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ABSTRACT

Most features in commercial simulation packages are often
omitted in parallel simulation benchmarks, because they
neither affect the overall correctness of the simulation
protocol nor the benchmark’s performance. In our
work on parallel simulation of a wafer fabrication plant,
we however find several features which complicate the
implementation of the simulation protocol and affect the
program performance. One such feature is the dispatch
rules which amachine set uses to decide the priority of the
waiting wafer lots. In a sequential simulation, the dispatch
rule can be implemented in a straight-forward fashion
because the whole system state is at the same simulation
time, and the rule simply reads the state variables (of
any machine, resources, etc.) In a parallel simulation,
the dispatch rule computation may be complicated by the
fact that different portions of the simulated system can
be at different simulation times. This paper describes our
study of the implementation of dispatch rules in parallel
simulation. We note that this is actually an instance of the
little-studied problem of providing shared-state information
in parallel simulation. We briefly survey previous related
work. We then outline two different approaches for a
dispatch rule to access the shared-state information and
compare them in terms of their ease of implementation.

1 INT RODUCTION

The background of this work is from an ongoing collabora-
tive project between the Gintic Institute of Manufacturing
Technology and the School of Applied Science in Nanyang
Technological University, Singapore. The objective of our
project is to study how parallel and distributed simulation
(PADS) techniques can be applied in a virtual factory sim-
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ulation (Jain 1995). The simulations wil l be plant-wide,
and include the modeling of manufacturing and business
processes, and communications network. Such a simu-
lation environment wil l allow one to model and analyze
the effects of different system configurations and control
policies on actual system performance. The initial focus is
the electronics industry, because it is a major contributor
to the manufacturing sector in Singapore. We therefore
begin our study with aparallel discrete event simulation of
a wafer fabrication plant (without considering the business
process and communications aspect).

In order to have aconvincing demonstration of applying
PADS for virtual factory, one of the main project objectives
is that the parallel simulation tool be able to support
featureswhich arecommonly found and used in commercial
(sequential) packages. On the other hand, because this
is R&D work, we cannot afford to build a prototype as
elaborate as commercial tools e.g. ManSim (TYECIN
1996). We therefore include only features which are likely
to have an impact on the implementation and performance
of the parallel simulation protocol.

While studying a wafer fabrication simulation using
the Sematech datasets (Sematech 1997), one feature which
complicates the implementation of parallel simulation, is
the dispatch rules. A dispatch rule is a rule which a
machine set uses to decide the priority of the waiting
wafer lots. For example, if a dispatching rule is first-
come-first-served, then an earlier wafer lot has a higher
priority. Another example is to consider the amount of
backlog in each lot’snext destination machineset. For each
lot, we find the queue length in the lot’s next destination
machine set. (Each machine set has a common queue.)
The shorter the queue length, the higher is the priority of
the corresponding lot. (For brevity, we wil l refer to this
dispatch rule as the QLNM rule - queue-length in next
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In a sequential simulation, either of the two dispatch
rules described above can be implemented in a straight-
forward fashion because the whole system state is at the
same simulation time. A rule simply reads the state
variables needed (e.g. queue length at different machine
sets.) In aparallel simulation, thedispatch rulecomputation
may be complicated by the fact that different portions of
the simulated system can be at different simulation times.
For example, while computing the QLNM dispatch rule
at machine set Mi, we need to access information from
other machine sets which may be at different simulation
times from Mi.

This paper describes our study of the implementation
of dispatch rules in parallel simulation. The basic issue
is to find a way to handle the shared-state information in
parallel simulation. In Section 2, we give the motivation of
supporting shared-state in parallel simulation and survey
several general implementation approaches. Section 3
describes two approaches we studied, for a dispatch rule
(e.g. QLNM rule) to access the shared-state information.
Both use message-passing to transmit events to read or
write shared-state information. We also briefly compare
the two approaches, in terms of the ease of implementation.
We conclude this paper and outline the future directions
of our project in Section 4.

2 SHARED STATE IN PARALLE L SIMUL ATION

The problem of implementing aQLNM dispatch rule is the
sharing of state information among different machine sets.
A common solution is to group into asingle logical process
(LP), a machine set Mi together with other machine sets
whose state Mi accesses. This ensures that all machine
sets in the same LP are progressing at the same simulation
time. If a machine set Mi, while handling an event, needs
to read or write the state of another machine set Mj in
the same LP, the read/write action can proceed correctly,
because the machine sets share the same LP simulation
time.

Such an approach is useful if , after grouping resources
or machine sets which access shared state, the model can
still yield enough parallelism (in terms of the number
of LP’s). But the grouping of resources/machine sets is
a transitive operation and we may end up with a small
number of LP’s. For example, while we group machine
sets Mi and Mj into the same LP because of one shared
variable x, Mi and Mk may also have to be grouped
because of a different shared variable y. We end up with
Mk and Mj in the same LP even though they do not
share any state.

We illustrate this problem using the Sematech dataset
(Sematech 1997) for wafer fabrication. The datasets
specify the machine set and (human) operator set required
159
to perform a processing step. Each machine set and
operator set can be used in more than one step. There are
cases when an operator set works with different machine
sets, and a machine set needs different operator sets when
performing different processing step. In the simulation
model, a machine (from a machine set) has to acquire
an operator (from an operator set) to process a wafer lot.
The straight-forward way to implement this is to treat the
operator set as a shared counter (variable). We check
whether an operator is available by reading the counter,
and decrement the counter to signify the acquisition of
an operator. Each shared counter is read and updated
by different machine sets, and a machine set may read
and update more than one counter (depending on which
processing step is to be performed by the machine.)

Table 1 shows the number of LP’s (conflict sets)
obtained from the Sematech datasets when we group into
the same LP, machine sets which read/write a shared
counter, and compute this in a transitive fashion (Turner
et al. 1998). In particular, sets 5 and 6 result in relatively
few LP’s. Furthermore, we note that these numbers of
LP’s are only when we consider the use of operator sets
in the simulation model. To build a realistic model, there
wil l be other kinds of shared information, which will
further reduce the number of LP’s (and hence level of
parallelism.) One such example is the QLNM dispatching
rule.

Table 1: Statistics from Sematech Datasets

Data No. of No. of No. of
set mach. sets operator sets conflict sets
1 68  32  23
2 87  97  87
3 73  0  73
4 31  0  31
5 83  4  4
6 93  7  7

It is therefore useful to study alternative ways of
sharing state among different LP’s. Another approach
is to provide a space-time abstraction for the simulation
application (Ghosh and Fujimoto 1991, Mehl and Hammes
1993). Shared variables are read and written at virtual
time instants. A read or write operation is considered
as an event. The sequence of actions to handle each
type of event depends on whether the shared variables
are used together with a conservative or an optimistic
parallel simulation protocol (Fujimoto 1990). For example,
Mehl and Hammes (1993) extends the ideas in distributed
shared memory (DSM) in different ways, to provide shared
memory that is kept consistent with virtual time.
2
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In an optimistic protocol, an LP wil l save its state at
different virtual times, and execute events assuming they
wil l be in time-order. If events arrive out of time-order, an
LP wil l rollback back to an earlier state, and undo all its
actions, including ’un-sending’ event-messages it sent to
other LP’s. The central idea to implement a shared variable
within an optimistic protocol, is to have a multi-version
list for each shared variable. The list contains a list of
triples (sender id, new value, timestamp) which indicate
when the variable has been updated. A reader LP sends
a read event to the owner of a variable and suspends its
event handling. Assuming that the read event is at time
t′, the owner finds the value v from the multi-version list,
such that (id, v, t) is a triple and t is the largest value
in the list, which is smaller than t′. The owner keeps
track of the LP’s which have read each variable. In case
a write event arrives (id′′, v′′, t′′) such that t < t′′ < t′,
then the reader has received an incorrect value and has to
be notified of the new value v′′, so that it can perform
any necessary rollback.

In a conservative protocol, an LP wil l only execute
events if it is safe to do so (i.e. if it is certain that there will
not be any violation time-order causality constraint.) Mehl
and Hammes (1993) suggested two general approaches to
implement shared variables for a conservative protocol,
without any rollback. In thefirst approach, an LPmaintains
a multi-version list for each variable that it owns. When an
LP receives an write event (id, v, t), it simply inserts the
triple into the multi-version list. The write event (id, v, t)
is ordered with other simulation events, and is therefore
correctly handled by the LP when the LP reaches the
simulation time t. For a read event at time t′, the owner
LP waits until it receives guarantees (e.g. via additional
null messages) that there wil l not be any write events with
timestamp smaller than t′. It then retrieves the correct
value for the variable from its multi-version list. Mehl and
Hammes (1993) however did not note the following: that
if the read event is handled according to time-order with
other events, using a conservative protocol, then when the
LP handles the read event at timestamp t′, the protocol
wil l guarantee that there cannot be any write event with
timestamp smaller than t′. It is therefore unnecessary to
maintain a multi-version list if all read and write events
are handled with respect to their timestamp order.

One disadvantage with the first approach is that the
reader LP has to suspend its event handling until a result is
received from the LP which owns the variable. A second
approach suggested by Mehl and Hammes (1993) is to
cache a copy of the variable at each reader. The cached
copy has a time-guarantee associated with it, which ensures
that the value is valid up to the guaranteed time. The
reader LP sends a read event, if the copy is unavailable
or invalid.
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We have earlier described a way of providing shared
variables (operator set counters) by coalescing multiple
LP’s (machine sets) into a single LP. We can envision
using the algorithms in Mehl and Hammes (1993) as an
alternative approach to implement counters for operator
sets. Similarly, we may use these algorithms for the
QLNM dispatching rule. The queue length of a machine
set (i.e. number of wafer lots waiting to be scheduled)
is represented by a shared variable, and the reader LP’s
are the upstream machine sets which use each wafer lot’s
next destination machine set’s queue length, to determine
the lot’s priority.

It is however possible to implement the QLNM
dispatching rule without using multi-version lists because
the accesses to the queue length shared variable, have
a different characteristic from that of the operator set
counter. While the operator set counter is read and
written by multiple LP’s, the queue length variable is
updated by the owner LP and read by other LP’s. We
describe our implementations for the QLNM rule in the
next section, which can be generalized to any write-local,
read-by-remote shared variable.

3 WRITE-LOCAL , READ-BY-REMOTE
SHARED VARIABLES

Thenext two subsectionsdescribeapproaches to implement
a shared variable, used in a conservative protocol, which
is written only by its owner LP, and read by other LP’s.
Since the variable is written only by its owner LP, there
are no write events, and all writes occur at the correct
simulation time. We therefore only need to handle read
events.

3.1 Request-Reply

One way to read a remote variable is to use a request-
reply protocol; this is similar to the request-reply in typical
message-passing, except that the request (i.e. read event)
is handled at a specific virtual time instant. The requester
(reader) LP sends out a read event at timestamp t′ and
its simulation time is frozen at t′′ = t′ while waiting for
the reply (Figure 1). In general, there is no need for the
owner LP to implement a multi-version list for the shared
variable if read events are ordered with other simulation
events, and handled in time-order. When the read event
is executed, the shared variable wil l contain the correct
value at that virtual time instant because it is not updated
by other remote LP.

Wenote that while thereader LPis frozen in simulation
time, it must not be suspended in terms of real execution.
In particular, it must continue to receive read events
(timestamped at t′) from other LP’s. If not, deadlock may
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Machine set M1

Machine set M3

Machine set M2

Reply(M2 queue-len)@t

Req(M2 queue-len)@t

Req(M3 queue-len)@t’

Reply(M3 queue-len)@t’

Figure 1: Reading a Remote Variable by Request-Reply Protocol
occur. For example, if LPi sends a read event to LPj at
time t′ and vice-versa, both may be suspended waiting for
the other to reply. In order to prevent suspension in real
execution, the LP has to break out of the event-handling
code just after the read event is sent out, and resume at the
same location when the result is received. This complicates
coding and we shall describe our implementation later.

We have assumed that read events are sent out at the
simulation time of the reader LP. The reader LP may also
try to prefetch a value by sending out a read event at
timestamp t′ while its simulation time is at t′′ < t′. (The
situation when an LP sends out a read event at timestamp
t’ while its simulation time is at t′′ > t′ is not useful
because the event should have been sent out when the
LP was at timestamp t′.) In this case, the reader LP can
continue its event execution, because the reply wil l arrive
at a later simulation time, and be handled then.

One differences between our approach and that in
Mehl and Hammes (1993) is that we do not keep a
multi-version list for each shared variable. This is because
we process the read events in timestamp order together
with other simulation events. By the guarantee of the
conservative protocol, when an LP processes a read event
at time t′, it wil l also have completed all local updates of
the corresponding variable.

In order for a multi-version list to be useful when
using request-reply to read shared variables, read events
should be treated as special events, independent of other
simulation events. So read events arriving at an LP
constitute an independent stream from other time-ordered
events. This may allow the owner LP to proceed ahead
in simulation time, while the reader LPs lag behind, thus
providing more parallelism. In the case for the QLNM
dispatching rule, it depends on the characteristic of the
conservative protocol, in particular whether the simulation
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time of a shared variable’s owner LP can proceed ahead
of the reader LPs’ simulation time.

Consider a synchronous simulation protocol (e.g. Cai,
Letertre and Turner (1997) and Lim, Low and Turner
(1998)) which calculates a safetime for every LP at every
super-step. The safetime for LPi (STLPi

) is a guarantee
that events arriving at LPi in the next super-step will
be at least at timestamp ≥ STLPi

. There is also no
lookahead information. Suppose we have machine set M ′

sending wafer lots to machine set M ′′. In such a protocol,
the simulation time of M ′′ (TimeM ′′ ) cannot exceed the
simulation time of M ′ (TimeM ′ ). When M ′ handles a
lot arrival event at t′ and sends a read event to M ′′ at t′,
M ′′ may not be able to return a value to M ′ immediately
because TimeM ′′ ≤ TimeM ′ = t′. We note that even
if the shared variable’s value has a time-guarantee as
lookahead, a multi-version list is still unnecessary, because
only the latest value is read.

In an asynchronous protocol (e.g. Chandy and Misra
(1979)) with lookahead and deadlock prevention, M ′ may
send a null message to M ′′ to advance M ′′’s simulation
time ahead of M ′’s. If M ′ then sends a read event at t′,
it is now useful for M ′′ to maintain a multi-version list
because it may be reading an older value of the variable,
now that TimeM ′′ > TimeM ′ = t′. Note that the null
message from M ′ only ensures M ′′ that M ′ wil l not
send any non-read event before the guaranteed time. Read
events can still arrive before the guaranteed time.

3.2 Cached-Copy

A second way is to cache the remote shared variable in
the reader LP. While Mehl and Hammes (1993) examined
a cache-on-demand approach, we tried an always-update-
by-writer approach. There is now an additional link from
the owner/writer LP to each reader LP (if none exists
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previously.) The cache-update events wil l travel along
each link in timestamp order, with any other simulation
events. At the beginning of the simulation, the writer
sends an initial value to all the variable’s readers. Because
in the QLNM dispatching rule, the machine set queue
length is updated only by the owner LP, there cannot be
any simultaneous write events from different LP’s. During
execution, every time the queue length changes, an updated
value is sent to all readers. Neither the reader nor the
writer maintains any multi-version list.

When the reader needs the value of a shared variable,
it reads from its local cache without being suspended. In
Mehl and Hammes (1993), a time-guarantee is associated
with each cached copy to ensure that it correctly reflects
the current value in the original variable location. This
is because the reader only receives cache-update events
when its cache becomes invalid, and it has to send out
requests for updates.

On the other hand, in our approach, there is no
need to associate a time-guarantee for every cached copy,
because the reader LP is notified of every update. Since
the cache-update events arrive in timestamp order, with
other simulation events, we are guaranteed that an LP
at time t′ reading cached variable v′ is reading its latest
value because any other cache-update events for v′ have
to arrive at or after t′. (If not, they would have arrived
before t′ and used to update v′ before the current attempt
to read v′ at t′.)

The approach in Mehl and Hammes (1993) has the
advantage that cache-update events are only sent when
needed by the reader. But if the lookahead is small or
even zero, and the shared variable is read frequently, then
the overheads may be higher from more request messages.
Our approach avoids the round-trip needed to get a cache
update.

In the QLNM dispatching rule, the shared variable is
written only by the owner LP. If a shared variable is written
by multiple LP’s, our scheme can be simply extended by
having each writer update all readers whenever a writer
updates the variable. This may potentially result in many
cache-update messages, but since we are only interested
in the single-writer shared variable, we are not affected
by such a situation.

3.3 Comparison of Approaches

In this section, we briefly compare the request-reply and
cached copy approaches in termsof easeof implementation.
The main complication when coding the request-reply
protocol is that the reader LP has to suspend its event
execution after sending out a read event. But we cannot
simply suspend the reader LP in real execution; otherwise
a deadlock might result. Intuitively, the LP is frozen at
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simulation time t′ but continues to handle other events at
t′ (if they do not interfere with the interrupted event.) The
natural sequence of event-handling actions is now broken
into two portions of code, reducing modularity (Figure 2).
There are also additional execution overheads, because
local variables used in the earlier statements may need to
be saved, to be restored after receiving the reply.

One way to retain the continuity of the event-handling
code is to make use of the language exception mechanism
(Figure 3). After sending out a read event, an exception
is thrown. The caller of the event-handling code must
be ready to accept such exceptions. When the reply
is received, the exception is resumed. The language
must provide the mechanism to both throw and resume
exceptions. Because C++ only has the throw mechanism,
the programmer must still explicitly save and restore local
variables for the LP to resume its event-handling. Ideally,
the code using exception mechanism is as in Figure 3.

The cached-copy approach is simpler and does not
require any code mangling. Al l we do is to introduce a
new type of cache-update events, and implement the local
caches for each LP. If no message link existed previously
from the owner LP to a reader LP, a new link is added;
otherwise, the cache-update events share the same link
as other simulation messages. The only change to the
sequential sequence of event-handling actions is to look
up the local cache for the value of a shared variable if it
is remote.

4 CONCLUSIONS

In this paper, we try to illustrate the relevance of support-
ing shared state in a parallel manufacturing simulation,
especially if we want to implement in parallel, similar
features found in commercial sequential simulation pack-
ages. Two examples of shared state in a parallel wafer
fabrication model are the operator set counter and machine
set queue length. The former is used when a processing
step at a machine needs to acquire an operator before it
can proceed. The latter is used to decide priority of wafer
lots in the QLNM dispatching rule. While the operator set
counter is read and written by multiple LP’s, the machine
set queue length is written only locally by the owner LP.

We find that in the implementation of shared variables,
if the read and write events are treated just like any other
simulation events and handled in timestamp order, there is
no need to implement mechanisms such as multi-version
list (as described in Mehl and Hammes, 1993). The latter
is useful only if read/write events are to be treated in a
separate time stream from other events.

Our simulation model is still relatively simple because
it only looks at wafer manufacturing. We are currently
integrating the various aspects of a virtual factory model,
5



Lim, Low, Gan and Jain

statement0, . . . statementi statement0, . . . statementi
read variable v =⇒ send read-event for v
statementi+1 . . .

[On receiving reply with v’s value]
statementi+1 . . .

Figure 2: Request-reply approach to read shared variable using manual code partition

statement0, . . . statementi [On receiving reply with v’s value]
read variable v resume exception E
throw exception E
statementi+1 . . .

Figure 3: Request-reply approach to read shared variable, using exception mechanism
including business processes, manufacturing and commu-
nications network support, and evaluating the different
protocols to find out which wil l give better performance
for our application. We plan to consider the use of looka-
head information in our parallel simulation. This provides
time guarantees to advance each LP’s simulation time.
We can also look into using this lookahead information
to provide time guarantees in the shared variable imple-
mentation. This may help to reduce the number of read
and cache-update events, and/or increasing the amount of
parallelism.
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