
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

BUILDING PARALLEL TIME-CONSTRAINED HLA FEDERATES:
A CASE STUDY WITH THE PARSEC PARALLEL SIMULATION LANGUAGE

C. D. Pham
R. L. Bagrodia

University of California, Los Angeles
Department of Computer Science
Los Angeles, CA 90095, U.S.A.

e-
s.
at
y
e
i-

n

n
le
th

e
ch
s
e
e
ly
e
r
S
le

ll

o
e
,
s

lds
ion
ced
DIS

rch
de-
S).
ns,
st-
llel
ality
tion
oted
ive
in

a
le
r of
t be
ause
o,
ngle
igh.
s,

As
DS

ent
n

ins
not
tial

ng
time
ates.
at
ABSTRACT

Based on the DIS result, the HLA framework has been d
fined to achieve interoperability of independent simulator
Concurrently, and for the most part, independent of th
effort, the parallel and distributed simulation communit
has attempted to define synchronization protocols for th
correct execution of parallel simulation as-fast-as poss
ble. Building parallel time-constrained federates withi
an HLA framework is not an easy task. We identify
the potential difficulties: one or several federates, whe
and how to advance the federate’s time, how to hand
RTI notifications, etc., and present our experiences wi
adding HLA features into theparsec parallel simulation
language.

1 INTRODUCTION

Simulation is becoming a common way to perform th
evaluation and the study of a large variety of systems su
as large scale computer networks or battlefield application
As more powerful machines are available for this task, th
level of attempted complexity is always increasing. Sinc
high development costs are unavoidable, it is certain
better to maximize the reuse of models and provid
interoperability instead of rebuilding new simulators fo
each new test case. Starting in March 1995, the U.
Department of Defense (DoD) has devoted considerab
efforts to define a common technical framework for a
DoD simulation applications. This framework includes
a High Level Architecture (HLA) to achieve reuse and
interoperability of simulators. In the HLA terminology
a single simulator is referred to as a “federate”. A
“federation” is then a set of federates working together t
achieve a given goal. Any federate developed following th
HLA guidelines, by using a common software interface
should be able to join an existing federation and it
1555
.

.

capabilities used by the other federates. HLA bui
upon the results of the Distributed Interactive Simulat
(DIS) experiments with the desire to incorporate advan
time management features that were lacking in the
approach.

Independent of interoperability efforts, the resea
community has also devoted considerable effort to
velop parallel and distributed simulation concepts (PAD
Whereas DIS was concerned with real-time simulatio
the main concern of PADS is to provide an “as fa
as-possible” execution while ensuring that the para
simulation satisfies all time dependencies and caus
constraints among events. The underlying synchroniza
mechanisms to achieve a correct execution can be den
as conservative, optimistic, or hybrid. A comprehens
comparison between PADS and DIS can be found
(Fujimoto, 1995).

Interoperability of independent simulators can to
certain extent allow for the simulation of large sca
systems. However, models that include a large numbe
objects, such as communication network models, can no
decomposed into a set of independent simulators bec
the cost of interoperability would be overwhelming. Als
such a large model may not be implementable on a si
machine since the computation load is extremely h
The idea of bringing the previously different communitie
HLA and PADS, into a closer cooperation is tempting.
a result, an attempt is being made to incorporate the PA
requirements into the definition of the time managem
facilities of HLA (Fujimoto, 1996). Such a cooperatio
would allow the creation of an HLA federation that conta
a parallel federate simulating a large system that would
have been possibly simulated by a traditional sequen
federate. This is fundamentally different from pluggi
DIS-based systems into an HLA federation because no
constraints are taken into account in DIS-based feder
Even if the HLA framework provides some services th

Pham and Bagrodia

el
is

llel

)
e

er
es

ns
as
3

lle
th
n

a

,
to
,
a
y

s.
es
by

jec
ss
ec

d

e
d
in

ct’s
an

ill

ive
g

s

n

ge

er
e

er

ut

d.
e
its
e
to
nd

n,

y

ze
ay
e

s

e

d
s
’s
f

y
e

can be useful for PADS, building time-constrained parall
federates with an environment whose primary concern
interoperability requires a careful look on how the HLA
time management facilities can be handled by the para
simulator.

The parallel and distributed simulation group at UCLA
has defined theparsec language (Bagrodia, and al., 1998
that transparently supports several synchronization schem
on a variety of parallel architectures. The present pap
describes our experiments in incorporating HLA featur
into the parsec environment to develop HLA compliant
parallel simulations. In the process we identify lesso
that were learned. The rest of the paper is organized
follows: Section 2 presents the HLA architecture, Section
discusses the process of building time-constrained para
federates, and Section 4 presents our case study using
parsec language. Conclusions and future work are give
in Section 5.

2 THE HLA FRAMEWORK

HLA consists of three components: (i) a set of rules for
the federates and the federation, (ii) an Object Model
Template (OMT) that defines how the capabilities of
federate can be described and (iii) a software component
called the Run-Time Infrastructure (RTI) (DMSO RTI
1998) that acts like a distributed operating system
provide a common programming interface. With HLA
a real system is modeled by a set of objects with
given number of attributes. Interoperability is achieved b
using a subscription to or publication of object attribute
A federate that subscribes to a set of object’s attribut
declares its interest in receiving any updates performed
remote federates on remote instances of the given ob
class. Publication of attributes of a given object cla
means that the federate is capable of simulating the obj
and sending updated values for the object’s attributes.

Programming interfaces of the RTI are propose
in C++, ADA and Corba IDL. We will use the C++
terminology and syntax in this paper. The RTI softwar
is divided in two parts: one part is federate-initiated an
the other is RTI-initiated. The first part is encapsulated
the RTIambassador class. A number of methods are
available to create a federation or subscribe to some obje
attributes for example. The second part is defined in
abstractFederateAmbassador class and the user has to
define its own subclass ofFederateAmbassador . The
RTI services are divided in six categories: (i) Federation
Management, (ii) Declaration Management, (iii) Object
Management, (iv) Ownership Management, (v) Time
Management and, (vi) Data Distribution Management.
Our discussion on parallel time-constrained federates w
mainly address the use of categories (i) and (v).
1556
s

l
e

t

t

3 BUILDING PARALLEL FEDERATES

In the PADS terminology, a synchronization algorithm
that only processes safe events is said to be conservat
(Chandy and Misra, 1979). Safety is guaranteed by forcin
the Logical Process (LP) to block if causality may be
violated. Unfortunately, this scheme introduces deadlock
that must be avoided by sendingnull-messages. This
approach usually requires input channels (ICs) betwee
logical processes. The Earliest Output Time (EOT) for an
LP is defined as the timestamp of the next possible messa
generated by the LP. EachICi has an Earliest Input Time
(EITi) that is theEOT of the LP connected to it. The
EIT for an LP is defined as the minimum of theEITi.
Locally, the LP can process all events with timestamp less
than itsEIT . Null-messages are used in the conservativ
approach to propagate theEOT of LPs that do not send
real messages. The value of theEOT usually includes
the LP’s lookahead. The larger the lookahead, the bett
the algorithm performs. On the other hand, optimistic
approaches (Jefferson, 1985) do not search for safety b
provisions are made toroll back to an earlier coherent
state when causality is discovered to have been violate
Causality constraints are corrected on-the-fly, when th
LP receives a message with a timestamp smaller than
logical time. In that case, it has to roll back, undo the fals
computation and use lazy or aggressive cancellations
cancel its outgone messages. Periodic check-pointing a
anti-messagesto cancel incorrect computations are then
needed as a counterpart of more freedom. In additio
a Global Virtual Time (GVT) is required to monitor
the simulation progress and to reclaim memory used b
obsolete information.

3.1 Time Requirements

The RTI kernel uses a conservative approach to synchroni
the different federates in the federation. Each federate m
send its simulation time to the RTI so that it can comput
a Lower Bound Time Stamp (LBTS) for the federation
execution. This LBTS value is computed by taking into
account the lookahead of all the time-regulating federate
and represents “the minimum time stamp so that it can
be guaranteed that no federate will generate any mor
time-stamp-order events with a lower time stamp” (DMSO
RTI, 1998). In the HLA Interface Specification v1.3 and
v1.2, a time-regulated federate must provide a lookahea
value when it wants to become time-regulated. This wa
not the case in version 1.1. The definition of a federate
simulation time in a parallel federate is the minimum o
the local simulation time of all the LPs in the parallel
federate.

Each federate can be defined with respect to the wa
it manages the time with a combination of 2 booleans: th

Building Parallel Time-Constrained HLA Federates: A Case Study with the PARSEC Parallel Simulation Language

d
s

)
te
th

s
ill
i

ed
e

o
o
t

as

e
s

to
e
e
o
is

t,
e
o
e-
he

g
b

d

n

e

P,

ts

t
l

s
y

he

-
a

e

it.

s

e

at
t

a
e
s

time-regulation boolean (ON/OFF) and the time-constraine
boolean (ON/OFF). A time-regulated federate participate
in the federation LBTS computation performed by the
RTI and is allowed to send time stamp order (TSO
messages (TSO messages sent by a non time-regula
federate are transformed in receive order messages by
RTI). In other words, itsEOT is taken into account. A
time-constrained federate should process TSO message
timestamp order, as opposed to receive order. The RTI w
ensure that messages for a time-constrained federate w
be delivered only when the federate’s time has advanc
sufficiently. Within the federation each federate may hav
to request atimeAdvanceGrant notification from the
RTI. The purpose of this task is two-fold: (i) to inform
the RTI of the federate’s simulation time and, (ii) to
indirectly indicate to the RTI that the federate is ready t
receive TSO messages up to the requested time. With tw
booleans, four separate status indications for a federa
can be defined. We show in Figure 1 that a federate h
to request atimeAdvanceGrant in three cases, for
different reasons.

ON OFF

O
N

O
F

F

TIME-CONSTRAINED

T
IM

E
-R

E
G

U
LA

T
E

D

M
YSELF

OTH
ERS

OTH
ERS

NOTH
IN

G

M
YSELF

Figure 1: Federate status.

The termsmyself andothers are defined as follows:
myself means that the federate needs to request a tim
advance grant in order to increase its simulation time a
perceived by the RTI. This is needed for the federate
receive messages from the RTI when the federate is tim
constrained.others means that the federate requests th
time advance grant to allow other federates to advance. F
instance, even if a federate is non-time-constrained but
time-regulated, it must inform the RTI of its advancemen
otherwise, its non-increasing simulation time will caus
the RTI to delay the delivery of the TSO messages t
the other time-constrained federates. Usually, the tim
regulated federate will request a time advance grant to t
time of its next local event. Within the traditional definition
of PADS, conservative federates must be time-regulatin
and time-constrained, whereas optimistic federates can
only time-regulating. However, in practice, an optimistic
federate will also be time-constrained; otherwise it woul
encounter numerous time errors.

A given federate can obtain the value of the federatio
LBTS less its ownEOT . In the HLA terminology, this
1557
d
e

in

ll

e

-

r

e

value is called the federate’s LBTS. Actually, this is the
only service provided by the RTI v1.3 (queryLBTS), as
opposed to v1.2 and v1.1 where a federate can obtain th
federation LBTS (requestFederationTime). If we
consider each federate in the federation as a conservative L
the value provided by a given federate’s call toqueryLBTS
is simply the federate’sEIT from the RTI. For a time-
constrained federate, it is not advisable to process even
with timestamp greater than its LBTS. Exceptions may be
made for federates that run an optimistic synchronization
protocol.

3.2 The Need for an Accurate GVT

For a parallel federate a kind of Global Virtual Time
(GVT) computation is required to determine the smalles
timestamp in the federate. As opposed to a traditiona
optimistic approach where the GVT is mainly needed for
fossil collection, the GVT computation needed for the
RTI must be performed quite frequently, otherwise the
federate’s simulation time perceived by the RTI will not
increase sufficiently. For a time-constrained federate thi
is a problem because TSO messages from the RTI ma
be delayed and never passed to the federate.

For a traditional conservative simulation without a
Global Control Mechanism as described in (Jha and
Bagrodia, 1994), this GVT computation must then be
added. Optimistic federates that already have GVT
computation features, nevertheless need to increase t
rate of the GVT computation, otherwise they may block
the other non-optimistic federates (conservative, or time
constrained sequential federates). The exact overhead of
frequent GVT computation is not known yet but previous
studies have shown that an accurate GVT is costly. Th
traditional definition of the GVT for fossil collection in
optimistic simulators is the minimum of all the LPs’
simulation time and the timestamps of messages in trans
For an optimistic federate, itsGV Tfed must now take
into account the federate’s LBTS and is then defined a
GV Tfed = min(GV T, LBTS).

3.3 One Federate or Sseveral Federates?

When incorporating a parallel simulation in a federation,
an important question is whether to declare it as a singl
federate, or as a collection of federates. If each LP
is declared as a separate federate, the advantage is th
each LP can join the federation with an independen
RTIambassador and FederateAmbassador . On a
distributed memory machine, this is a simple way to enable
the distribution of the callback mechanism—otherwise
callback notifications that are beyond the boundaries of
physical processor must be translated in some way (th
RTI may provide pointer arguments that are meaningles

Pham and Bagrodia

ory
ates

of
eds

ugh
ge
to
nt

For
ely
ral
Let
f
e
ted

tra
he
for
cies

a
of

, it
e

vera
n in
LPs
s in

al

rate
be
he
ith
one
ing

ust

ns
dy

to
e
of

he
lel
amp
e
of
der
e

ts
to
O

e,

ly
a
ce
n
a

s
for
ed
e.
t

el
er,
ges
l
or
n

e
d

te
re

te
e

from one processor to another in a distributed mem
architecture). On the other hand, having too many feder
can lead to an overwhelming overhead. If hundreds
LPs are expected in a parallel simulation, having hundr
of federates is not the best solution.

However, these considerations are not strong eno
to completely reject the multi-federate solution. In a lar
communication network model, one may still want
split the model into a relatively small set of independe
federates, each one simulating part of the network.
a conservative parallel simulation, the reason to definit
reject the multi-federate model is that having seve
federates does reduce the amount of parallelism.
assume that the conservative simulation consists on
LPs partitioned intom federates that have joined th
federation execution, each of them being time-regula
and time-constrained as in figure 2.

RTI

Federate 2

EOT 3

LBTSj = min(EOT i)

LP10

LP7

LP9LP8

LP1 1

i = j

LP6

Federate 1

EOT 1

LP4

LP5

LP2LP1

LP3

LBTS3

LP0

Federate 3

EOT 2

Figure 2: Dependencies in a multi-federate model.

Each federatei has a differentLBTSi perceived by
the RTI and has to take into account theLBTSj,j 6=i of the
other(m−1) federates. This is equivalent to adding ex
ICs in the conservative simulation that did not exist in t
original parallel simulation. Having several federates
a single parallel simulation introduces extra dependen
in a model that has originally been parallelized with
space-time scheme to exploit the maximum number
parallel events. In the actual implementation of the RTI
is not possible to explicitly specify the topology, i.e. th
dependencies or the lack of dependencies between se
time-regulated federates. Therefore, as can be see
figure 2, the LPs in federate 3 are dependent of the
in federate 1 even if there are no such dependencie
the original model.

For an optimistic parallel simulation, having sever
federates increases the complexity of theGV Tfed compu-
tation, as defined in the previous section. In a one-fede
model, the native GVT computation mechanism could
used to compute both the GVT for fossil collection and t
GV Tfed that takes into account the federate’s LBTS. W
a multi-federate model, these computations must be d
on a federate basis, distinguishing between LPs belong
to different federates. The fossil collection process m
1558
l

also be done on a federate basis. All these modificatio
add additional complexity to an approach that is alrea
highly complex.

3.4 Translation of RTI Notifications into Events

The large majority of PADS simulators are designed
work as event-driven simulators. Every change in th
system must be made as the result of the processing
a time stamped event. The callback mechanism of t
RTI must then be converted into events for the paral
federate. These events must have an associated timest
that indicates the logical time at which it should b
processed. The HLA framework defines two types
events, receive order events (RO) and time stamped or
events (TSO). The RO type comes from the DIS real-tim
needs. Most of PADS simulators only deal with TSO
messages. The translation of RTI notifications into even
for the parallel federate automatically adds a timestamp
every message, even those that were originally of the R
type.

When the RTI delivers the notifications to a federat
it will call user-provided functions of theFederate-
Ambassador base class. These functions could simp
encapsulate the arguments provided by the RTI into
special event and send it to the appropriated LPs. Sin
each LP in the parallel federate is at a different simulatio
time, the notification events must be time stamped in
way to prevent any time causality violations. This i
mandatory for conservative federates and advisable
optimistic federates. RO events should be time stamp
with a value no lesser than the federate’s simulation tim
TSO notifications from the RTI carry a timestamp tha
should be reported in the translated event.

3.5 When and How to Advance the Federate Time?

Given the time services provided by the RTI, the parall
federate must now use them in a coordinated mann
i.e. when to advance the time and when to get messa
from the RTI. We will now assume that the paralle
federate is both time-regulated and time-constrained. F
a conservative federate, working within an HLA federatio
is equivalent for each LP in having an additional IC
with an EITrti from the RTI. ThisEITrti is simply the
federate’s LBTS (but only for TSO messages from th
RTI!) The advancement of each LP will therefore depen
on the advancement ofEITrti. The EIT for an LP
will then take into account theEITrti in addition to the
EIT of its real ICs. Each LP can theoretically execu
all eligible events from its ICs, i.e. their timestamps a
smaller than the LP’sEIT , and advance accordingly in
simulation time. Clearly, each LP in the parallel federa
can not report its local simulation time to the RTI as th

Building Parallel Time-Constrained HLA Federates: A Case Study with the PARSEC Parallel Simulation Language

T
LP
T
lly
nly

w

inl

ed

ue

ere
e

SO

ls
s a

de
Th
RT
me
nt
lly

th
e

ge

th
or
e

of
e

p
a

LP
ion
te’

e
am

the
it
7

the
m

r
f

r.
s

g

d

es
.

n

t

g,

ly
f

et
s

h
e

federate’s time. We said previously that a kind of GV
computation was needed. We will assume that one
in the parallel simulation (a dedicated LP for the GV
computation or one among all the existing LPs) fina
knows the federate’s simulation time. This LP is the o
one that can safely request a time advance grant and
call it LPTM (Time Manager).

Requesting a time advance grant is performed ma
by three services offered by the RTI. ThetimeAdvance-
Request service is intended to be used by time-stepp
simulators whereas thenextEventRequest is available
for event-driven simulators. This latter service either iss
the time advance grant to the time requested or only “to the
timestamp of the next TSO messages that will be deliv
to the federate” (DMSO Interface, 1998). There is on
more service, calledflushQueueRequest , that allows a
federate to receive all the queued messages (RO and T
regardless of their timestamps.flushQueueRequest
is certainly useful for optimistic federates, but appears a
to be much more convenient for conservative federate
explained below.

As said previously, time advance grants are nee
to increase the federate’s time perceived by the RTI.
federate can then receive TSO messages from the
There are two possibilities for when to request a ti
advance grant to timet: before the execution of the eve
with timestampt or after. A sequential federate usua
requests the time advance grant beforehand: assume
the next local event has timestampt, a sequential federat
would request a time advance grant for timet before
executing the event. In this way, the federate can
all TSO messages up to timet from the RTI. It is the
simplest way for the sequential simulator to advance
time since it does not have to worry about the LBTS. F
a parallel federate, the LPs can report their advancem
to time t to LPTM either before or after the processing
the event of timestampt. In a conservative federate, th
knowledge of the federate’s LBTS (the additionalEITrti

for each LP) makes each LPi regulated by the timestam
of the next TSO message from the RTI. Let’s take as
example the configuration depicted in figure 3a. The
has 3 ICs from the other LPs in the parallel simulat
and has one IC from the RTI that indicates the federa
LBTS.

Assume we usenextEventRequest to advance the
federate’s time. It is still safe for the LP to report the tim
after since only safe events are eligible (events at timest
3 and 4, figure 3a). Suppose that (i) LBTS = 5, and (ii)
the timestamp reported is the minimum timestamp in
federate: whenLPTM requests the time advance grant
gets it immediately. To process event with timestamp
reporting the value 7 before allows the increase of
LBTS and the delivery of the event with timestamp 6 fro
1559
e

y

s

d

),

o
s

d
e
I.

at

t

e

nt

n

s

p

,

LBTS = 5

4

3

7

13

11

LBTS = 6

13

11

7

LBTS = 10

13

11

7

(a) (b) (c)
nextEventRequest flushQueueRequest

7 8 9 7 8 96

6 6789

Figure 3: LP with 3 real ICs.

the RTI (figure 3b). Reporting the value 4 after blocks the
LP since the event with timestamp 7 is still not eligible.
An additional step is required to increase the LBTS. If
the LP reports before, it does not need to wait for the
time advance grant unless the time it reported is greate
than the federate’s LBTS. However, the main drawback o
nextEventRequest is that it only increases the LBTS
from one incoming TSO message’s timestamp to anothe
This can decrease dramatically the number of simultaneou
events.

If we consider the use offlushQueueRequest ,
the advantage is two-fold: (i) it is possible to report
after without any blocking and, (ii) the LP can get
as many messages as possible. There is no blockin
because ifflushQueueRequest is called, the LBTS
will increase as all queued TSO messages are delivere
(see figure 3c). The only blocking situation is when the
increase of the LBTS is delayed by some reason (messag
from the RTI are delayed on the network for example)
Reporting after has also the following advantage: in an
existing simulator, reporting after requires no changes i
the simulator kernel because the additional code for HLA
compatibility can be added as user-code. This is importan
for us in the particular case ofparsec as it will be
explained later. Of course, reporting before is always
possible. Whenever the report is done, generally speakin
flushQueueRequest appears to be more convenient
because the TSO messages from the RTI are direct
handled by the conservative synchronization algorithm o
the federate.

For an optimistic federate, the time advance mechanism
is a little bit simpler: theGV Tfed for the federate must
be computed first and a time advance grant to theGV Tfed

requested. No rollback should occur beforeGV Tfed. The
time advance grant to timet can be requested before or
after the processing of the event of timet, but as opposed
to conservative federates, no care needs to be taken to g
incoming TSO in time because the federate can alway
roll back on time errors. However, unless the optimistic
federate monitors the federate’s LBTS (and behaves muc
like a conservative federate), requesting the time advanc

Pham and Bagrodia

o

nt
ca
u

io
h

A
th
tio
tio
er
ne
ai
sm
n
rm
a
n
r
a
c

of
th
in
o

b
m
n
ll
f
a

f
e
k
a

h

a
go
u
io
in

o

s

f
ity

nt
r

a
e
t

.
n
e
e
n

.
l

s
is

e

,

er
r
y

ir
grant after would certainly increase the probability
receiving a TSO messages in the federate’s past.

3.6 What about the Speedup Finally?

The purpose of creating parallel federates is to plug i
an HLA federation as-fast-as possible simulators that
handle a large and complex system in a shorter amo
of time than a sequential federate. Parallel simulat
in the PADS community has already demonstrated t
such speedups can be obtained. The question now
whether speedup can still be obtained within an HL
federation. First, speedup in this context refers to
comparison between the execution time of a federa
consisting of only sequential federates and the execu
time of a federation, performing the same task, wh
some federates are parallel. With non time-constrai
and non time-regulating federates, a speedup can cert
be easily achieved, provided that the level of paralleli
is sufficient. For time-constrained and time-regulati
federates, even if their parallel implementations perfo
well outside the HLA framework, it is not necessary th
they still perform well within an HLA federation. As ca
be seen from the previous sections, the services offe
by HLA are numerous but they have to be used in
optimal way in order to give the parallel federate as mu
freedom as possible.

At the moment, there is no common definition
what a simulation time represents for a simulator so
simulation time can have a completely different mean
from one federate to another. If we can define a comm
semantic for time, still one of the problems introduced
the cooperation of several different simulators is the ti
scale difference between them. The time scale differe
can have a dramatic impact on the execution of a para
federate. For a conservative federate, the existence o
least one federate working at a much smaller time sc
has disastrous consequences on the performance o
simulator. For an optimistic one, the probability of tim
errors increases dramatically. Special care must be ta
when constructing a federation execution to verify th
there is no time scale incompatibility, in which case t
idea of interoperability is impossible.

4 CASE STUDY WITH THE PARSEC LANGUAGE

parsec is a C-based language that was designed to ne
separate the simulation model from the underlying al
rithm (sequential or parallel) that may be used to exec
the model. It has been used for the parallel simulat
of a number of applications in diverse areas includ
queueing networks, VLSI designs, parallel programs, m
156
f

o
n
nt
n
at
is

e
n
n

e
d

nly

g

t

ed
n
h

e
g
n

y
e
ce
el
at
le
the

en
t

e

tly
-

te
n
g
-

bile wireless multimedia networks, ATM networks, and
high-speed communication switches and protocols.

A parsec program is a collection of entity definitions
and C functions. An entity definition describes a clas
of objects. An entity instance, called simply an entity,
represents a specific object in the physical system.parsec
defines a type calledename which is used to store entity-
identifiers. Each entity knows its own ename with the
self variable. Entities communicate with each other
using buffered message passing.parsec uses typed
messages; an entity definition must define the types o
messages that may be received by its instances. An ent
sends a message by executing asend statement. Each
message is transparently time stamped with the curre
simulation time and is deposited in the destination buffe
at the same (simulation) time at which it is sent. An entity
accepts messages from its message-buffer by executing
parsec receive statement on a given message type. Th
simulation time of an entity can be advanced only when i
receives a message or when it executes ahold statement.
For the conservative synchronization,add source and
add dest build the topology.

4.1 Architecture of a Conservative Federate

The parallel simulator built withparsec is a single-
federate model. Callback notifications from the RTI are
translated into specialparsec events and sent to the
relevant entities, time stamped by the simulation clock
Each entity can declare its interest in receiving a give
set of notifications. At the moment, the target architectur
is a SparcServer 1000 with shared-memory. Therefor
each entity can access the RTI objects. Implementation o
a distributed memory machine will be considered in the
future. A time manager is defined to perform the GVT
computation and the time advance grant request.

In parsec, the time manager is simply a special
entity added to the source set of the other entities
In figure 4, each LP has one additional input channe
from the time manager (solid-line arrows), in addition to
those needed for the communication with the other LP
(dashed-line arrows). The task of the time manager
three-fold. First, to compute the federate’s simulation time
and send it to the RTI (by requesting a time advanc
grant with flushQueueRequest), second, to request
the federate’s LBTS from the RTI in order to enable the
other entities to advance with sufficient parallelism and
third, to periodically tick the RTI runtime in order to allow
the delivery of incoming messages. For the time manag
to compute the federate’s time, it is required that the othe
entities send to it the timestamp of the last event the
executed (with a specially definedTimeReport parsec
message). According to section 3.6, the LPs report the
0

Building Parallel Time-Constrained HLA Federates: A Case Study with the PARSEC Parallel Simulation Language

e
bly
it i
se

ve
TI
he

and
nt
ion
sk

ow
h

ved
s
g a
. T

t.

r-
’s

r-
.
s
te
st
te
a

al
red
-

d.
ent

y
et-
he
an

es
d
er
e
em

d
in
k
or
e’s

t

m

simulation time after the processing of events. To hav
sufficiently accurate federate’s time, this should proba
be done every time an entity process an event, but
still safe to report only the timestamp of the last proces
event that must be smaller than the federate’s LBTS.

Federate 1

Federate 2

RTI
EOT 1

EOT 2

Federate 3

EOT 3

LBTSj = min(EOT i)

LP4

LP5

LP2LP1

LP3

LBTS3

i = j

Figure 4: The time manager.

Actually, only entities that are likely to send/recei
TSO messages to/from the outside, i.e. to/from the R
need to report their clock value to the time manager. T
time manager and the other LPs work concurrently
therefore the LPs can process their eligible local eve
while the time manager gathers all the LPs’ local simulat
time and requests for the time advance grant. The ta
realized by the time manager and a user entity are sh
below in a pseudo-parsec code (commands starting wit
an underscore represent calls to the RTI services):

message TimeReport { ename sender; double clockTime; }

entity TM() {
double LPtime, Stime;
ename sender;

receive (TimeReport theTimeReport) {
LPtime = theTimeReport.clockTime;
sender = theTimeReport.sender;

}
STime = ComputeFederateTime(LPTime, sender);
_flushQueueRequest((FederateTime)STime);
_tick;

receive (TimeAdvanceGrant theTimeAdvanceGrant) { }
RequestFederateLBTS();
SendLBTS();

}

entity myLP() {
add_source(TMename);
while (1) {

receive (ModelMessage theModelMessage) {
. . . process the message

}
send TimeReport { self, simclock() } to TMename;

}
}

ComputeFederateTime() simply computes the
federate’s time after taking into account the newly recei
time report. SendLBTS() informs the user-defined LP
of the federate’s LBTS. This can be done by sendin
message on the channel connected to each user-entity
1561
a

s
d

,

s

s
n

he

implementation of the time manager is not completed ye
We are still optimizing how often the time report should
be done and how often the LBTS should be sent to use
defined LPs. For the user-defined entity, as the entity
simulation time advances only on areceive statement,
reporting after the execution of the event significantly
simplifies the scheduling policy.

4.2 Example: The Wireless Network Model

HLA features have been added to theparsec language
and an HLA-compatible “helloWorld” example has been
successfully developed. We are now evaluating the pe
formance of a parallel federate within an HLA federation
As a first attempt, we choose an application that ha
good lookahead, good time scale for the parallel federa
and simple publication/subscription requirements. The te
federation consists of 2 federates: a sequential federa
and a parallel federate. The parallel federate models
wireless network of radio transmitters and the sequenti
federate models a weather condition. Speedu is measu
by comparing the execution time of the federation exe
cution when (i) the wireless network is simulated with
a distributed simulation algorithm and (ii) the wireless
network is executed sequentially.

Each radio transmitter is defined as aparsec entity.
A time manager entity is defined as previously describe
Messages exchanged between transmitter entities repres
the arrival of a call. Calls are forwarded randomly from
one transmitter to another before finally being accepted b
a transmitter. Since radio transmission is used, the pack
loss rate depends on the weather condition, modeled by t
sequential federate. This federate periodically publishes
indicator, calledweather condition , subscribed to by
the wireless model federate. The weather condition chang
every 10 minutes. This provides both good lookahea
and time scale for the parallel federate. Both the weath
model and wireless network model are intentionally simpl
and are not intended to accurately represent the real syst
they model.

5 CONCLUSION

In this paper, we addressed the problem of parallel an
distributed time-constrained federate developments with
the HLA framework. This development is not an easy tas
and several different design choices can be made: one
several federates, when and how to advance the federat
time, how to handle RTI notifications, etc. From our
experiments, we think that it would be more convenien
to give the possibility for a time-regulated and time-
constrained federate to automatically receive events fro
the RTI without any queuing from the RTI. In the case

Pham and Bagrodia

g
ld
nal
nd
s
el
ue

t
ct
PA

n

n:
d

-

e

.

.

r
.

ity
llel

t
l
,
.
as

h
s,
of a conservative or optimistic federate, the underlyin
synchronization algorithm of the parallel federate wou
take care of the time order of the messages in a traditio
PADS way (an additional IC for conservative federates a
a rollback facility for optimistic federates). This study ha
helped clarify which choice may provide the best parall
execution. Future work will address the performance iss
using the wireless model described previously.

ACKNOWLEDGMENTS

The work of C. D. Pham as a post-doctoral fellow a
UCLA is supported by DGA/SREA/SC/EXP under contra
9381100095 and by the U.S. Department of Defense/AR
DOMAINS project under Contract DAAB07-97-C-D321.

REFERENCES

Bagrodia, R., et al. PARSEC: A Parallel Simulatio
Environment for Complex Systems.To appear in
Computer Magazine.

Chandy, K. M., and J. Misra. 1979. Distributed Simulatio
A Case Study in Design and Verification of Distribute
Programs.Trans. on Soft. Eng., Vol. 5(5), pp440-452.

Defense Modeling and Simulation Office. RTI Program
mer’s Guide. Version 1.0, version 1.3.

Defense Modeling and Simulation Office. HLA: Interfac
Specification. Version 1.3, version 1.2, version 1.1.

Fujimoto, R. M. 1995. Parallel And Distributed Simulation
In Proceedings of the WSC’95, pp118-125.

Fujimoto, R. M., and R. M. Weatherly. 1996. Time
Management in the DoD High Level Architecture
In Proceedings of the PADS’96, pp60-67.

Jefferson, D. R. 1985. Virtual Time.ACM Trans. on Prog.
Lang. and Sys., Vol. 7(3), pp405-425.

Jha, V., and R. L. Bagrodia. 1994. A Unified Framework fo
Conservative and Optimistic Distributed Simulation
In Proceedings of PADS’94, pp12-19.

AUTHOR BIOGRAPHIES

C. D. PHAM is a post-doctoral fellow at UCLA. He
received a Ph.D. in computer science from the Univers
of Paris 6, France. His research interests focus on para
discrete event simulation algorithms.

R. L. BAGRODIA is a Professor of Computer Science a
UCLA. He obtained a Bachelor of Technology in Electrica
Engineering from the Indian Institute of Technology
Bombay, in 1981. He obtained his M.A. and Ph.D
degrees in Computer Science from the University of Tex
1562
at Austin, in 1983 and 1987 respectively. His researc
interests include distributed algorithms, parallel language
programming methodology and performance evaluation.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

