI,
need to report their clock value to the time manager. The
time manager and the other LPs work concurrently and
therefore the LPs can process their eligible local events
while the time manager gathers all the LPs’ local simulation
time and requests for the time advance grant. The tasks
realized by the time manager and a user entity are shown
below in a pseud@arsEc code (commands starting with
an underscore represent calls to the RTI services):

message TimeReport { ename sender; double clockTime; }

entity TM() {
double LPtime, Stime;
ename sender;

receive (TimeReport theTimeReport) {
LPtime = theTimeReport.clockTime;
sender = theTimeReport.sender;
}
STime = ComputeFederateTime(LPTime, sender);
_flushQueueRequest((FederateTime)STime);
_tick;
receive (TimeAdvanceGrant theTimeAdvanceGrant) { }
RequestFederateLBTS();
SendLBTS();

entity myLP() {
add_source(TMename);
while (1) {
receive (ModelMessage theModelMessage) {
. . . process the message

send TimeReport { self, simclock() } to TMename;
}
}

ComputeFederateTime() simply computes the
federate’s time after taking into account the newly received
time report. SendLBTS() informs the user-defined LPs
of the federate’s LBTS. This can be done by sending a

implementation of the time manager is not completed yet.
We are still optimizing how often the time report should
be done and how often the LBTS should be sent to user-
defined LPs. For the user-defined entity, as the entity's
simulation time advances only onraceive statement,
reporting after the execution of the event significantly
simplifies the scheduling policy.

4.2 Example: The Wireless Network Model

HLA features have been added to therRsecC language
and an HLA-compatible “helloWorld” example has been
successfully developed. We are now evaluating the per-
formance of a parallel federate within an HLA federation.
As a first attempt, we choose an application that has
good lookahead, good time scale for the parallel federate
and simple publication/subscription requirements. The test
federation consists of 2 federates: a sequential federate
and a parallel federate. The parallel federate models a
wireless network of radio transmitters and the sequential
federate models a weather condition. Speedu is measured
by comparing the execution time of the federation exe-
cution when {) the wireless network is simulated with
a distributed simulation algorithm andi) the wireless
network is executed sequentially.

Each radio transmitter is defined asarsec entity.
A time manager entity is defined as previously described.
Messages exchanged between transmitter entities represent
the arrival of a call. Calls are forwarded randomly from
one transmitter to another before finally being accepted by
a transmitter. Since radio transmission is used, the packet-
loss rate depends on the weather condition, modeled by the
sequential federate. This federate periodically publishes an
indicator, calledveather _condition , subscribed to by
the wireless model federate. The weather condition changes
every 10 minutes. This provides both good lookahead
and time scale for the parallel federate. Both the weather
model and wireless network model are intentionally simple
and are not intended to accurately represent the real system
they model.

5 CONCLUSION

In this paper, we addressed the problem of parallel and
distributed time-constrained federate developments within
the HLA framework. This development is not an easy task
and several different design choices can be made: one or
several federates, when and how to advance the federate’s
time, how to handle RTI notifications, etc. From our
experiments, we think that it would be more convenient
to give the possibility for a time-regulated and time-
constrained federate to automatically receive events from

message on the channel connected to each user-entity. Thehe RTI without any queuing from the RTI. In the case

1561

Pham and Bagrodia

of a conservative or optimistic federate, the underlying at Austin, in 1983 and 1987 respectively. His research
synchronization algorithm of the parallel federate would interests include distributed algorithms, parallel languages,
take care of the time order of the messages in a traditional programming methodology and performance evaluation.
PADS way (an additional IC for conservative federates and

a rollback facility for optimistic federates). This study has

helped clarify which choice may provide the best parallel

execution. Future work will address the performance issue

using the wireless model described previously.

ACKNOWLEDGMENTS

The work of C. D. Pham as a post-doctoral fellow at
UCLA is supported by DGA/SREA/SC/EXP under contract
9381100095 and by the U.S. Department of Defense/ARPA
DOMAINS project under Contract DAAB0O7-97-C-D321.

REFERENCES

Bagrodia, R., et al. PARSEC: A Parallel Simulation
Environment for Complex Systemslo appear in
Computer Magazine

Chandy, K. M., and J. Misra. 1979. Distributed Simulation:
A Case Study in Design and Verification of Distributed
Programs.Trans. on Soft. Eng., Vol. 5(5pp440-452.

Defense Modeling and Simulation Office. RTI Program-
mer’s Guide. Version 1.0, version 1.3.

Defense Modeling and Simulation Office. HLA: Interface
Specification. Version 1.3, version 1.2, version 1.1.

Fujimoto, R. M. 1995. Parallel And Distributed Simulation.
In Proceedings of the WSC'9%p118-125.

Fujimoto, R. M., and R. M. Weatherly. 1996. Time
Management in the DoD High Level Architecture.
In Proceedings of the PADS'9®p60-67.

Jefferson, D. R. 1985. Virtual TImé&CM Trans. on Prog.
Lang. and Sys., Vol. 7(3pp405-425.

Jha, V., and R. L. Bagrodia. 1994. A Unified Framework for
Conservative and Optimistic Distributed Simulation.
In Proceedings of PADS'94p12-19.

AUTHOR BIOGRAPHIES

C. D. PHAM is a post-doctoral fellow at UCLA. He
received a Ph.D. in computer science from the University
of Paris 6, France. His research interests focus on parallel
discrete event simulation algorithms.

R. L. BAGRODIA is a Professor of Computer Science at
UCLA. He obtained a Bachelor of Technology in Electrical
Engineering from the Indian Institute of Technology,
Bombay, in 1981. He obtained his M.A. and Ph.D.
degrees in Computer Science from the University of Texas

1562

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

