
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

THE FUTURE OF JAVA-BASED SIMULATION

Richard A. Kilgore
Kevin J. Healy

ThreadTec, Inc
P. O. Box 7

Chesterfield, MO 63017, U.S. A

George. B. Kleindorfer

Smeal College of Business Administration
Penn State University

University Park, PA 16802, U.S.A.

in
o
e

ic
n
t

iv

i
v
ti
n
a

u
e
u
ti
e
9

is
a
n
in
-

 t

e
t

h

-
d
d

e
,
ill

to
n

he

n
f

r
e
va
r

k

ABSTRACT

Java-based simulation presents a unique opportunity
revolutionary changes in the process of develop
simulation models and in the mission of the simulati
software firms that provide tools to support the mod
development process. Java enables a new vision o
simulation industry populated by application-specif
simulation specialists who generate compatible a
reusable simulation components. These object-orien
components can be developed using inexpens
professional-quality Java development environments a
executed using Internet browser software. This discuss
is an overview of the features and future benefits of Ja
based simulation. It is targeted at experienced simula
practitioners who understand the limitations of existi
tools and the need for object-oriented, standardized
reusable modeling software.

1 INTRODUCTION

The Java programming language has a number of feat
that have the potential to dramatically change the proc
used to build computer simulation models. Previo
discussions of these features have focused on explana
of the technical differences between Java and other obj
oriented approaches to simulation (Buss and Stork 19
Healy and Kilgore 1997; Kilgore et al. 1998). Th
discussion is an overview of these features in
introductory format for those prac-titioners that understa
simulation but do not yet comprehend the far-reach
opportunities of object-oriented modeling within industry
standard Java development environments. If realized,
benefits for modelers include:

• Java will become a common foundation for all sim
ulation tools because it is the only object-orient
programming environment that effectively suppor
standardized components.
170
for
g
n
l

f a

d
ed
e,
nd
on
a-
on
g
nd

res
ss
s
ons
ct-
6;

n
d
g

he

-
d
s

• Java will foster execution speed breakthroughs throug
convenient and robust support for distri-buted
processing of simulation experiments on multiple
processors.

• Java will improve the quality of simulation models as
the development of application-specific software
components redirects the emphasis of simulation
software firms toward modeling and away from
modeling development environments.

• Java will expose the benefit of computer sim-ulation
to a larger audience of problem-solvers, decision
makers and trainers since models can be distribute
and executed over the internet using standar
browser software on any operating system and
hardware platform.

• Java will accelerate simulation education becaus
students already familiar with object-oriented design
Java syntax and Java development environ-ments w
no longer require instruction in specific simulation
tools.

While some of these opportunities may take decades
fully realize, many of these benefits have already bee
experienced in early implementations of the Silk
simulation tool (Healy and Kilgore, 1998). It is not within
the scope of this paper to describe Java (Grand 1997) or t
specifics of the Silk imple-mentation of Java-based
simulation. In fact, a primary objective here is to illustrate
that Java encourages a vendor-neutral simulatio
environment where Silk may be just one of a number o
commercially available collections of Java-compatible
simulation components. No programming language o
simulation tool seems to have more than a 30-year lif
span, and it is un-reasonable to expect that Silk and Ja
will not eventually be superseded by even more superio
tools. But the introduction of "open" programming tools
like Java and "open" Java-based simulation tools like Sil
will be the beginning of the end to the limitations im-posed
7

Kilgore, Healy and Kleindorfer

n
ie
 o
o
e

c
e
v
n
g
n

l
n
e

 T
n
g

r
ad
e
a
rs
ir
e

f
le
h
re
o

in
a

r
w

d
h
te
e
d
l.
d

t

t

d

by the lack of compatibility that exists in current
simulation software technology.

2 JAVA WILL BE THE FOUNDATION OF ALL
SIMULATION TOOLS

Just as industrial engineers employ simulation to study a
improve a process, industrial engineering should be appl
to the process of simulation. One of the peculiar aspects
the process of simulation is that the "standardization
components" which led to the industrial revolution in th
early 20th century seems to be lacking. Model building
remains the product of craftsmen who work an entire pie
from start to finish using specialized tools and techniqu
which are rarely passed down to their apprentices. Ja
has the oppor-tunity to be the catalyst for a simulatio
industrial revolution because it is the first programmin
language that can foster the growth of platform-neutral a
vendor-neutral standardized simulation components.

There are a number of features of Java which enab
the creation of standardized simulation com-ponents a
understanding of these features will be crucial to th
emergence of accepted standards and design patterns.
most significant of these features is Java's simple a
straightforward approach to multi-threaded programmin
(Oaks and Wong, 1997).

The importance of multithreaded programming fo
simulation is that it enables the creation of an entity-thre
that has independent control of its behavior within th
simulation. Unfortunately, multithreaded programming is
new programming concept to most simulation practitione
(who are too busy learning the latest ver-sion of the
vendor-specific software), and the sig-nificance of th
entity-thread concept is not readily understood.

Most software programs run in a single thread o
execution. In such an environment, there is a sing
intelligent entity that is controlling the execution of eac
program instruction. In multithreaded execution, there a
multiple, independent, intelligent entities that share contr
of the execution of program instructions. Similar to
multitasking operating systems, in which multiple
programs are allowed to execute simul-taneously
separate address spaces, multithreaded programs
executing simultaneously within the same program. O
course, on a single processor computer, only one thread
actually active at any one time and other threads a
suspended until specified conditions are met which allo
them to complete their individual tasks.

It should be clear that the concept of multi-threade
programming better corresponds to the operation of t
real world system being simulated. Most systems are bet
described as a collection of independent, intelligent entiti
rather than a single global entity agent that must deci
when and where to allocate program contro
Programming a simulation within a single-threade
1708
d
d
f

f

e
s
a

d

e
d

he
d

l

re
f
is
e

e
r

s
e

environment is similar to an orchestra in which the
conductor is responsible for directing and playing each
note. Not only does it place a great deal of responsibility
on the part of the conductor, it does not allow the assembly
of an orchestra using independent, easily changeable
musicians and instruments.

The practical significance of multithreaded pro-
gramming and entity-threads is that there is no longer the
need for a simulation language to serve as the agen
coordinating the flow of control within the simulation. A
Java-based simulation can generate an entity-thread objec
that corresponds to an intelligent entity in the system being
simulated. Rather than using a programming language to
construct a simulation lan-guage to emulate the completion
of the entity tasks, a Java-based simulation results from the
direct execution of entity-thread process methods. Java is
not just an underlying programming language for
simulation. Java is the simulation language.

Just as a traditional programming language pro-vides
fundamental behaviors such as,

do if start read write

a Java-based simulation adds simulation-specific entity
behaviors such as,

create queue seize delay release

which are methods executed directly on the entity-thread.
An entity-thread executes the queue method just as it
executes the read statement. There is no compilation of
simulation statements into programming instructions. And
there is no black-box, simulation-language-specific
representation of an entity executing simulated process
steps.

Most importantly, if the simulation engine sup-porting
entity-threads is properly implemented, anyone with
knowledge of Java and the simulation API can extend the
simulation tool through the modification of existing
methods or the addition of new methods. Since the
simulation engine is itself a component, it is even possible
to replace it if another variety was more suited to a
particular application.

The consequence for the simulation industry is that
Java eliminates the need for simulation vendors to
distinguish themselves through the creation of incom-
patible software and development environments. All
simulation tools could share a common set of standards an
simulation program development would consist of the
assembly of reusable and compatible simulation
components based on these standards.

The Future of Java-Based Simulation

e
n

s

o

e

.

o
il
r

e

m

-

-

-
d
t

e
-
n
a

t
r

l

of
ed
t.
on
e
e
e
is
 is
the
se
t

t
va
n
g
or
g
far
e
elf
ld,
th
ava
st
e

re
ur

er
 the
ly
ly
.

for
-

3 JAVA WILL FOSTER EXECUTION SPEED
BREAKTHROUGHS

A favorable by-product of multithreaded pro-gramming
will be the execution speed improvement made possibl
through the distributed execution of Java-based simulatio
on multiple processors. Returning to the industrial
engineering of the process of discrete-event proces
simulation, consider that each replication of the simulation
is done sequentially on the single processor. Regardless
the speed of the in-dividual replication, significant
execution speed break-throughs exist only through th
simultaneous execution of different replications (with
different random number seeds) on different processors
While Java presently does not directly support multiple
processors, the ability to separate simulation programs int
entity-threads is a convenient first step along that path unt
the multiprocessor API is released. Java's internal suppo
for distributed network programming provides the
remainder of the necessary infrastructure to achiev
distributed simulation experiment processing without
making the simulation dependent on the operating syste
or hardware platform.

While distributed processing of simulation
experiments is a likely to be near-term application of Java
based simulation, a more interesting long-term opportunity
is the allocation of a separate processor to each entity
thread. There is obvious benefit simply from the execution
speed improvements due to parallel processing of entity
thread processes within the simulation run (Ferscha an
Richter, 1997). But of greater interest is the elegan
parallel between entity-thread-processor based compute
simulation and the entities in the real systems being
simulated. Just as entity-threads better represent th
behavior of independent, intelligent agents in a single
processor system, entity-thread-processors provides a
even better correspondence between behavior in the re
system outside of the computer and behavior in the
simulated system within the computer. Presently, we mus
emulate the separate processors in software using vendo
specific prioritization schemes that allocate the single
processor to competing entity-threads. The natura
evolution of this approach would be to eliminate the
overhead of entity-thread management through the use o
multiple processors.
1709
f

t

r

l

-

f

4 JAVA WILL IMPROVE THE QUALITY OF
SIMULATION MODELS

The industrial engineering study of the process
simulation now turns towards the impact of Java-bas
simulation on the quality of the simulation model produc
This study focuses less on the activities of the simulati
developer in the field and more on the activities of th
simulation software vendor. An analysis of thes
programming activities at present simulation softwar
vendors would lead to the conclusion that more effort
devoted on the interface to the simulation software than
spent developing usable and reusable applications of
simulation software. Java-based simulation would rever
this situation by promoting simulation model developmen
using off-the-shelf Java development environments.

Presently available Integrated Developmen
Environments, such as Symantec Visual Café for Ja
shown in Figure 1, eliminate the need for a simulatio
software vendor to maintain expertise in programmin
areas outside of the domain of simulation. The tools f
editing, project management, debugging, visual modelin
and documentation available in these en-vironments are
superior to any similar functions in presently availabl
simulation software. And because these are off-the-sh
development environments used throughout the wor
there is already a population of trained users familiar wi
the operation of these tools. Since the developers of J
IDEs have a much larger user population than ju
simulation users, a larger amount of resources will b
invested in the future improvement of these tools.

Prior to Java-based simulation, a simulation softwa
vendor must allocate programming resources to fo
activities:

• Internal simulation engine and simulation language
• Integrated development environment and GUI
• Animation and other input/output options
• Application-specific simulation components

In a Java-based simulation environment, it is no long
necessary to devote as much programming resource to
first three activities. These functions will be adequate
available and better supported using commercial
available, third-party software built for Java applications
This frees valuable simulation development resources
the creation and distribution of higher quality, application
specific simulation tools.

Kilgore, Healy and Kleindorfer
b

a
f
a

e
y

i
c

ices

are
intain
Java
ase
gle
ts to
code
very
rent
.

Figure 1: An Example of the Use of Java Integrated Development Environments for Simulation
The bigger quality impact of this new role for
simulation software vendors will be derived from the
increased economic incentive to create more reusa
simulation components. In the present simulatio
marketplace, simulation vendors profit from the eventu
incompatibility of previous versions (or sections o
previous models) with future simulations. Given that Jav
based simulation components could be easily distribute
modified and resold throughout the world over the intern
presents an entirely different "model" to the primar
business of a simulation soft-ware vendor. Simulatio
software consultants can now afford to specialize
specific applications of simulation and become dire
171
le
n
l

-
d,
t

n
n
t

software product vendors rather than simply serv
vendors.

There are many other benefits to simulation softw
developers from the use of Java. The need to ma
different versions of the software is eliminated since
offers cross-platform compatibility. Vendors can rele
bug-fixes immediately through the distribution of a sin
class file rather than postpone fixes and improvemen
the next release. Similarly, since the Java simulation
is conveniently packaged into modular classes, it is
convenient to develop, distribute and maintain diffe
versions for different industries and different customers
0

The Future of Java-Based Simulation

b
u
tly
.
r

o
e

n
d

s

d
ia
n
on
m

o
on

a
e
ri
h
e

s
io
e
e

ri
e
ld
v
ily

ve

 o
ill

n
e

 t
a

t.
ts

me
f
or
d

at
e
s.
n
t

y
ts
ir
se

use

ers
d

 for
a
ll

s
y
d
f

nd
ill
 to

e
ted
n.
ase
ble
of
tly,

n-

e
,
ed
ss
rk

y
ow
d?

els
he
5 JAVA WILL EXPOSE THE BENEFIT OF
SIMULATION TO A LARGER AUDIENCE

Suppose that 10 years ago you were told that it would
possible to save an animated simulation model to yo
local hard drive and have that model become instan
visible and usable by millions of people around the world
And then suppose you were told that the browser softwa
to enable this capability was available at no cost.

The belief that Java will emerge as a standard f
simulation programming is further advanced by the clos
relationship between Java and internet-based computi
More and more, communication between people an
businesses will occur through network connection
Telecommuting, virtual corporations and the
internationalization of business will continue the tren
toward the transmission of ideas through electronic med
What better mechanism for communicating informatio
about dynamic systems than through the online distributi
of dynamic computer simulations that depict these syste
in operation.

For example, consider Bob in Boston who wants t
use simulation to describe a new material handling opti
to Chris in California. He must either fly with his laptop to
make a presentation in person, or have Chris purchase
install the required simulation software on compatibl
hardware. Using Java-based simulation software, Ch
can use her browser software to link to Bob's site where t
simulation is located and view the system online while sh
discusses improvements with Bob over the phone.

This ability to execute within the Internet browser i
the feature of Java that will enable Java-based simulat
to realize its long sought potential as an onlin
demonstration and training tool. Rather than waste tim
and resources at onsite demonstrations and indust
shows, equipment vendors can show the simulat
operation of their products to clients throughout the wor
and throughout the year. Plant personnel can ha
immediate access to a simulation of the projected da
activity within the facility. Educators and trainers can
conveniently and inexpensively make textbooks come ali
with online simulation models of industrial, physical and
biological systems.

And as more people become exposed to the benefits
computer simulation, more support for the technology w
emerge, as the quality of the online simulation becomes
comparative advantage between competing firms.

6 JAVA WILL ACCELERATE SIMULATION
EDUCATION

Java-based simulation will establish simulatio
programming within the mainstream of computer scienc
education. Students and professors will no longer need
learn simulation-vendor-specific syntax or learn to use
1711
e
r

e

r

g.

.

.

s

nd

s
e

n

al
d

e

f

a

o

simulation-vendor-specific develop-ment environmen
Familiar Java development environments that studen
used in prerequisite com-puter science classes will beco
simulation platforms. More importantly, the principles o
programming and object-oriented design learned in pri
study will transfer directly into their work with Java-base
simulation.

Another important feature of Java for education is th
it eliminates the difficult trade-off between easy-to-us
simulators and powerful and flexible simulation language
Those students with sufficient pro-gramming skills ca
combine simulation and Java programming withou
limitation. Other students with less programming abilit
will have a rich library of reusable, simulation componen
available on the Internet as a starting point for the
projects. Even those students and professors who
interest does not extend past visual modeling can make
of JavaBeans (Kilgore 1998) visual component models.

The leadership of simulation educators and research
will be a critical factor in the transition to Java-base
simulation as it will likely influence the speed at which
consensus is reached for the emergence of standards
object-oriented simulation components. Simulation is
relatively immature industry populated by numerous sma
firms, so it is unlikely that the movement toward
standardization will be the product of an industr
association. It is much more likely that Java-base
simulation standardization would be the outcome o
government programs that can provide the legal a
economic incentives, or academic programs that w
produce the next generation of simulation analysts eager
take advantage of new technologies.

Finally, simulation education and research will also b
accelerated through the convenient merger of other rela
Java-based applications with Java-based simulatio
Students and researchers will be en-couraged by the e
that other Java-based software and Java-compati
databases can be merged into the creation
comprehensive modeling systems (Reese 1997). Presen
the task of creating interfaces to the current simulatio
vendor-specific software requires difficult, custom
programming that has little oppor-tunity for reuse. Th
integration of simulation with other planning, analysis
scheduling and control applications can be accomplish
through the creation of modular, object-oriented Java cla
libraries that can be easily added and modified to wo
with existing Java-based simulation classes.

7 SUMMARY

How many models of systems similar to those alread
simulated are started each day around the world? H
many of those previously completed models are discarde
How many developers can use portions of previous mod
created 10 years ago using the current version of t

Kilgore, Healy and Kleindorfer

ow
ula
int
od
n
 ca
os
ted
tio
nd

av
e a
ter

nd

 th
th
so
ute
e
 o

 o

nt
a,
n

ed

lk

.

:
ted

d

ere

on-
his
ity.
ling
s.
rd

ms

lk
He
ell

ial
e-
He
997

r
nce
 and
nd

 in
tate,

he
ent
software being supplied by their software vendor? H
many developers can organize large models into mod
components and package those components
independent files that contain all of the data and meth
needed to describe that portion of the model? And eve
this component can be created, how many developers
share these components with others that have not ch
their brand of simulation software? Eventually, the was
investment in obsolete discrete-event, process simula
software and incompatible models will lead to the dema
for new, more efficient and economical approaches.

This paper presented the argument that the J
programming language presents an opportunity to serv
the foundation for the next generation of compu
simulation development in the 21st century. Due to
limitations in existing programming languages a
development environments, simulation in the 20th century
has been the product of a single developer managing
assembly of a single software element that models
progress of a single entity thread on a single proces
Because of the Java programming language, comp
simulation in the 21st century has the opportunity to be th
product of multiple developers managing the assembly
multiple software elements that model the progress
multiple entity threads on multiple processors.

REFERENCES

Buss, A. H. and K. A. Stork. 1996. Discrete-Eve
Simulation on the World Wide Web Using Jav
Proceedings of the 1996 Winter Simulatio
Conference, IEEE, Piscataway, NJ.

Grand, M. 1997. Java Language Reference, 2nd Ed.
O’Reilly & Associates, Inc., Sebastopol, CA.

Healy, K. J. and R. A. Kilgore. 1997. Silk: A Java-Bas
Process Simulation Language. Proceedings of the
1997 Winter Simulation Conference, IEEE,
Piscataway, NJ.

Healy, K. J. and R. A. Kilgore. 1998. Introduction to Si
and Java-Based Simulation. Proceedings of the 1998
Winter Simulation Conference, IEEE, Piscataway, NJ.

Kilgore, R. A. 1998. Introduction to Visual Modeling with
Silk and JavaBeans. ThreadTec, Inc., St. Louis, MO
White paper available at www.threadtec.com.

Kilgore, R., K. Healy and G. B. Kleindorfer. 1998. Silk
Usable and Reusable, Java-Based, Object Orien
Simulation. Proceedings of the 12th European
Simulation Multiconference. Society for Computer
Simulation International, Ghent, Belgium.

Oaks, S. and H. Wong. 1997. Java Threads. O’Reilly &
Associates, Inc., Sebastopol, CA.

Reese, G. 1997. Database Programming with JDBC an
Java. O’Reilly & Associates, Inc., Sebastopol, CA.
1712
r
o
s
if
n

en

n

a
s

e
e
r.
r

f
f

Rothenberg, J. 1986. Object-Oriented Simulation: Wh
Do We Go from Here? Proceedings of the 1988
Winter Simulation Conference. IEEE, Piscataway, NJ.

AUTHOR BIOGRAPHIES

RICHARD A. KILGORE is a partner in ThreadTec
specializing in the design and development of applicati
specific simulation components using Silk. He received
Ph.D. in Management Science from Penn State Univers
He has over 15 years of experience as a mode
consultant to Fortune 500 firms in a variety of industrie
Formerly, he was a capacity-planning analyst with Fo
Motor Co. and Vice-President of Products for Syste
Modeling Corp.

KEVIN J. HEALY is the author of the Java-based Si
simulation language and a partner in ThreadTec.
received his Ph.D. in Operations Research from Corn
University. He was formerly a member of the Indus-tr
Engineering faculty at Purdue University and was Vic
President of Development for Systems Modeling Corp.
was an Associate Editor for the Proceedings of the 1
Winter Simulation Conference.

GEORGE B. KLEINDORFER is an emeritus professo
and former chair in the department of Management Scie
and Information Systems at Penn State. His research
teaching have centered on simulation, control theory a
the philosophy of science. He has taught simulation
business and engineering for three decades. At Penn S
he was named the Alumni Faculty Fellow in 1991, t
most prestigious recognition of teaching accomplishm
at that university.

Java is a registered trademark of Sun Microsystems.
Silk is a registered trademark of ThreadTec, Inc.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

