
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

INTERNET-BASED SIMULATION USING OFF-THE-SHELF SIMULATION TOOLS AND HLA

Steffen Straßburger, Thomas Schulze, Ulrich Klein

Department of Computer Science
Otto-von-Guericke University Magdeburg

Universitätsplatz 2
D-39106 Magdeburg, GERMANY

James O. Henriksen

Wolverine Software Corporation
7617 Little River Turnpike, Suite 900
Annandale, VA 22003-2603, U.S.A.

v
s

T
 t
de
e
ri

 c
e
h
o
fo
L
o

e
 a
n
e
ge

ire
o
 a
e
b
gl
th

t
th
a
it
y to

aly

ork
ach.
e-
nt

ing

en
le
l

r
r
ts
ard

ed
h-

ava

as
ince
ge.
n.

for
l-

ous
se

g

ey
e

ABSTRACT

The United States Department of Defense’s High Le
Architecture for Modeling and Simulation (HLA) provide
a standardized interface for distributed simulations.
recent advent of HLA has greatly increased interest in
use of distributed, interoperable simulation mo
components. To date, most models using HLA have b
developed in conventional high-level languages (prima
C++). This paper presents approaches by which HLA
be used to interconnect distributed model compon
which are developed using commercially available, off-t
shelf simulation software. The requirements imposed
such simulation software by HLA are discussed, and
approaches for adapting such software for use with H
are presented. A generalized, model-independent appr
which was developed for SLX is presented.

1 INTRODUCTION / MOTIVATION

In the past several years, the Internet and its multim
front-end, the WWW, have undergone rapid expansion
achieved world-wide acceptance. Exploiting the Inter
and WWW for use in modeling and simulation holds gr
promise, but provides significant technical challen
(Dorwarth et al. 1997).

The development of distributed simulations requ
two types of functionality, (1) a simulation language
package in which model components are constructed,
(2) tools which implement a protocol by which mod
components can be interconnected. In an ideal world,
types of functionality would be integrated into a sin
simulation package which one could purchase “off
shelf.” In the absence of an integrated package, one
consider two approaches. One could start with an exis
language, such as Java, which fulfills many of
requirements for communication over a network, and
simulation capabilities. Alternatively, one could start w
a simulation language and add the tools necessar
accomplish interoperability over a network. Silk (He
166
el

he
he
l
en
ly
an
nts
e-
n
ur
A
ach

dia
nd
et
at
s

s
r
nd
l
oth
e
e

can
ing
e
dd
h

1997) is an example of the former approach. The w
described in this paper is an example of the latter appro

We chose SLX (Henriksen 1996, 1997) as an off-th
shelf simulation tool, because it provides both excelle
simulation capabilities and mechanisms for communicat
with packages written in languages other than SLX.

There are a number of protocols which have be
developed for constructing distributed, interoperab
simulations (e.g. Aggregate Level Simulation Protoco
ALSP, Distributed Interactive Simulation DIS). We chose
the High Level Architecture (HLA) as the protocol fo
adding distributed interoperability to SLX. Still unde
construction, DoD’s HLA protocol surpasses i
predecessors while maintaining a degree of upw
compatibility.

Most of the sample applications using HLA releas
by DoD to date have been written in conventional hig
level programming languages such as C++, ADA95, J
or even FORTRAN.

Constructing simulations in conventional languages h
a number of disadvantages that have been well-known s
the 1960s. Many factors influence the choice of a langua
Often, language choice is almost a matter of religio
Notwithstanding the burgeoning use of C++ as a tool
developing simulations, we feel that it is particularly il
suited for such use, for the following reasons:

1. It is difficult to learn.

2. It is too easy to make mistakes which have disastr
consequences, but are difficult to find, e.g., faulty u
of pointers.

3. It lacks an inherent mechanism for describin
parallelism.

4. Its debugging tools are simulation unaware, i.e., th
operate at a level far below that which would b
convenient for most simulationists.
9

Straßburger, Schulze, Klein and Henriksen

of
 i
ols

io
LA
lf

er
.

 w

ly
se

d

ce
tur

ng
is

no
.

jec
I

 t
il

de

he
d
l
in
ed
o

D

or
or
ir

de
e
d,

n
ed
e

m

d

e
n
he
I
s
w
ion
s

h
y
.,

 of

r

s
 a
re

r
r

HLA was designed to be usable with a wide variety
tools. This generality prompted us to consider its use
conjunction with classical, discrete event simulation to
which have no built-in distributed simulation capabilities.

Section 2 of this paper presents a short introduct
into HLA. Section 3 discusses the requirements that H
imposes on commercially available, off-the-she
simulations tools. Section 4 presents several gen
solutions for adapting a simulation tool for use with HLA
Section 5 presents a detailed description of a solution
developed for SLX.

2 HIGH LEVEL ARCHITECTURE

HLA is a simulation interoperability standard current
being developed by the US Department of Defen
(DMSO 1997). The architecture is defined by:

1. rules which govern the behavior of a distribute
simulation, called a federation, and the individual
distributed components, called federates, which
comprise the federation. (DoD 1996).

2. an interface specification which defines the interfa
between each federate and the Runtime Infrastruc
(RTI). The RTI is responsible for providing
communication services and coordination amo
federates. All communication among federates
conducted using RTI services. Federates can
communicate with one another directly
Communication is based on the use of ambassadors:
A federate calls methods of an RTI ambassador ob
to communicate with the RTI. Conversely, the RT
calls methods of a federate ambassador object
communicate with it. The RTI’s ambassadors are bu
into the RTI. Federate ambassadors must be provi
for each federate.

3. an Object Model Template (OMT) which provides the
framework for defining federations and federates. T
OMT is the foundation of the object-oriented worl
view embraced by HLA. A Simulation Object Mode
(SOM) must be supplied for each federate
accordance with the OMT. A federation can be view
as a contract between federates on how a comm
federation execution is intended to be run (Do
1997a).

The RTI provides several services which supp
interoperability. One of the most important services f
event-driven simulation tools is the coordination of the
simulation clocks. The time management services provi
by HLA allow the transparent running of federates und
different time regimes including real-time, time-steppe
and event-driven simulations (DMSO 1997a).
1670
n

n

al

e

e

t

t

o
t
d

n

t

d
r

3 REQUIREMENTS

The requirements imposed on simulation and animatio
tools by the HLA are considerable. They can be separat
into two categories: (1) requirements derived from th
HLA Interface Specification and the resulting
programming paradigm, and (2) requirements derived fro
being part of a distributed simulation in general. Both
categories will be discussed in the following sections, an
some general solutions will be discussed.

3.1 Requirements derived from the HLA programming
paradigm

One of the major building blocks of HLA is the Interface
Specification. HLA defines a two-part interface which
federates are required to use for communicating with th
Runtime Infrastructure (RTI). This interface is based on a
ambassador paradigm. A federate communicates with t
RTI using its RTI ambassador. Conversely, the RT
communicates with a federate via the federate’
ambassador. From the federate programmer’s point of vie
these ambassadors are objects and the communicat
between the participants is performed by calling method
of these objects. (Figure 1)

Federate

Federate-
Ambassador

RTI-Ambassador

Runtime Infrastructure

Network

Federate
Software

RTI Soft-
ware

Legend

Figure 1: The Ambassador Paradigm

In versions of the RTI provided by DMSO, the RTI
ambassador object is provided in a software library whic
is used by a federate. This library can be dynamicall
connected to the federate during model execution; i.e
federates do not have to be bound to the RTI in advance
execution. The Windows NT version of the RTI uses
Microsoft dynamic link libraries (DLLs). RTI
implementations for other operating systems use simila
facilities.

A federate is responsible for constructing proper call
of methods of the RTI ambassador object. The definitions
federate needs to be able to construct proper calls a
provided as part of HLA. For simulations developed in
C++, these definitions are provided in the form of heade
(“.hh”) files. For federates developed in languages othe

Internet-Based Simulation Using Off-The-Shelf Simulation Tools and HLA

c

s
te

c
d
e

e
v

e
o

,
e

s
b

t

e
.
e
to

e
t
g
l

o

e
nt
he
f

than C++, alternative means must be used to construct ca
to the RTI ambassador.

A federate must also provide an ambassador obje
which contains “callback” functions (methods) which can
be called by the RTI. These methods must conform to th
HLA standard. The skeletal definitions of the calling
sequences of the required federate ambassador methods
provided in the form of C++ header files. The header file
contain an abstract object class for the federa
ambassador. To construct a federate, one fills in th
skeleton with actual code by deriving a concrete obje
class from the abstract one. While this is straightforwar
for federates written in C++, alternative means must b
developed to construct ambassadors for simulation
developed in other languages.

3.2 Requirements derived from being part of a
distributed simulation

Being member of a distributed simulation imposes som
general problems that stand-alone simulations do not ha
to deal with.

Synchronization
Participants in a distributed simulation have to coordinat
their local advances in logical simulation time. To do s
they have to take into account their mutual dependencie
In previous approaches to distributed simulation
developers had to devise and implement their own tim
management algorithms (Fujimoto 1990).

HLA provides a mechanism for coordinating logical
simulation time of event driven simulators. Actually HLA
offers much more than simple “coordination”: it provides a
transparent time management that makes it almo
unnecessary for federates to know the time regime used
other federates.

In order for this to work, the RTI requires federates to
request their time advances by calling the appropria
methods of the RTI ambassador object. For discrete eve
simulation tools, which are the focus of this paper, th
interface function “nextEventRequest” is of major interest
A federate must issue a call to this function befor
advancing in its logical time. A federate is then expected
honor certain callback functions that the RTI might call. In
particular, it must wait for a “timeAdvanceGrant“ callback.

The latter is the typical scenario for a conservativ
synchronization. In such a scenario the need to constan
request the time advances could be automated by addin
new synchronization thread to the simulation mode
(Figure 2). This thread should have the lowest priority t
ensure that at a certain logical simulation time all actua
“simulation“ events have been processed before the tim
stamp of the next event is determined. This way no eve
can be scheduled with a time stamp lower than the one t
request is issued for. As a prerequisite for this kind o
1671
lls

t

e

are

e
t

s

e

s.

t
y

e
nt

ly
 a

l

synchronization to work the simulation tool has to offer a
function for the determination of the next scheduled event
time (e.g. GPSS/H: NAC1, SLX: next_imminent_time()).

RTI-
Ambassador

Invoke
NextEventRequest(T)

Advance to
granttime

Runtime
Infra-

structure
Federate-

Ambassador

Wait for
"Time

Advance Grant"

Determine the
timestamp T of the

next local event

(asynchronously)

Callbacks

Figure 2: Principle of the Synchronization Thread

HLA also supports optimistically synchronized federates.
Although we are currently experimenting with this
approach, our experiments are not discussed in this paper.

In a distributed simulation a model also has to react to
external events. The occurrence of such an event is
communicated to the federate through certain callback
functions in the federate (e.g. attribute updates, interaction
messages etc.) which are called by the RTI.

The two fundamental actions a simulation must
perform in order to achieve synchronization are to:

1. determine the next logical event time of the simulator
and request an advancement to this time at the RTI;
and

2. wait for a time advance grant from the RTI and react
to any external events that have been sent to the
federate.

Data exchange and data representation
A simulator must also have the capability of receiving and
sending data about the objects comprising a model. This is
done by using HLA interface functions and is a relatively
conventional programming task. Additionally, there is the
need to store data about remote objects in the local
simulation tool. This is necessary because under HLA,
such semantic information cannot be stored within the RTI;
i.e., all object representation is maintained solely within the
federates. Therefore a simulator has to somehow be able to
receive updates and store them locally in order to make
future use of them.

Straßburger, Schulze

v

e
ed
s
r
h

s
o
is
le

r

n
a

t
r

e

d

y
l

k)
l

the
ual
ay
ing
IS

ld
the

e
6).
ary
in
ic
to
he
e

++
 in
L
ify

e
or
 of
ll
om
nt
ods
es
s a
 in
4 THE FOUR GENERAL SOLUTIONS

Given the requirements discussed in section 3 we ha
identified 4 general possibilities for integrating existing
simulation tools into the High Level Architecture.

1. Re-Implementation of the tool with HLA-
extensions
 This solution is, of course, the most obvious one. If th
source code of a tool is available and well document
this is the most straightforward and probably the lea
complicated solution. Skopeo (Lorenz and Ritte
1997), a web-based animation tool developed at t
University of Magdeburg, is an example of an
animation tool for which HLA-compliance has been
accomplished in this manner.

2. Extension of intermediate code
 Some simulation tools translate model description
written in a tool-dependent modeling language int
another programming language (e.g. C++). Th
intermediate code is then compiled to an executab
file. It is possible to modify this code to realize the
HLA extensions. Since this code is compile
generated, an automated solution is desirable.

 Examples for tools that could theoretically be
extended in this way are ACSL, MODSIM, and
JavaGPSS (Klein et al. 1998).

3. Usage of an external programming interface
 This solution is well suited for tools that offer an ope
and extensible architecture. The tool should offer
library interface (in Windows: a DLL interface) with
the ability to call arbitrary functions or methods in
these libraries. Additionally the tool should make i
possible to to implement callback functions o
methods.

 Section 5 of this paper describes a solution for th
simulation tool SLX which is based on this approach.

4. Coupling via a gateway program
 The last solution for tools which can not be connecte
to the RTI by any of the prior methods is the
development of a gateway program. The gatewa
program could communicate with the simulation too
via appropriate means (e.g. files, pipes, networ
depending on the capabilities of the simulation too
(Figure 3) .
cts
ry
he
ngs
 of

1672
, Klein and Henriksen

e

t

e

Federate

Federate-
Ambassador

RTI-Ambassador

Runtime Infrastructure

Network

Federate
Software

RTI Soft-
ware

Legend

Gateway

via pipes, files, network, ...

Figure 3: Principle of the Gateway Solution

The gateway program would translate between
simulation tool and the RTI and therefore be the act
member (federate) in the HLA federation. Gatew
programs are a common means for integrating exist
applications (e.g. legacy applications such as D
simulations) into HLA (Cox et al. 1996). A gateway cou
also be used for connecting older simulation tools for
DOS operating system such as GPSS/H to the RTI.

5 THE SOLUTION FOR SLX

SLX is a new discrete event simulation tool for th
Windows 95/98/NT operating systems (Henriksen 199
SLX has an open software architecture. It has a libr
interface which allows SLX programs to call functions
any standard Windows DLL. This is one of the bas
prerequisites for connecting a commercial tool like SLX
the RTI without modifying the actual source code of t
tool. In addition to this interface, SLX also offers th
extraordinary feature of automatically generating C/C
header files which describe the contents of SLX objects
C/C++ syntax. A C/C++ function which is placed in a DL
is easily called from SLX, and it can retrieve and mod
the attributes of SLX objects.

Although SLX is a very open tool, not all of th
requirements stated earlier can be fulfilled directly. F
example, it is not possible to directly create instances
C++-objects inside SLX. Therefore it is not possible to ca
the methods of the RTI ambassador object directly fr
SLX. Furthermore it is not possible to directly impleme
the federate ambassador object with its callback meth
inside SLX. In addition, there are some differenc
between SLX and C/C++ data types. Although SLX ha
C-like syntax, there are differences between SLX and C
lowest-level data manipulation. For example, SLX prote
users from many of the pitfalls of C (e.g. freeing memo
although there still is a pointer pointing to it, exceeding t
boundaries of arrays, mismatched types, etc.). SLX stri
are different from those of C. SLX internally keeps track

 Off-The-Shelf Simulation Tools and HLA

n

p

m
ro
tl
i
L

li
le
T

+
 b
is
h

o

e
p
d

th
T
d
le
e

a
S

s
is

g
d

er

s
e

ct

s

l
e

.
t

e

e
en
nd
e
n
est

e

Internet-Based Simulation Using

the current and maximum length of strings and does
use the zero-termination of C.

These examples illustrate that some data ty
conversion is unavoidable when data are manipulated
both SLX and C/C++. Since the RTI is C++ based, so
type conversions are necessary to use RTI functions f
an SLX program. It is therefore not possible to direc
access the ambassador objects. Given these shortcom
we must ask whether they outweigh the gains of using S
as a modeling tool.

Fortunately, the solution to the problems stated ear
is very straightforward: a simple “wrapper” library callab
from SLX can be developed to wrap around the R
(Figure 4).

RTI Ambassador

Federate Ambassador

SLX Wrapper
C / C++

RTI Library
C++

Runtime Infrastructure (RTI)

Figure 4: Connecting SLX to the RTI Using a
Wrapper Library

Communication between SLX and RTI
The methods of the RTI ambassador object (C
functions) that have to be called from SLX are wrapped
“normal“ C-functions which can be called by SLX. This
done on a 1:1 basis for each HLA function required. T
wrapper functions perform the necessary conversi
between SLX data types and RTI data types. They a
simplify RTI programming efforts for the SLX user. Th
process of dealing with the somewhat confusing RTI ty
(attribute handle set, attribute value pair set, ...) is hid
from the SLX user.

Communication between RTI and SLX
Another task that the wrapper library has to perform is
implementation of the federate ambassador object.
federate ambassador is responsible for receiving all kin
data from the RTI. This reception process is hand
internally by the wrapper library. Since the wrapp
library cannot call SLX to tell that something has
happened, a mailbox-principle is used: The feder
ambassador stores the data that were received in an
167
ot

e
by
e
m

y
ngs,
X

er

I

+
y

e
ns
lso

es
en

e
he
 of
d
r

te
LX

object in a fixed structure. The SLX model can then acces
this object to query the things that happened outside. Th
is both straightforward and suitable for performing the
required tasks.

In addition to this static object, our solution introduces
dynamic structures for the actual objects that are bein
modeled. When a simulation models certain objects an
interactions according to its HLA simulation object model,
these HLA logical structures are mapped into real SLX
objects which can be accessed from SLX and the wrapp
DLL. This simplifies the process of sending and receiving
attribute updates or interactions. The problem with thi
approach is that the wrapper library does not know th
structure of these SLX objects at compile time. Therefore
the DLL has to calculate the address of each obje
attribute at runtime. However, the SLX run-time
environment provides C/C++ callable library routines
which the DLL wrapper uses to retrieve attribute addres
information using attribute names or pointers. This
guarantees error-free mapping into SLX objects.

Synchronization Issues
The HLA programming paradigm expects a federate to tick
the RTI to trigger the reception of any currently pending
callback invocations by calling the tick-method of the RTI
ambassador. This is usually done during the interva
between requesting a time advance and waiting for th
according time advance grant. As a simplification for the
SLX user, this is handled internally by the wrapper library
The SLX user simply requests to advance to the nex
logical event time and then (after a while) receives a tim
advance grant.

forever
{

NextEventTime= next_imminent_time();
grantTime = RTI_NextEventRequest(NextEventTime);
wait until (time == grantTime);
... // query any external events
yield ; // hand over control to other simulation threads

}

Figure 5: Code Fragment of the Synchronization Thread
Used in SLX Corresponding to the General Shown in

Structure Figure 2

If an external event has to be processed, the grant tim
may be smaller than the actual time advance that had be
requested. The user then is expected to check the static a
dynamic SLX objects for any data or events that need to b
processed. After that the normal simulation execution ca
proceed; possibly by issuing the same time advance requ
again. Figure 5 shows the suggested usage of the tim
advance functions provided by the wrapper library for
SLX.
3

Straßburger, Schulze, Klein and Henriksen

 o
rk

l a
e

e
e

t

e
 u
y
on

te

s)
s
in

I
nt

I

e

t

l
n
d

y
e

To ensure the behavior outlined above the functions
the wrapper library for requesting the time advances wo
synchronously, i.e. the wrapper library keeps control unti
time advance grant is received. This is different from th
original RTI ambassador functions which work
asynchronously. Figure 6 shows a simplified cod
fragment illustrating the basic algorithm of the tim
management functions provided by the wrapper library.

//global variables

boolean timeAdvGrant;
double grantTime;
...

double RTI_NextEventRequest (double NextEventTime)
{

try
 {

timeAdvGrant = RTI::RTI_FALSE;
ms_rtiAmb->nextEventRequest(NextEventTime);

}
catch (RTI::Exception& e)
{

return (-1);
 }
 while (timeAdvGrant == RTI::RTI_FALSE)
 {

int eventsToProcess = 1;
while (eventsToProcess)
{

eventsToProcess = ms_rtiAmb->tick();
//tick the RTI until timeAdvanceGrant callback
//is invoked (which will set timeAdvGrant and
 grantTime)

}
}
return (grantTime);

}

Figure 6: Code Fragment of the RTI_NextEventReques
Function of the Wrapper Library for SLX

Performance
The wrapper library offers acceptable performance. W
have successfully tested several sample federations with
to 4 federates (3 of them SLX) which were all strictl
synchronized via the RTI. A part of a reference federati
modeling a traffic light scenario is shown in figure 7.

The execution speed of the same model implemen
in a monolithic fashion without HLA (as one single SLX
model) would be much faster (between 10 to 50 time
However, the primary goal of HLA is not to gain speedup
through parallel processing of models. Rather, the ma
focus of HLA is to facilitate interoperability among a wide
variety of simulation tools. To improve general RT
performance is one of the major goals of the curre
development efforts for an RTI version 2.0.
1674
f

p

d

.

Figure 7: HLA Federation With Two SLX Federates
Running on the Same Computer

It was possible to run all three SLX federates of this
federation on one high performance PC (Dual-Pentium I
System with 64 Mbytes memory).

5.1 SAMPLE APPLICATIONS

The solution for SLX has been successfully tested in th
following sample applications:

1. Federation “Traffic Light”: Three SLX federates (car
traffic, pedestrian traffic, and traffic light control)
were developed to simulate a classical traffic ligh
scenario (Klein and Straßburger 1997).

2. Federation “Manufacturing”: Two SLX federates (a
manufacturing federate, a command and contro
federate), and a visualization federate (the animatio
system Skopeo mentioned earlier) were implemente
(Schulze et al. 1998).

3. Federation “Shipping Agencies”: A variable number
of SLX federates, each modeling a shipping agenc
can interact with each other in this federation (Schulz
et al. 1998a).

4. Federation “Free Driving”: A single SLX federate
modeling psycho/physical vehicle-following behavior
was coupled with a real-time training simulator. The
SLX model had to appropriately react to the vehicle
modeled by the training simulator (Klein et al. 1998a).

Internet-Based Simulation Using Off-The-Shelf Simulation Tools and HLA

ha
A
fo

A.
plie

on
ss
s
t
h

e
ta
ted
TI
his
the

r
L

for
 is
n

g

s
s

7.
L

a.

el
st
O

el
.

el
,

A

.

.

n

l

n

r.

-

e
-

.

e
-

r.
6 CONCLUSIONS

We have identified a basic set of requirements t
simulation tools must meet in order to make them HL
compliant. We have suggested four general solutions
adopting existing discrete event simulation tools to HL
The basic ideas behind these solutions can also be ap
for other tools which have to be made HLA-compliant.

We introduced a model-independent HLA connecti
for the simulation tool SLX. This solution provides acce
to a basic set of HLA functionality from SLX. It come
with an easy to use interface for “doing“ HLA withou
having to care about the “dirty“ programming work wit
the RTI.

Certain higher techniques of HLA remain to b
implemented. Most of this work is in the area of HLA da
distribution management, which had not been implemen
in the DMSO-provided versions of the RTI we used. R
support for this service group is announced for later t
year and will then be incorporated in future versions of
wrapper library for SLX.

The solution for SLX could, in principle, be used fo
connecting other simulation tools with a standard DL
interface to the RTI. Modifications are only necessary
the data transfer back to the simulation tool, since this
dependent from the internal data structure representatio
the respective tools.

REFERENCES

Cox, A., D. Wood, M. Petty, K. Juge. 1996. Integratin
DIS and SIMNET into HLA with a gateway. In
Proceedings of the 15th DIS Workshop on Standard
for the Interoperability of Defense Simulation,
Orlando FL, September 16-20 1996, pp. 517-525.

Defense Modeling and Simulation Office (DMSO). 199
The High Level Architecture Homepage. UR
http://hla.dmso.mil/.

Defense Modeling and Simulation Office (DMSO). 1997
HLA Time Management Design Document, Version
1.0, dated 15 August 1996. Available online at the
HLA Homepage (DMSO 1997).

Department of Defense (DoD). 1996. High Lev
Architecture Rules, Version 1.0, dated 15 Augu
1996. Available online at the HLA Homepage (DMS
1997).

Department of Defense (DoD). 1997. High Lev
Architecture Interface Specification, Version 1.2
Available online at the HLA Homepage (DMSO
1997).

Department of Defense (US). 1997a. High Lev
Architecture Object Model Template, Version 1.1
dated 12 March 1997. Available online at the HL
Homepage (DMSO 1997).
1675
t

r

d

in

Dorwarth, H.; P. Lorenz; K. C. Ritter; and T. J. Schriber
1997. Towards a Simulation and Animation
Environment for the Web. In Proceedings of the 1997
Winter Simulation Conference, eds. S. Andradóttir, K.
Healy, D. Withers, B. Nelson, pp. 1338-1344.

Fujimoto, R. 1990. Parallel Discrete Event Simulation. In
Communications of the ACM, 1990, no. 10, pp. 30-53

Healy, J. H. and R. A. Kilgore. 1997. SILK: A Java
Based Process Simulation Language. In Proceedings
of the 1997 Winter Simulation Conference, eds. S.
Andradottir, K. J. Healy, D. H. Withers, and B. L.
Nelson, pp.475-482, SCS, Atlanta

Henriksen, J.O. 1997. An Introduction to SLX. In
Proceedings of the 1997 Winter Simulation
Conference, eds. Andradottir, K. J. Healy, D. H.
Withers, and B. L. Nelson, pp.559-566, SCS, Atlanta

Klein, U. and S. Straßburger. 1997. Die High Level
Architecture (HLA): Anforderungen an interoperable
und wiederverwendbare Simulationen am Beispiel vo
Verkehrs- und Infrastruktursimulationen. In Kuhn, A.
and S. Wentzel (Ed.), Proceedings of the 11th

Simulation Symposium ASIM 97. Nov. 11-14, 1997.
Vieweg Verlag, pp. 529-534.

Klein, U., S. Straßburger, J. Beikirch. 1998. Distributed
Simulation with JavaGPSS based on the High Leve
Architecture. In Proceedings of the 1998 International
Conference on Web-based Modeling and Simulatio
Jan. 11-14, 1998, San Diego.

Klein, U., Th. Schulze, S. Straßburger and H.-P. Menzle
1998a. Traffic Simulation Based on the High Level
Architecture. In Proceedings of the 1998 Winter
Simulation Conference, eds. Medeiros, D.J. and Ed
Watson, SCS, Washington.

Lorenz, P. and K. C. Ritter. 1997. Skopeo: Platform
Independent System Animation for the W3. In
Deussen, O. and P. Lorenz (Ed.), Proceedings of the
Simulation und Animation Conference Magdeburg,
March 6-7, 1997. SCS European Publishing Hous
San Diego / Erlangen / Ghent / Budapest 1997, pp. 12
23.

Schulze, Th., U. Klein, S. Straßburger, K.-C. Ritter, E
Blümel, and M. Schumann. 1998. HLA basierte
verteilte Simulationsmodelle für die Fertigung. In
Preim, B. and P. Lorenz (Ed.), Proceedings of the
Simulation und Animation Conference Magdeburg,
March 6-7, 1998. SCS European Publishing Hous
San Diego / Erlangen / Ghent / Budapest 1998. pp.19
31.

Schulze, Th., G. Lantzsch, U. Klein, and S. Straßburge
1998a. Interoperabilität zwischen
Simulationsmodellen auf Basis der High Level
Architecture. In Erfahrungen aus der Zukunft,
Tagungsband 8. ASIM-Fachtagung Simulation und
Logistik, eds. Mertins und Rabe, IPK Berlin 1998,
369-379.

Straßburger, Schulze, Klein and Henriksen

r

AUTHOR BIOGRAPHIES

STEFFEN STRASSBURGER holds a Master’s degree in
Computer Science from the Otto-von-Guericke University,
Magdeburg. He is currently working towards his PhD
degree at the Institute for Simulation and Graphics at the
same university. His experience with inter-networking and
simulation includes a one-year-stay at the University of
Wisconsin, Stevens Point. His main research interests lies
in distributed simulation and the High Level Architecture.

THOMAS SCHULZE is an Associate Professor at the
Otto-von-Guericke-University in Magdeburg in the
Department of Computer Science. His research interests
include modeling methodology, public systems modeling,
traffic simulation, and distributed simulation with HLA. He
is an active member in the ASIM, a community for
simulation in Germany.

ULRICH KLEIN is a PhD candidate at the University of
Magdeburg, Germany. He holds a Master’s degree in
Industrial Engineering from the University of Karlsruhe
and has been involved in Emergency Management since
1992. He has two years of experience as Project Manage
for Command, Control, and Communication Systems for
Public Safety and Security in Europe. His research topics
include Emergency Management, Urban Infrastructure
Management and Logistics, Geographic Information
Systems, and the High Level Architecture.

JAMES O. HENRIKSEN is the president of Wolverine
Software Corporation. He was the chief developer of the
first version of GPSS/H, of Proof Animation, and of SLX.
He is a frequent contributor to the literature on simulation
and has presented many papers at the Winter Simulation
Conference. Mr. Henriksen has served as the Business
Chair and General Chair of past Winter Simulation
Conferences. He has also served on the Board of Directors
of the conference as the ACM/SIGSIM representative.
1676

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

