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ABSTRACT measured current values, the algorithm attempts to
converge to the parameter vector that best fits with the

We describe a Markov state model for a cloned potassium measured data.

channel of the human heart{, o7,). The parameters of The next sections describe the model, the simulation-

the model are determined by a least-squares fit of predictedbased model fitting methodology, and the results of fitting
the model to experimental data.

vs. measured data. The fitting process is achieved by using
the “SPSA” optimizer to sequentially choose trial values of
the parameters. At each choice of parameter value, a los2 THE CONDUCTIVITY MODEL
function is computed by simulating the action of the )
channel at that trial parameter value. When the optimizer 1"€ model postulates three modes, designaéd C1,
has converged, the parameter value represents the best fit. @hd O2 of the KvLQT1 potassium channe;0 and C1

being closed states an@2 being the open state of the
1 INTRODUCTION channel. It is assumed that the state of the channel can

transition betweenC1l and eitherCO or O2, but not
Recently, modeling approaches to the understanding of betweenCO and O2, and that there are voltage-dependent
heart action have received increasing attention by quantities K; =K;(V), whereV is membrane potential,
researchers, e.g., Romey et al. (1997), Luo and Rudy ion eqenting the transition rates between states, as shown
(1994), Vandenberg and Bezanilla (1991), and Balser, schematically in Figure 1.
Roden, and Bennett (1990). An important aspect of
modeling the action of the human heart is modeling the
electrical conductivity of ion channels within the heart. An Co 0 f# - c1 O f® - 02
understanding of cardiac electrical activity can lead to new - ﬂ;ﬂ 0 - ﬂ;ﬂ 0 :
diagnostic and treatment protocols, as well as facilitating 10 21
the development of drug treatments for heart disease. In
this paper, we describe a model for conductivity of a Figure 1. Schematic of Transitions Between States
cardiac potassium channel. The model is based on eight
key parameters that determine the transition rates amongBy the law of mass action, the probabilit€g, C,, or O,

two closed (non-conducting) states and one open that the channel is in stat0, C1, or O2, respectively,

(conducting) state of the channel. ~ We describe a are governed by the three differential equations:
simulation-based method to compute the least squares fit of

these parameters to experimental data obtained when Cj,=K;,C;—KyCy,

various voltages are applied across the channel. In this 0. =K..C. —K..O
computation, the parameters are varied in a controlled 2T ieml e are2e

fashion, and, at each setting of the parameters, a simulation C; = Ky,Cy + K50, = (Ko +K4,)Cy 1)

of the conductivity of the channel is performed to obtain o ) )

predicted output current across the membrane. By where the derivatives are with respect to tiheand the

iteratively comparing the predicted currents with actual Probabilities are, of course, functions of time
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(Co=Cy(t), etc). It is further assumed that the differential equations (1), we used a simple Runge-
Kutta method available in Matlab. Use equation (3) to

dependence of the ratd§ on voltage is expressed as X ) i .
P ) g P compute the resulting (predicted) time history of

Kjj =exp(A; +BV), 2 output current.
where A; and B; are (constant) parameters to be 4. Compute a loss function L(©), for
determined. Once these parameters are determined, the  ©= (Ao, Aip, A2, A1, Bo1, Bio, Bia Byy) , equal to
action of the channel can be simulated, i.e., the the sum of squared differences between the predicted

probabilities of the channel’s being in the various states and actual output current values over the time history.
can be calculated over time, given the initial conditions and Actually, for the final fit, this loss function was
a time sequence of membrane voltages. When the channel  modified slightly, as described below in Section 4, to

is in stateO2, the currentl ,(t) across the membrane at compensate for differences in noise levels in the data.

time t is: 5. Using an optimization procedure, update the value of
l'm(t) = Gruror102(DIV (1) — Eg(] ©) ©, and cycle back to step 3 above, iterating to find the
m \Y/ ’

. . value of © that minimizes the loss functiobh(©) .
where Gy or1 IS the (known) maximum conductance of

I'wwor1. @nd Ey is a known reversal potential. The final value of@ defines the best-fitted values of the
A; and Bj terms, in the least squares sense. For the
3 FITTING THE MODEL optimization procedure, we plan to use a relatively new

o ) ) methodology, called Simultaneous Perturbation Stochastic
The channel conductivity modeling task is completed by Approximation (SPSA), introduced in Spall (1992). This
determining the parameteréy and B;. This can be  jigorithm is especially well adapted to cases like this one,
accomplished by fitting the “best” values of these constants where the parameter is a multivariate (vector) quan@y (
to experimental data. We use a least-squares criterion,has 8 states here) and the derivative of the loss function
defined below, to define the best fit. For the data, we use with respect to the parameter to be fitted is difficult or
electric current values, measured (over time) across theimpossible to obtain. This algorithm is also suited to cases
channel membrane in a laboratory setting where the where the observations of the loss function are corrupted
membrane voltages are controlled to remain at known by noise (which may be the case if we implement the
fixed levels over fixed time periods (a “voltage clamp” simulation using stochastic sampling based on the
sequence). Given the data and the time history of voltage probability values described above). Studies of SPSA in
settings, we fit the model by simulating the action of the comparison to the popular optimization method of
channel as follows: simulated annealing have shown a marked advantage for

SPSA in certain applications, e.g., Chin (1998).

1. Determine starting values of the eight paramet&ys

and B;. A method for this is described below in 4 NUMERICAL STUDY

Section4. N We start with a description of the experiments that
2. Determine initial conditions for the probabilitieS,, generated the data. Cloned cells were treated in the

C,, and O,. This step can be aided by engineering laboratory to express the KvLQT1 gene. These cells acted

judgment, or can be arbitrary, except that the three as cardiac cells having potassium ion channels affected by
probabiliti7es should add up to u1nity' this gene. After preparation of the cells, the cell culture

Co+C,+0,=1. 4) was subject to 11 experiments. In each experiment, three

. , voltage potentials were applied across the cell culture
In our study (see Section 4 below), the voltage regime qyring three contiguous time periods. In the first time

used in the experiment allowed a good guess of theseperipd, a constant voltage of —80 mV was applied for

initial values. o several seconds. In the second time period, one of 11
3. Based on the present valuesA&f and By, the initial different voltages (one per experiment) ranging from —40

conditions and the voltage clamp history, use mVto 60 mV (in 10 mV increments) was applied and held

equations (1) and (2) to simulate the probabilitizs constant for 2000 milliseconds (ms). In the third time

period, a voltage of —40 mV was applied for 2000 ms. For

i o 50 ms during period 1, and for the duration of time periods

equation (4) should be used to eliminate one of the 5 anq 3, current flow across the culture was measured and
equations in (1), in order to assure that the constraint recorded at one-ms time intervals, obtaining about 2000

in equation (4) is satisfied. This also serves 10 yata points in each of periods 2 and 3.

simplify the computations somewhat. To simulate the

C,, and O, over time. As part of this process,
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The value of the reversal potenti&, , was obtained
from the Nernst-Plank equation
E, =(RT/zF)log(Ky/K;), where K, and K, are the

external and internal potassium concentrations (4 and 140
respectively), T is the temperature (22 degrees Celsius)
and R,z, and F are the usual physical constants. The

result is thatE, is -88mV. The maximum conductance,
Gkuigr1+ Was obtained using equation (3) at the highest

current level measured during the experiments (i.e., near
the end of the experiment where the time-period 2 voltage
level was 60 mV), and assuming th@=1 at that time.
From our data,Gy, or1 = 12.0 nS. Under the voltage
regime used in these experiments, it is reasonable to
assume (as we did) that the initial valuesGyf, C;, and
O, were 1, 0, and 0, respectively.

Next, we describe how to obtain initial guesses of the
desired parametergy; and B; . The first step of this was

accomplished by using the algorithm described in Section
3 with three simplifications, as follows:

1. We used only data from time period 2.
2. We used only data at one of the 11 voltage settings.
3. We estimated the four transition ratés; , rather than

the eight parameters;; and B;; .

between the predicted and observed values were greatest
on that one experiment (due to the noise levels). In order
to make the algorithm work harder to fit the “better” (less
noisy) data from other experiments, we scaled the loss

'function values derived from each experiment. The scale

factor was the inverse of the standard deviation of the set
of observed differences between the predicted and
measured current values for the experiment, obtained using
the per-voltageK; parameter values. This resulted in
much better performance.

The final fit resulted in values ofy; and By given in

Table 1.

Table 1. Final Fitted Parameters

A typical plot (in this case, for the time-period-2 voltage =
20 mV) of the simulated probabiliti€s,, C,, andO,, and

We repeated steps 2 and 3 for the other 10 voltage settingsthe corresponding (good) fit of simulated current values to

each time using the simple(®) described in Section 3,
step #4, thus obtaining values for eakli at each of the

11 voltage settings. This process was quick and reasonably

simple.  Then, under our model's assumption that
Kjj =exp(A; +B;V), we performed, for each of the four

relevant (i,j) settings, a linear fit to obtaiy; and B; that
best fit thelogKj; values at the various voltages. These
values of A; and B; were then used to initialize the value

of © in the recursion described in Section 3.

Finally, we ran the algorithm described in Section 3,
using data for all of the 11 experiments, but only from time
period 2. Ordinarily, data from both time periods 2 and 3
would be used (time period 1 was done simply to start all
of the experiments from the same polarized initial state).
However, some unexplained anomalies in the time period 3
data were evident, which seemed to indicate that the
simpler approach, using only the time period 2 data, would
be preferable to start with.

Initial attempts to fit the A; and B; using this
algorithm showed a tendency to over-emphasize loss
function data from the noisiest experiment, i.e., where the
time period 2 voltage was —40 mV. That is, the algorithm
worked hardest to fit this noisy data since the differences
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the measured values are shown in Figures 2 and 3.
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