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ABSTRACT

We describe a Markov state model for a cloned potass
channel of the human heart ( 1KvLQTI ).  The parameters of

the model are determined by a least-squares fit of predic
vs. measured data.  The fitting process is achieved by u
the “SPSA” optimizer to sequentially choose trial values
the parameters.  At each choice of parameter value, a 
function is computed by simulating the action of th
channel at that trial parameter value.  When the optimi
has converged, the parameter value represents the best

1 INTRODUCTION

Recently, modeling approaches to the understanding
heart action have received increasing attention 
researchers, e.g., Romey et al. (1997), Luo and R
(1994), Vandenberg and Bezanilla (1991), and Bals
Roden, and Bennett (1990).  An important aspect 
modeling the action of the human heart is modeling 
electrical conductivity of ion channels within the heart.  A
understanding of cardiac electrical activity can lead to n
diagnostic and treatment protocols, as well as facilitat
the development of drug treatments for heart disease.
this paper, we describe a model for conductivity of
cardiac potassium channel.  The model is based on e
key parameters that determine the transition rates am
two closed (non-conducting) states and one op
(conducting) state of the channel.  We describe
simulation-based method to compute the least squares f
these parameters to experimental data obtained w
various voltages are applied across the channel.  In 
computation, the parameters are varied in a contro
fashion, and, at each setting of the parameters, a simula
of the conductivity of the channel is performed to obta
predicted output current across the membrane.  
iteratively comparing the predicted currents with actu
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measured current values, the algorithm attempts to
converge to the parameter vector that best fits with the
measured data.

The next sections describe the model, the simulation
based model fitting methodology, and the results of fitting
the model to experimental data.

2 THE CONDUCTIVITY MODEL

The model postulates three modes, designated 0C , 1C ,
and 2O  of the KvLQT1 potassium channel, 0C  and 1C
being closed states and 2O  being the open state of the
channel.  It is assumed that the state of the channel ca
transition between 1C  and either 0C  or 2O , but not
between 0C  and 2O , and that there are voltage-dependent
quantities )(VKK ijij = , where V is membrane potential,

representing the transition rates between states, as show
schematically in Figure 1.
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Figure 1.  Schematic of Transitions Between States

By the law of mass action, the probabilities 0C , 1C , or 2O

that the channel is in state 0C , 1C , or 2O , respectively,
are governed by the three differential equations:

     0011100 CKCKC −=� ,

     2211122 OKCKO −=� ,

     112102210011 )( CKKOKCKC +−+=� , (1)

where the derivatives are with respect to time, t , and the
probabilities are, of course, functions of time
7
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( )(00 tCC = , etc.).  It is further assumed that 

dependence of the rates ijK  on voltage is  expressed as

)exp( VBAK ijijij += , (2)

where ijA  and ijB  are (constant) parameters to 

determined.  Once these parameters are determine
action of the channel can be simulated, i.e., 
probabilities of the channel’s being in the various s
can be calculated over time, given the initial conditions
a time sequence of membrane voltages.  When the ch
is in state 2O , the current )(tI m  across the membrane

time t  is:
])()[()( 21 KKvLQTm EtVtOGtI −= , (3)

where 1KvLQTG  is the (known) maximum conductance

1KvLQTI , and KE  is a known reversal potential.

3 FITTING THE MODEL

The channel conductivity modeling task is completed
determining the parameters ijA  and ijB .  This can b

accomplished by fitting the “best” values of these cons
to experimental data.  We use a least-squares crit
defined below, to define the best fit.  For the data, we
electric current values, measured (over time) acros
channel membrane in a laboratory setting where
membrane voltages are controlled to remain at kn
fixed levels over fixed time periods (a “voltage clam
sequence).  Given the data and the time history of vo
settings, we fit the model by simulating the action of
channel as follows:

1. Determine starting values of the eight parametersijA

and ijB .  A method for this is described below

Section 4.
2. Determine initial conditions for the probabilities 0C ,

1C , and 2O .  This step can be aided by enginee

judgment, or can be arbitrary, except that the t
probabilities should add up to unity:

 1210 =++ OCC . (4)

 In our study (see Section 4 below), the voltage reg
used in the experiment allowed a good guess of 
initial values.

3. Based on the present values of ijA  and ijB , the initial

conditions and the voltage clamp history, 
equations (1) and (2) to simulate the probabilities 0C ,

1C , and 2O  over time.  As part of this proce

equation (4) should be used to eliminate one o
equations in (1), in order to assure that the cons
in equation (4) is satisfied.  This also serves
simplify the computations somewhat.  To simulate
1588
l

differential equations (1), we used a simple Rung
Kutta method available in Matlab.  Use equation (3)
compute the resulting (predicted) time history 
output current.

4. Compute a loss function )(ΘL , for

),,,,,,,( 2112100121121001 BBBBAAAA≡Θ , equal to

the sum of squared differences between the predic
and actual output current values over the time histo
Actually, for the final fit, this loss function was
modified slightly, as described below in Section 4, 
compensate for differences in noise levels in the dat

5. Using an optimization procedure, update the value
Θ , and cycle back to step 3 above, iterating to find 
value of Θ  that minimizes the loss function )(ΘL .

The final value of Θ  defines the best-fitted values of th

ijA  and ijB  terms, in the least squares sense.  For 

optimization procedure, we plan to use a relatively n
methodology, called Simultaneous Perturbation Stocha
Approximation (SPSA), introduced in Spall (1992).  Th
algorithm is especially well adapted to cases like this o
where the parameter is a multivariate (vector) quantity (Θ
has 8 states here) and the derivative of the loss func
with respect to the parameter to be fitted is difficult 
impossible to obtain.  This algorithm is also suited to ca
where the observations of the loss function are corrup
by noise (which may be the case if we implement t
simulation using stochastic sampling based on 
probability values described above).  Studies of SPSA
comparison to the popular optimization method 
simulated annealing have shown a marked advantage
SPSA in certain applications, e.g., Chin (1998).

4 NUMERICAL STUDY

We start with a description of the experiments th
generated the data.  Cloned cells were treated in 
laboratory to express the KvLQT1 gene.  These cells ac
as cardiac cells having potassium ion channels affected
this gene.  After preparation of the cells, the cell cultu
was subject to 11 experiments.  In each experiment, th
voltage potentials were applied across the cell cult
during three contiguous time periods.  In the first tim
period, a constant voltage of –80 mV was applied 
several seconds.  In the second time period, one of
different voltages (one per experiment) ranging from –
mV to 60 mV (in 10 mV increments) was applied and he
constant for 2000 milliseconds (ms).  In the third tim
period, a voltage of –40 mV was applied for 2000 ms.  F
50 ms during period 1, and for the duration of time perio
2 and 3, current flow across the culture was measured 
recorded at one-ms time intervals, obtaining about 20
data points in each of periods 2 and 3.
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The value of the reversal potential, kE , was obtained

from the Nernst-Plank equation
)/log()/( 0 ik KKzFRTE = , where 0K  and iK  are the

external and internal potassium concentrations (4 and 14
respectively), T  is the temperature (22 degrees Celsius
and zR, , and F  are the usual physical constants.  The

result is that kE  is –88mV.  The maximum conductance,

1KvLQTG , was obtained using equation (3) at the highe

current level measured during the experiments (i.e., ne
the end of the experiment where the time-period 2 voltag
level was 60 mV), and assuming that 2O =1 at that time.

From our data, 1KvLQTG  = 12.0 nS.  Under the voltage

regime used in these experiments, it is reasonable 
assume (as we did) that the initial values of 0C , 1C , and

2O  were 1, 0, and 0, respectively.

Next, we describe how to obtain initial guesses of th
desired parameters ijA  and ijB .  The first step of this was

accomplished by using the algorithm described in Sectio
3 with three simplifications, as follows:

1. We used only data from time period 2.
2. We used only data at one of the 11 voltage settings.
3. We estimated the four transition rates, ijK , rather than

the eight parameters ijA  and ijB .

We repeated steps 2 and 3 for the other 10 voltage settin
each time using the simple )(ΘL  described in Section 3,

step #4, thus obtaining values for each ijK  at each of the

11 voltage settings.  This process was quick and reasona
simple.  Then, under our model’s assumption tha

)exp( VBAK ijijij += , we performed, for each of the four

relevant (i,j) settings, a linear fit to obtain ijA  and ijB  that

best fit the ijKlog  values at the various voltages.  These

values of ijA  and ijB  were then used to initialize the value

of Θ  in the recursion described in Section 3.
Finally, we ran the algorithm described in Section 3

using data for all of the 11 experiments, but only from tim
period 2.  Ordinarily, data from both time periods 2 and 
would be used (time period 1 was done simply to start a
of the experiments from the same polarized initial state
However, some unexplained anomalies in the time period
data were evident, which seemed to indicate that th
simpler approach, using only the time period 2 data, wou
be preferable to start with.

Initial attempts to fit the ijA  and ijB  using this

algorithm showed a tendency to over-emphasize lo
function data from the noisiest experiment, i.e., where th
time period 2 voltage was –40 mV.  That is, the algorithm
worked hardest to fit this noisy data since the difference
1589
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between the predicted and observed values were gr
on that one experiment (due to the noise levels).  In o
to make the algorithm work harder to fit the “better” (l
noisy) data from other experiments, we scaled the 
function values derived from each experiment.  The s
factor was the inverse of the standard deviation of the
of observed differences between the predicted 
measured current values for the experiment, obtained 
the per-voltage ijK  parameter values.  This resulted

much better performance.
The final fit resulted in values of ijA  and ijB  given in

Table 1.

Table 1.  Final Fitted Parameters

j=0 j=1 j=2
i=0 ijA = 3.8

ijB = .028

i=1 ijA = -4.9

ijB = .008
ijA = 1.0

ijB = .041

i=2 ijA = -.67

ijB = -.06

A typical plot (in this case, for the time-period-2 voltag
20 mV) of the simulated probabilities 0C , 1C , and 2O , and

the corresponding (good) fit of simulated current value
the measured values are shown in Figures 2 and 3.

Figure 2. Probabilities Over Time Period 2
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Figure 3. Simulated and Observed Current Over Time
Period 2

The algorithm was written in Matlab, and typically ra
(not using compilation) in about 20 minutes on a 233-M
Pentium processor.  At this preliminary stage, the go
fitting performance and reasonably fast running times 
very encouraging.  Further work on this data will aim 
assess the data quality and how to treat the data from 
period 3, which is likely an important step in capturing t
best model of the ion channel under a wider range
conditions.

5 SUMMARY

We have described a Markov model for conductivity o
potassium ion channel of the human heart.  The parame
of the model are determined by a least-squares fit
predicted vs. measured data.  The fitting process
achieved by using the SPSA optimizer to sequentia
choose trial values of the parameters.  At each choic
parameter value, a loss function is computed by simula
the action of the channel at that trial parameter value.  
optimizer converged to parameter values that provide
very good fit to the experimental data in the time per
analyzed.
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