
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

A STUDY OF SELF-ADJUSTING QUALIT Y OF SERVIC E CONTROL SCHEMES

Sheng-Tzong Cheng
Chi-Ming Chen

Computer Science and Information Engineering Dept.
National Cheng Kung University

Tainan, Taiwan

Ing-Ray Chen
Department of Computer Science

Virginia Tech University
Blacksburg, VA, U.S.A.
ABSTRACT

This paper reports simulation methods and results for
analyzing aself-adjusting Quality of Service (QoS) control
scheme for multimedia/telecommunication systems based
on resource reservation. We study the case in which high
priority clients’ QoSrequirement isnot changed throughout
the service period, while low priority clients’ QoS may be
adjusted by thesystem between themaximum and minimum
QoS levels specified in order to adapt to the load of the
system. The goal of the system design is to optimize the
system reward as a result of servicing clients with different
QoS and reward/penalty requirements. A QoS manager in
these systems can do a table lookup operation using the
simulation result reported here to optimize the system total
reward dynamically in response to changing workloads
during the run time. The simulation result is particularly
applicable to multimedia and telecommunication systems
in which dynamic QoS negotiation/renegotiation is used as
a mechanism to optimize the overall system performance.

1 INT RODUCTION

Quality of Service (QoS) control is an important issue in
multimedia/telecommunication systemsdesigned to provide
continuous services to clients based on their QoS demands
(Oomoto and Tanaka 1993; Oyang et al. 1995; Vina
et al. 1994). To date, there are two approaches by
which QoS control can be implemented. One approach
is based on adaptive, distributed control (Davies et al.
1994; Noble et al. 1995) wherein each client monitors
the QoS received and automatically increases or decreases
its resource requirement according to actual QoS level
delivered to it and also by the amount of resources sensed
available in the system. Another approach is based on a
priori resource reservation (Mercer et al. 1993) wherein a
centralized QoS control manager is used to interact with
clients. Whenever a client requests aservice of the system,
1623
it negotiates its QoS requirement with the QoS manager
which checks its resources to make sure the client’s QoS
requirement can be satisfied before admitting the client
into the system. In this latter approach, in case there are
more clients than the system can handle, or there is a
change of system resources, the QoS manager may have
to renegotiate with existing clients to lower their QoS
requirements so as to meet some performance goals, for
example, to increase the number of clients admitted into
the system or to decrease the rejection rate. This paper
concerns the second approach.

To date, there is not yet a consensus on how QoS
reservation, negotiation and renegotiation should be done.
Most of the approaches described in the literature are ad
hoc and application-specific in nature. One approach is the
“deterministic” QoS reservation scheme in which a client
is guaranteed of the QoS level negotiated on admission
til l it terminates. The reservation is normally based on
worst-case scenarios. For example, in designing an on-
demand multimedia server (Vin et al. 1995), the capacity
reservation concept is implemented by allocating a portion
of the server capacity to retrieve a specified number of
disk blocks in a repeated service cycle for each admitted
client so as to meet the playback rate requirements of
all admitted clients. A variation to this approach is the
“best-effort” or “predictive” QoS reservation scheme in
which the client is admitted into the system with QoS
guarantee only in a statistical sense (Chang and Zakhor
1996; Vin et al. 1995). In both cases, when the server
capacity is used up by existing clients, a newly arriving
client is rejected. In these previous studies, the issue of
QoS renegotiation was not investigated.

In this paper, we develop a simulation model to
analyze a self-adjusting QoS control scheme with considers
not only QoS reservation but also QoS negotiation and
renegotiation. Furthermore, the QoS renegotiation is
initiated by the QoS manager automatically in response to
changing client workloads so as to optimize the system



Cheng, Chen and Chen
performance dynamically. We also describe a technique
to reduce the amount of simulation time to find out the
near-optimal condition under which the self-adjusting QoS
control scheme can best optimize the performance of the
system.

The rest of the paper is organized as follows. Section
2 describes our the system model, including the client
workload models, and formulates the QoS control problem
asan optimization problem. Section 3developsasimulation
model and discusses how performance data are collected.
In addition, it also discusses a technique to reduce the
simulation time and how to apply the simulation result
to real-time control applications in which the system can
dynamically perform QoS reservation and renegotiation in
order to optimize system reward in response to changing
workloads. Finally, Section 4 concludes the paper and
suggests some future works.

2 MODEL ASSUMPTION

We assume that the on-demand multimedia or telecommu-
nication server adopts the capacity reservation mechanism
(Mercer et al. 1993) such that a QoS negotiation is made
at the time a new client arrives. A new client is accepted
if (a) the remaining capacity can accommodate the new
client based on the negotiated QoS requirement; or (b)
the manager can lower the QoS levels of existing clients
and make room to accommodate the new client’s QoS
requirement. Otherwise, the client is rejected. The loss of
a client represents a penalty to the system.

We assume that the system consists of a number of
QoS slots, each of which corresponds to the minimum
amount of resource reservation required to service aclient
with the lowest QoS requirement. For a video server,
for example, the QoS requirement in a slot corresponds
to the smallest frame size with black and white display.
Naturally, there exists a maximum number of such QoS
slots that the system can service without overloading, as
having been addressed in previous works in admission
control (Chang and Zakhor 1996; Chen and Chen 1996;
Chen and Hsi 1998; Vin et al. 1995). Clients with higher
QoS requirements must each occupy two or more such
slots, e.g., for a video server, this may correspond to a
bigger frame size with color video display.

For ease of exposition, we consider a special case
when there exist two QoS classes of clients, with each
class being characterized by its own arrival/departure rates
and reward/penalty values. This assumption of course can
be relaxed in the simulation model if desired.

The inter-arrival times of high-priority and low-priority
clients requesting for the service of the system can be of
any arbitrary distribution, but in the simulation study we
assume that they are exponentially distributed with average
162
times of 1/λh and 1/λl, respectively. The inter-departure
times of high-priority and low-priority clients are also
exponentially distributed with average times of 1/µh and
1/µl, respectively.

The system ensures that customers’ minimum QoS
requirements are satisfied by performing admission control.
We classify the clients into high-priority and low-priority
categories. We assume that a high priority client specifies a
QoS requirement and once the QoS requirement is accepted
by the server, it is not to be changed or renegotiated. That
is, once a high-priority client is admitted into the system,
its QoS must be maintained at the level agreed upon until
the client leaves. On the other hand, a low priority client
wil l specify a range of QoS requirements, thus giving
the system some leverage to renegotiate its QoS when
necessary. The renegotiation can be done in two ways:
(a) the system can lower the QoS of low-priority clients
in order to accommodate more clients into the system
when the resource becomes scarce; (b) the system can
raise the QoS of low-priority clients when the resource
becomes rich again. Thus, the system can adjust the QoS
level of low-priority clients based on the workload to the
system, although it must maintain the same QoS level for
high-priority clients. QoS guarantee thus applies to high-
priority clients while best-effort QoS applies to low-priority
clients. This scheme can be extended to several priority
classes if needed. This paper addresses only two priority
classes. We assume that a high-priority client reserves
a fraction 1/n of the capacity; a low-priority client also
reserves a fraction 1/n if the resource is plenty, but gets
a fraction 1/m, m ≥ n, of the capacity if the resource
is scarce upon admission. The system has the leverage
to lower or raise the QoS level of a low-priority client
with the maximum capacity reservation being 1/n and
the minimum being 1/m. While the ratio m : n can be
any value, our simulation study wil l consider the special
case in which m = 2n, corresponding to the case where
the minimum QoS requirement of a low-priority client is
exactly one half of its maximum QoS requirement, with
the maximum QoS requirement being the same for that
of a high-priority client. A low-priority client is thus
assumed to have two QoS levels that would allow the
system to do QoS control. This restriction is used just to
simplify the study; other ratios of m : n can be modeled
easily in the simulation program if so desired.

From the perspective of the server system, the system
behaves as if it contains N capacity slots. When all
slots are used-up, the server can lower the QoS level
of low-priority clients, if any is found, to accommodate
newly arriving clients, provided that doing so can improve
the “pay-off ” of the system. The pay-off to the server
when aclient completes its service is characterized by each
client’s reward and penalty parameters. The reward/penalty
4



A Study of Self-Adjusting Quality of Service Control Schemes
characteristics of clients are modeled in this simulation
study as follows. We assume that the reward which a
high-priority client brings to the system is vh if it is
served successfully; on the other hand, the reward which a
low-priority client brings to the system depends on the QoS
level received: it is vl during the proportion of the time
in which it is being served at the maximum (high) QoS
level and vll during the proportion of the time in which
it is being served at the minimum (low) QoS level, with
vl ≥ vll. On the flip side, we assume that the penalties to
the system when high-priority and low-priority clients are
rejected are qh and ql, respectively, with qh ≥ ql.

The performance metric being considered in the
paper takes both rewards and penalties of clients into
consideration. It is called the system’s reward rate defined
as the average amount of value received by the server per
time unit. In other words, under a particular admission
policy if the system on average services Nh high-priority
clients, Nl low-priority clients with the high QoS level
and Nll low-priority clients with the low QoS level per
unit time while it rejects Mh high-priority clients and
Ml low-priority clients per unit time, then the system’s
average reward rate is

Nhvh + Nlvl + Nllvll − Mhqh − Mlql

This reward rate can be translated into the profit rate of a
company running the on-demand multimedia/telecommuni-
cation service business. The problem that we are interested
in solving thus is to identify the best self-adjusting QoS
control scheme under which this performance metric
is maximized, as a function of model input variables,
including N , λh, λl, µh, µl, vh, vl, vll, qh and ql defined
above. Table 1 summarizes the set of model parameters
to be used in this simulation study.

Following our earlier work on admission control
policies without QoS negotiation control (Chen and Chen
1996; Chen and Hsi 1998), we consider a strategy in which
we divide the N slots into three parts: nh, nl and nm, with
nh specifically being allocated to high-priority clients, nl

being allocated to low-priority clients and the remaining
nm slots being sharable to both types of clients. When a
high-priority (correspondingly a low-priority) client arrives,
if there is a slot available in the nh (correspondingly nl)
or nm part, then the client is accepted; otherwise, it is
rejected. The policy always fill s in the slots in nh and
nl for high- and low-priority clients, respectively, before
fillin g in aslot in nm. It can be easily seen that this policy
encompasses a special-case baseline scheme in which all
slots can be occupied by both types of clients (where
nh = nl = 0). The simulation results later wil l show that
the general scheme at the optimal condition wil l always
perform better than the special-case baseline scheme.
1625
Table 1. Parameters Used in the Simulation Study.
λh arrival rate of high-priority clients
λl arrival rate of low-priority clients
µh departure rate of clients
µl departure rate of clients
vh reward of a high-priority client if served

successfully
vl reward of a low-priority client if served

successfully with a high QoS level
vll reward of a low-priority client if served

successfully with a low QoS level
qh penalty of a high-priority client if it is rejected

on admission
ql penalty of a low-priority client if it is rejected

on admission
N maximum number of server capacity slots

for serving clients; one full slot is needed
for a high-priority client; one full slot is needed
for a low-priority client served with a high QoS
level; but only one half slot is needed for a
low-priority client served with a low QoS level

nh number of slots reserved for high-priority
clients only; 0 ≤ nh ≤ N

nl number of slots reserved for low-priority
clients only; 0 ≤ nl ≤ N and also nh + nl ≤ N

nm number of slots that can be used to service either
type of clients; nm = N − nh − nl; low-priority
clients in this part can do QoS adjustments

3 SIMUL ATIO N MODEL AND RESULT

We implemented a discrete-event simulation program to
find the best (nh, nm, nl) set under which the system’s
reward rate is optimized, when given a set of input
parameter values. The input to the simulation program
is (N, λh, λl, µh, µl, vh, vl, vll, qh, ql) and the output is
the optimal set of (nh, nm, nl) along with the optimal
average reward rate obtained by the system, subject to
nh + nm + nl = N . The simulation program implements
the self-adjusting QoS control algorithm as described in
Section 2. It maintains an internal structure array of size
2N , separated into three parts in a ratio proportional to
the nh, nm and nl values. For example, if N = 80 and
(nh, nm, nl) = (50, 20, 10) then these 2N slots wil l be
separated into three parts: 100, 40, and 20, meaning that
100 slots in the nh part wil l be used by high-priority only
(without QoS renegotiation); 40 in thenm part wil l be used
by either low- and high-priority (with QoS negotiation on
low-priority clients); and 20 in the nl part wil l be used by
low-priority clients only (without QoS renegotiation). Each
of these 2N slots can accommodate a low-priority client
to meet its minimum QoS requirement. A low-priority
client can also occupy two slots to meet its maximum QoS
requirement. A high-priority client, on the other hand,
wil l always need two slots to meet its QoS requirement.



Cheng, Chen and Chen
Each of these slots has a field indicating whether it is
occupied or not at any time.

The simulation program is event-driven. Possible
events which can cause state changes are given as follows:

1. Arrival of a low-priority client - When a low-priority
client arrives at the system, the simulation program
looks for two free slots in the nl part. If not available,
it looks for two free slots in the nm part. If neither
is found, the low-priority client is rejected; otherwise,
the low-priority client is admitted into the system
occupying the two slots allocated to it.

2. Arrival of a high-priority client - When a high-priority
client arrives at the system, the simulation program
again examines the internal data structure to see if
there are still two slots in the nh part. If yes, two
slots wil l be allocated to this high-priority client.
Otherwise, the simulation program wil l see if there
are two free slots in the nm part. If yes, the high-
priority client wil l be allocated with the two slots. If
neither of the two conditions is true, the simulation
program wil l check if currently there are at least 2
low-priority clients each occupying two slots in the
nm part. If not, the high-priority client is rejected
and the simulation statistics is updated; otherwise, the
two low-priority clients wil l each reduce their QoS
requirement by occupying only one slot instead of
two, thus giving up two free slots in the nm part
to accommodate the high-priority client. This models
part of the self-adjusting QoS control capability of
the system.

3. Departure of a low-priority client - When a low-
priority client departs, the resource it occupies is
deallocated. It can be in the form of either one slot
or two slots being free, depending on the QoS level
being allocated to the departing low-priority client at
the departure time. Also, because of the deallocation
of slots, a low-priority client originally occupying
only one slot can increase its QoS level by acquiring
another free slot just being released. This models
part of the self-adjusting QoS control capability of
the system.

4. Departure of a high-priority client - When a high-
priority client departs, two slots of resources are
deallocated. If these two slots are in the nm part, a
low-priority client originally occupying only one slot
wil l increase its QoS requirement by occupying two
slots. Thus, a high-priority client’s departure in the
nm part can bring two low-priority clients originally
running at the minimum QoS level in the nm part
up to the maximum QoS level. This also models
1626
part of the self-adjusting QoS control capability of
the system.

3.1 Performance Data Collection and Calculation
Method

The objective of the simulation program is to collect
performance data so as to compute the average reward
obtained by the system as a result of executing the
self-adjusting QoS control algorithm. Of course, the
average reward obtained varies as the (nh, nm, nl) value
set changes. The number of (nh, nm, nl) value sets to
be tested wil l be C(N + 2, 2) = (N + 2)(N + 1)/2, e.g.,
for N=32, there wil l be 527 cases to be tested. The
time complexity involved in enumerating and applying the
simulation program is thus O(N2) and it would take a
long time to test all the cases before the optimal value
set of (nh, nm, nl) is found for a reasonably large N . In
the following, we first discuss how we obtain the average
reward for a selected (nh, nm, nl) value set. Then, we
discuss how we use a search technique to reduce the
complexity to get a reasonable near-optimal (nh, nm, nl)
value set in O(N).

3.1.1 System Reward for a Given Value Set

For a selected (nh, nm, nl) value set, we compute the
average reward rate obtained by the system due to the
self-adjusting QoS control algorithm by the batch means
method. Under this method, the simulation program
is executed for a long run divided into batches. A
sample mean is computed in each batch. Using these
batch means, we then compute the grand mean and the
confidence interval. During a batch run, we compute the
accumulated reward as a rejection or a departure occurs.
A rejected high-priority (low-priority) client takes qh (ql

respectively) of reward away. A completed high-priority
client adds vh of reward. For a low-priority client, we
keep track of the proportion of time it is being served with
the high (low) QoS level. If a low-priority client had been
served with x time units with high QoS and y time units
with low QoS when it departed, then the reward added to
the system is vl × x/(x + y) + vll × y/(x + y). At the
end of each batch run, we divide the accumulated reward
by the batch run period to get the mean average reward
rate for that batch run. A sufficient number of batches are
run in the simulation study to make sure that the grand
average reward rate obtained has an accuracy of 5 percent
at a 95 percent confidence level.

3.1.2 Searching for the Best Value Set

We adopt the nearest neighbor search algorithm in order
to reduce the time complexity to find the best (nh, nm, nl)



A Study of Self-Adjusting Quality of Service Control Schemes
value set under which the system reward is optimized.
This approach yields a near-optimal solution, but as we
shall see later the result is very close to that obtained
by the optimal solution which requires exhaustive search.
The idea is to first fix one value among nh, nm and nl,
after which we fix one of the remaining two. We adopt
the following simple heuristic: if λl > λh, then fix nl

first; else we fix nh first. The rationale is that nl would
be important if the arrival rate of low-priority clients is
larger than that of high-priority clients since most of the
reward generated is likely to be due to low-priority clients.
The simulation program is still driven one at a time by
a selected (nh, nm, nl) value set. Suppose that nl is
to be determined first. Instead of trying every possible
combination of (nh, nm, nl), only nl varies first to take
on all possible values in the range (0, N) one at a time.
During a simulation run while nl is tested at a particular
value, nh and nm are set to one half of N −nl. e.g., when
nl = 16 for N = 32, then nh = nm = 8 in a test run. The
best reward value yielded in the N +1 runs with nl value
varying from 0 to N wil l fix nl in this case. Then, nh will
vary in the range of (0, N − nl) with nm = N − nl − nh

to see if the reward can be further improved. This method
effectively reduces the time complexity in driving the
simulation program down from O(N2) to O(N) at the
expense of some solution accuracy. However, as we shall
see later this simple approach yields results which are very
close to those generated by the optimal solution.

3.2 Simulation Result

Theutility of thesimulation result can beillustrated with the
design of an on-demand multimediaserver (Vin et al. 1995)
in which it was discovered that the maximum number of
client requests that can be served concurrently is N = 16 if
deterministic admission control is considered. It should be
mentioned that the number N = 16 was obtained based on
resource capacity limitations only. Neither the importance
of requests nor the QoS negotiation/renegotiation control
was considered in (Vin et al. 1995). Below, we study
N = 16 and N = 32 to illustrate the applicability of
our simulation model and the proposed self-adjusting QoS
control scheme.

Tables 2 and 3 list the optimal (nh, nm, nl) value sets
with respect to some selected sets of input model parameter
values characterizing various client workload possibilities
to the server system for N = 16 and N = 32, respectively.
Table 2 is generated by applying exhaustive search since
N = 16 is asmall number, i.e., by running the simulation
program for all possible combination of (nh, nm, nl) value
sets and selecting the one that optimizes the average reward
rate. In Table 2, we also compare the optimal reward
rate with the one obtained by a baseline scheme where
1627
nh = nl = 0, that is, all high and low-priority clients
compete for the free slots in the system, although the
same self-adjusting QoS control scheme still applies to
low-priority clients. In this baseline scheme, since slots
are not reserved, high-priority clients can be rejected when
the arrival rate of low-priority clients is high relative to
the arrival rate of high-priority clients. The reason is that
most of the slots may be occupied by low-priority clients,
even though low-priority clients can still lower their QoS
levels to make room for high-priority clients.

Table 3 is generated by applying both the exhaustive
(columns 4 and 5) and the nearest neighbor (columns 2 and
3) search algorithms. It demonstrates that the approximate
solutions obtained based on the nearest neighbor search
technique are fairly accurate compared with the exact
solutions obtained via exhaustive search. In both Tables 2
and 3, we can observe two results. First, the self-adjusting
QoS control algorithm at the optimal point wil l always
yield a better reward rate than the special-case baseline
scheme. Second, as the system becomes more heavily
loaded, the effect of proper QoS reservation and control
becomes more significant, as evidenced from the larger
differences in reward rate between the optimal case and
the baseline case as the client arrival rate increases. The
result shows that a QoS reservation and control algorithm
such as the one proposed in the paper is important for
systems designed to optimize the system overall reward.

4 SUMMA RY

Dynamic adjustment of QoS in response to workload
changes at the run time is akey element to meet application
performance goals. In this paper, we suggested using a
uniform performancemetric based on theconcept of reward
optimization as a basis for designing QoS reservation and
negotiation/renegotiation algorithms. A self-adjusting QoS
control algorithm which wil l automatically adjust the
QoS level of low-priority clients in order to optimize the
system total reward has been proposed and examined using
a simulation model. The simulation results demonstrated
that there exists an optimal way of reserving resources
for prioritized clients while the system performs the self-
adjusting QoS control scheme on low-priority clients.
The optimal condition depends on the input parameter
values. One way to apply the simulation result obtained
is to statically generate a table covering some perceivable
combination of client arrival/departure rates and then do a
table lookup at the run time to dynamically perform QoS
reservation and QoS negotiation/renegotiation functions so
that the system can always optimize its reward rate in
response to changing workloads.

A future research area is study more sophisticated
QoS control policies such as those in which clients may



Cheng, Chen and Chen
Table 1: Optimizing (nh, nm, nl) Set under the Self-Adjusting QoS Control Scheme (N = 16)

(λh, λl, µh, µl, vh, vl, vll, qh, ql) optimal optimal scheme baseline scheme
(nh, nm, nl) reward rate reward rate

(1, 10, 1, 1, 5, 1, 0.5, 2, 1) (1,6,9) 14.19 14.17
(1, 10, 1, 1, 10, 1, 0.5, 2, 1) (3,4,9) 19.72 19.17
(5, 10, 1, 1, 5, 1, 0.5, 2, 1) (8,8,0) 34.32 31.04
(5, 10, 1, 1, 10, 1, 0.5, 2, 1) (9,7,0) 69.41 56.01
(10, 10, 1, 1, 5, 1, 0.5, 2, 1) (8,8,0) 49.64 46.17
(10, 10, 1, 1, 10, 1, 0.5, 2, 1) (9,7,0) 105.87 92.89
(10, 20, 1, 1, 5, 1, 0.5, 2, 1) (7,9,0) 41.52 37.60
(10, 20, 1, 1, 10, 1, 0.5, 2, 1) (8,8,0) 99.39 83.88

Table 2: Optimizing (nh, nm, nl) Set under the Self-Adjusting QoS Control Scheme (N = 32)

(λh, λl, µh, µl, vh, vl, vll, qh, ql) approximate approximate optimal optimal baseline
(nh, nm, nl) reward rate (nh, nm, nl) reward rate reward rate

(1, 10, 1, 1, 5, 1, 0.5, 2, 1) (8,2,22) 15.00 (10,2,20) 15.00 15.00
(1, 10, 1, 1, 10, 1, 0.5, 2, 1) (14,2,16) 20.08 (16,3,13) 20.12 20.00
(5, 10, 1, 1, 5, 1, 0.5, 2, 1) (22,10,0) 36.04 (20,7,5) 36.68 35.00
(5, 10, 1, 1, 10, 1, 0.5, 2, 1) (24,8,0) 70.97 (24,8,0) 70.97 59.99
(10, 10, 1, 1, 5, 1, 0.5, 2, 1) (19,10,3) 65.04 (22,10,0) 67.08 59.90
(10, 10, 1, 1, 10, 1, 0.5, 2, 1) (21,11,0) 130.87 (23,9,0) 134.05 109.90
have several levels of QoS requirements with the triggering
conditions depending on the state of the system, such as
the load index, percentage of service time of a job, etc.
We plan to further refine our simulation model to address
these issues.

REFERENCES

E. Chang and A. Zakhor, “Cost analysis for VBR video
servers,” IEEE Multimedia, Winter 1996, pp. 56-71.

I.R. Chen and C.M. Chen, “Threshold-based admission
control policies for multimedia server,” The Computer
Journal, Vol. 39, No. 9, 1996, pp. 757-766.

I.R. Chen and T. H. Hsi, “Performance analysis of admis-
sion control algorithms based on reward optimization
for real-time multimedia servers,” Performance Eval-
uation,, Vol. 33, No. 2, 1998, pp. 89-112.

N. Davies, G.S. Blair, K. Cheverst and B. Friday, “Sup-
porting adaptive services in a heterogeneous mobile
environment,” 1994 Workshop on Mobile Comput-
ing Systems and Applications, Santa Cruz, California,
December, 1994.

C.W. Mercer, S. Savage, and H. Tokuda, “Processor capacity
reserves: Operating system support for multimedia
1628
applications,” 1st IEEE Inter. Conf. on Multimedia
Computing and Systems, Boston, 1994, pp. 90-99.

B.D. Noble, M. Price, and M. Satyanarayanan, “A pro-
gramming interface for application-aware adaptation in
mobile computing,” 2nd USENIX Symp. Mobile and
Location Independent Computing, Michigan, April
1995.

E. Oomoto and K. Tanaka, “OVID: Design and imple-
mentation of a video-object database system,” IEEE
Trans. Know. and Data Eng., Vol. 5, No. 4, 1993, pp.
629-643.

Y.J. Oyang, C.H. Wen, C.Y. Cheng, M.H. Lee and J.T.
Li , “A multimedia storage system for on-demand
playback,” IEEE Trans. Consumer Electronics, Vol.
41, No. 1, Feb. 1995, pp. 53-64.

A. Vina, J.L. Lerida, A. Molano and D. del Val, “Real-time
multimedia systems,” 13th IEEE Symp. Mass Storage
Systems, 1994, pp. 77-83.

H.M. Vin, A. Goyal and P. Goyal, “Algorithmsfor designing
multimedia servers,” Computer Communications, Vol.
18, No. 3, 1995, pp. 192-203.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search
	Search Results
	Print

