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ABSTRACT

This paper discusses validation and verification of simulation
models. The different approaches to deciding model validity
are presented; how model validation and verification relate

A model should be developed for a specific purpose
(or application) and its validity determined with respect to
that purpose. If the purpose of a model is to answer a
variety of questions, the validity of the model needs to be
determined with respect to each question. Numerous sets of

to the model development process are discussed; variousexperimental conditions are usually required to define the

validation techniques are defined; conceptual model validity,
model verification, operational validity, and data validity

domain of a model’s intended applicability. A model may
be valid for one set of experimental conditions and invalid in

are described; ways to document results are given; and a another. Amodelis considered valid for a set of experimental

recommended procedure is presented.

1 INTRODUCTION

Simulation models are increasingly being used in problem
solving and in decision making. The developers and users
of these models, the decision makers using information
derived from the results of the models, and people affected by
decisions based on such models are all rightly concerned with
whether a model and its results are “correct.” This concernis
addressed through model validation and verification. Model
validation is usually defined to mean “substantiation that
a computerized model within its domain of applicability

conditions if its accuracy is within its acceptable range,
which is the amount of accuracy required for the model’s
intended purpose. This usualtgquiresthat the model’s
output variables of interest (i.e., the model variables used in
answering the questions that the model is being developed
to answer) be identified and that their required amount of
accuracy be specified. The amount of accuracy required
should be specified prior to starting the development of the
model or very early in the model development process. If
the variables of interest are random variables, then properties
and functions of the random variables such as means and
variances are usually what is of primary interest and are what
is used in determining model validity. Several versions of a

possesses a satisfactory range of accuracy consistent with thenodel are usually developed prior to obtaining a satisfactory

intended application of the model” (Schlesinger et al. 1979)
and is the definition used here. Model verification is often
defined as “ensuring that the computer program of the
computerized model and its implementation are correct,”
and is the definition adopted here. A model sometimes
becomes accredited through model accreditation. Model
accreditation determines if a model satisfies a specified
model accreditation criteria according to a specified process.
A related topic is model credibility. Model credibility

is concerned with developing the confidence needed by
(potential) users in a model and in the information derived
from the model that they are willing to use the model and
the derived information.

*This paper is a modified version of Sargent (1998).
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valid model. The substantiation that a model is valid, i.e.,
model verification and validation, is generally considered to
be a process and is usually part of the model development
process.

It is often too costly and time consuming to determine
that a model isabsolutelyvalid over the complete domain
of its intended applicability. Instead, tests and evaluations
are conducted until sufficient confidence is obtained that a
model can be considered valid for its intended application
(Sargent 1982, 1984 and Shannon 1975). The relationships
of cost (a similar relationship holds for the amount of
time) of performing model validation and the value of the
model to the user as a function of model confidence are
illustrated in Figure 1. The cost of model validation is
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developed, this author believes that usually a third party

Value Value should evaluate only the verification and validation that has
Cost Mgfdel already been performed. N _

Cost 0 _ T_he last approach for determining whether a model is

User valid is to use a scoring model (see, e.g., Balci 1989, Gass
1993, and Gass and Joel 1987). Scores (or weights) are

0% Mode Confidence  100% determined subjectively when conducting various aspects

of the validation process and then combined to determine

Figure 1: Model Confidence category scores and an overall score for the simulation

model. A simulation model is considered valid if its overall
usually quite significant, particularly when extremely high and category scores are greater than some passing score(s).
model confidence is required. This approach is infrequently used in practice.

The remainder of this paper is organized as follows: This author does not believe in the use of a scoring model
Section 2 discusses the basic approaches used in decid-for determining validity because (1) the subjectiveness of
ing model validity; Section 3 defines validation techniques; this approach tends to be hidden and thus appears to be
Sections 4, 5, 6, and 7 contain descriptions of data validity, objective, (2) the passing scores must be decided in some
conceptual model validity, model verification, and opera- (usually subjective) way, (3) a model may receive a passing
tional validity, respectively; Section 8 describes ways of score and yet have a defect that needs correction, and (4)
presenting results; Section 9 gives a recommended valida- the score(s) may cause overconfidence in a model or be

tion procedure; and Section 10 contains the summary. used to argue that one model is better than another.
We now discuss how model validation and verification
2 VALIDATION PROCESS relate to the model development process. There are two

common ways to view this relationship. One way uses

Three basic approaches are used in deciding whether asome type of detailed model development process, and the
simulation model is valid or invalid. Each of the approaches other uses some type of simple model development process.
requires the model development team to conduct validation Banks, Gerstein, and Searles (1988) reviewed work using
and verification as part of the model development process, both of these ways and concluded that the simple way more
which is discussed below. The most common approach is clearly illuminates model validation and verification. This
for the development team to make the decision as to whether author recommends the use of a simple way (see, e.g.,
the model is valid. This is a subjective decision based on Sargent 1981 and Sargent 1982), which is presented next.
the results of the various tests and evaluations conducted Consider the simplified version of the modeling pro-
as part of the model development process. cess in Figure 2. Theroblem entityis the system (real

Another approach, often called “independent verifica- or proposed), idea, situation, policy, or phenomena to be
tion and validation” (IV&V), uses a third (independent) modeled; theconceptual modeis the mathematical/logi-
party to decide whether the model is valid. The third party cal/verbal representation (mimic) of the problem entity de-
is independent of both the model development team and veloped for a particular study; and themputerized model
the model sponsor/user(s). After the model is developed, is the conceptual model implemented on a computer. The
the third party conducts an evaluation to determine its va- conceptual model is developed througheaalysis and mod-
lidity. Based upon this validation, the third party makes eling phasgthe computerized model is developed through
a subjective decision on the validity of the model. This a computer programming and implementation phaased
approach is usually used when a large cost is associatedinferences about the problem entity are obtained by con-
with the problem the simulation model is being used for ducting computer experiments on the computerized model
and/or to help in model credibility. (A third party is also in the experimentation phase
usually used for model accreditation.) We now relate model validation and verification to this

The evaluation performed in the IV&V approach simplified version of the modeling process (see Figure 2).
ranges from simply reviewing the verification and validation Conceptual model validitis defined as determining that the
conducted by the model development team to a complete theories and assumptions underlying the conceptual model
verification and validation effort. Wood (1986) describes are correct and that the model representation of the problem
experiences over this range of evaluation by a third party entity is “reasonable” for the intended purpose of the model.
on energy models. One conclusion that Wood makes is Computerized model verificatios defined as ensuring that
that a complete IV&V evaluation is extremely costly and the computer programming and implementation of the con-
time consuming for what is obtained. This author’'s view ceptual model is correctOperational validityis defined
is that if a third party is used, it should kauring the as determining that the model’s output behavior has suffi-
model development process. If the model has already been cient accuracy for the model’s intended purpose over the
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Figure 2: Simplified Version of the Modeling Process

domain of the model’s intended applicabilitiata validity

known results of analytic models, and (2) the simulation
model may be compared to other simulation models that
have been validated.

Degenerate TestsThe degeneracy of the model’s be-
havior is tested by appropriate selection of values of the
input and internal parameters. For example, does the av-
erage number in the queue of a single server continue to
increase with respect to time when the arrival rate is larger
than the service rate?

Event Validity: The “events” of occurrences of the
simulation model are compared to those of the real system
to determine if they are similar. An example of events is
deaths in a fire department simulation.

Extreme Condition Tests:;The model structure and
output should be plausible for any extreme and unlikely
combination of levels of factors in the system; e.g., if in-
process inventories are zero, production output should be
zero.

Face Validity: “Face validity” is asking people knowl-
edgeable about the system whether the model and/or its

is defined as ensuring that the data necessary for model behavior are reasonable. This technique can be used in

building, model evaluation and testing, and conducting the
model experiments to solve the problem are adequate an
correct.

Several versions of a model are usually developed in
the modeling process prior to obtaining a satisfactory valid
model. During each model iteration, model validation and
verification are performed (Sargent 1984). A variety of
(validation) techniques are used, which are described below.
No algorithm or procedure exists to select which techniques
to use. Some attributes that affect which techniques to use
are discussed in Sargent (1984).

3 VALIDATION TECHNIQUES

This section describes various validation techniques (and
tests) used in model validation and verification. Most of
the technigues described here are found in the literature, al-
though some may be described slightly differently. They can
be used either subjectively or objectively. By “objectively,”
we mean using some type of statistical test or mathematical

procedure, e.g., hypothesis tests and confidence intervals.

A combination of techniques is generally used. These tech-
nigues are used for validating and verifying the submodels
and overall model.

Animation: The model’'s operational behavior is dis-
played graphically as the model moves through time. For
example, the movements of parts through a factory during
a simulation are shown graphically.

Comparison to Other ModelsVarious results (e.g.,
outputs) of the simulation model being validated are com-
pared to results of other (valid) models. For example, (1)
simple cases of a simulation model may be compared to

41

determining if the logic in the conceptual model is correct

dand if a model’s input-output relationships are reasonable.

Fixed Values:Fixed values (e.g., constants) are used for
various model input and internal variables and parameters.
This should allow the checking of model results against
easily calculated values.

Historical Data Validation: If historical data exist (or
if data are collected on a system for building or testing the
model), part of the data is used to build the model and
the remaining data are used to determine (test) whether the
model behaves as the system does. (Thistesting is conducted
by driving the simulation model with either samples from
distributions or traces (Balci and Sargent 1982a, 1982b,
1984b).)

Historical Methods: The three historical methods of
validation arerationalism, empiricism and positive eco-
nomics. Rationalism assumes that everyone knows whether
the underlying assumptions of a model are true. Logic
deductions are used from these assumptions to develop the
correct (valid) model. Empiricism requires every assump-
tion and outcome to be empirically validated. Positive
economics requires only that the model be able to predict
the future and is not concerned with a model's assumptions
or structure (causal relationships or mechanism).

Internal Validity: Several replications (runs) of a sto-
chastic model are made to determine the amount of (internal)
stochastic variability in the model. A high amount of
variability (lack of consistency) may cause the model’s
results to be questionable and, if typical of the problem
entity, may question the appropriateness of the policy or
system being investigated.

Multistage Validation:Naylor and Finger (1967) pro-
posed combining the three historical methods of rationalism,
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empiricism, and positive economics into a multistage pro- In addition, behavioral data is needed on the problem entity
cess of validation. This validation method consists of (1) to be used in the operational validity step of comparing
developing the model’s assumptions on theory, observations, the problem entity’s behavior with the model’'s behavior.
general knowledge, and function, (2) validating the model's (Usually, these data are system input/output data.) If these
assumptions where possible by empirically testing them, data are not available, high model confidence usually cannot
and (3) comparing (testing) the input-output relationships be obtained, because sufficient operational validity cannot
of the model to the real system. be achieved.

Operational Graphics:Values of various performance The concern with data is that appropriate, accurate,
measures, e.g., number in queue and percentage of serverand sufficient data are available, and if any data transforma-
busy, are shown graphically as the model moves through tions are made, such as disaggregation, they are correctly
time; i.e., the dynamic behaviors of performance indicators performed. Unfortunately, there is not much that can be
are visually displayed as the simulation model moves through done to ensure that the data are correct. The best that can
time. be done is to develop good procedures for collecting and

Parameter Variability—Sensitivity Analysighis tech- maintaining it, test the collected data using techniques such
nigue consists of changing the values of the input and as internal consistency checks, and screen for outliers and
internal parameters of a model to determine the effect upon determine if they are correct. If the amount of data is large,

the model’s behavior and its output. The same relationships a data base should be developed and maintained.

should occur in the model as in the real system. Those

parameters that are sensitive, i.e., cause significant changess CONCEPTUAL MODEL VALIDATION

in the model’s behavior or output, should be made suffi-
ciently accurate prior to using the model. (This may require
iterations in model development.)

Predictive Validation: The model is used to predict

Conceptual model validity is determining that (1) the theo-
ries and assumptions underlying the conceptual model are
correct, and (2) the model representation of the problem

(forecast) the system behavior, and then comparisons areentity and the model’s structure, logic, and mathematical
made between the system’s behavior and the model’s forecastand causal relationships are “reasonable” for the intended
to determine if they are the same. The system data may comepurpose of the model. The theories and assumptions under-

from an operational system or from experiments performed
on the system. e.g., field tests.

Traces: The behavior of different types of specific
entities in the model are traced (followed) through the
model to determine if the model’s logic is correct and if
the necessary accuracy is obtained.

Turing Tests: People who are knowledgeable about
the operations of a system are asked if they can discrimi-

lying the model should be tested using mathematical analysis
and statistical methods on problem entity data. Examples
of theories and assumptions are linearity, independence,
stationary, and Poisson arrivals. Examples of applicable
statistical methods are fitting distributions to data, estimat-
ing parameter values from the data, and plotting the data
to determine if they are stationary. In addition, all theo-

ries used should be reviewed to ensure they were applied

nate between system and model outputs. (Schruben (1980)correctly; for example, if a Markov chain is used, does the

contains statistical tests for use with Turing tests.)
4 DATA VALIDITY
Even though data validity is often not considered to be

part of model validation, we discuss it because it is usually
difficult, time consuming, and costly to obtain sufficient,

system have the Markov property, and are the states and
transition probabilities correct?

Next, each submodel and the overall model must be
evaluated to determine if they are reasonable and correct
for the intended purpose of the model. This should include
determining if the appropriate detail and aggregate rela-
tionships have been used for the model’s intended purpose,

accurate, and appropriate data, and is frequently the reasonand if the appropriate structure, logic, and mathematical and

that attempts to validate a model fail. Data are needed
for three purposes: for building the conceptual model, for
validating the model, and for performing experiments with

the validated model. In model validation we are concerned
only with the first two types of data.

To build a conceptual model we must have sufficient
data on the problem entity to develop theories that can
be used to build the model, to develop the mathematical
and logical relationships in the model that will allow it to
adequately represent the problem identity for its intended

purpose, and to test the model’s underlying assumptions.
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causal relationships have been used. The primary validation
techniques used for these evaluations are face validation and
traces. Face validation has experts on the problem entity
evaluate the conceptual model to determine if it is correct and
reasonable for its purpose. This usually requires examining
the flowchart or graphical model, or the set of model equa-
tions. The use of traces is the tracking of entities through
each submodel and the overall model to determine if the
logic is correct and if the necessary accuracy is maintained.
If errors are found in the conceptual model, it must be
revised and conceptual model validation performed again.
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6 MODEL VERIFICATION errors may be caused by the data, the conceptual model,
the computer program, or the computer implementation.
Computerized model verification ensures that the computer For a more detailed discussion on model verification,

programming and implementation of the conceptual model see Whitner and Balci (1989).
are correct. The major factor effecting verification is whether
a simulation language or a higher level programming lan- 7 OPERATIONAL VALIDITY
guage such as FORTRAN, C, or C++ is used. The use of
a special-purpose simulation language generally will result Operational validity is concerned with determining that the
in having fewer errors than if a general-purpose simulation model’s output behavior has the accuracy required for the
language is used, and using a general purpose simulationmodel’'s intended purpose over the domain of its intended
language will generally result in having fewer errors than if applicability. This is where most of the validation testing
a general purpose higher level language is used. (The use ofand evaluation takes place. The computerized model is used
a simulation language also usually reduces the programming in operational validity, and thus any deficiencies found may
time required and the flexibility.) be due to an inadequate conceptual model, an improperly
When a simulation language is used, verification is programmed or implemented conceptual model (e.g., due
primarily concerned with ensuring that an error free simu- to programming errors or insufficient numerical accuracy),
lation language has been used, the simulation language hasor due to invalid data.
been properly implemented on the computer, that a tested All of the validation techniques discussed in Section 3
(for correctness) pseudo random number generator has beerare applicable to operational validity. Which techniques and
properly implemented, and that the model has been pro- whether to use them objectively or subjectively must be de-
grammed correctly in the simulation language. The primary cided by the model development team and other interested
techniques used to determine that the model has been pro-parties. The major attribute affecting operational validity
grammed correctly are structured walk-throughs and traces. is whether the problem entity (or system) is observable,
If a higher level language has been used, then the where observable means it is possible to collect data on
computer program should have been designed, developed,the operational behavior of the program entity. Table 1
and implemented using techniques found in software engi- gives a classification of the validation approaches for op-
neering. (These include such techniques as object-oriented erational validity. “Comparison” means comparing/testing
design, structured programming, and program modularity.) the model and system input-out behaviors, and “explore
In this case verification is primarily concerned with deter- model behavior” means to examine the output behavior
mining that the simulation functions (such as the time-flow of the model using appropriate validation techniques and
mechanism, pseudo random number generator, and ran-usually includes parameter variability-sensitivity analysis.
dom variate generators) and the computer model have beenVarious sets of experimental conditions from the domain of
programmed and implemented correctly. the model’s intended applicability should be used for both
There are two basic approaches for testing simula- comparison and exploring model behavior.
tion software: static testing and dynamic testing (Fairley To obtain ahigh degree of confidence in a model and
1976). In static testing the computer program is analyzed its results, comparisons of the model’'s and system’s input-
to determine if it is correct by using such techniques as output behaviors for several different sets of experimental
structured walk-throughs, correctness proofs, and examin- conditions are usually required. There are three basic com-
ing the structure properties of the program. In dynamic parisonapproachesused: (1) graphs ofthe model and system
testing the computer program is executed under different behavior data, (2) confidence intervals, and (3) hypothesis
conditions and the values obtained (including those gen-

erated during the execution) are used to determine if the Table 1: Operational Validity Classification
computer program and its implementations are correct. The OBSERVABLE NON.OBSERVABLE
techniques commonly used in dynamic testing are traces, SYSTEM SYSTEM

investigations of input-output relations using different val-
idation techniques, internal consistency checks, and repro-  sUBJECTIVE « COMPARISON USING s EXPLORE

gramming critical components to determine if the same APPROACH ESS@D;&CAAABSE'S[PLAYS ccl;ﬂn?gAEF;s%ENH%OR
results are optained. If there are a large n.umber of vari- * “BEHAVIOR * "OTHER MODELS
ables, one might aggregate some of the variables to reduce
the number of tests needed or use certain types of design  ogsecTive « comparison + COMPARISON
of experiments (Kleijnen 1987). APPROACH USING TO OTHER
. . . STATISTICAL MODELS USING
It is necessary to be aware whlle_ checkmg the correct- TESTS AND STATISTICAL
ness of the computer program and its implementation that PROCEDURES TESTS AND
PROCEDURES
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tests. Graphs are the most commonly used approach, and
confidence intervals are next.

7.1 Graphical Comparison of Data

The behavior data of the model and the system are graphed
for various sets of experimental conditions to determine
if the model's output behavior has sufficient accuracy for
its intended purpose. Three types of graphs are used:
histograms, box (and whisker) plots, and behavior graphs
using scatter plots. (See Sargent (1996a) for a thorough
discussion on the use of these for model validation.) An
example of a box plot is given in Figure 3, and examples
of behavior graphs are shown in Figures 4 and 5. A variety
of graphs using different types of (1) measures such as the
mean, variance, maximum, distribution, and time series of
a variable, and (2) relationships between two measures of a
single variable (see Figure 4) and between measures of two
variables (see Figure 5) are required. It is important that
appropriate measures and relationships be used in validating
a model and that they be determined with respect to the
model’sintended purpose. See Anderson and Sargent (1974)
for an example of a set of graphs used in the validation of
a simulation model.

These graphs can be used in model validation in different
ways. First, the model development team can use the graphs
in the model development process to make a subjective
judgment on whether a model possesses sufficient accuracy
forits intended purpose. Second, they can be used in the face
validity technique where experts are asked to make subjective
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7.2 Confidence Intervals

Confidence intervals (c.i.), simultaneous confidence inter-
vals (s.c.i.), and joint confidence regions (j.c.r.) can be
obtained for the differences between the means, variances,
and distributions of different model and system output vari-
ables for each set of experimental conditions. These c.i.,
s.c.i.,, and j.c.r. can be used as the model range of accuracy
for model validation.
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To construct the model range of accuracy, a statistical
procedure containing a statistical technique and a method
of data collection must be developed for each set of exper-
imental conditions and for each variable of interest. The
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statistical techniques used can be divided into two groups:
(1) univariate statistical techniques, and (2) multivariate sta-
tistical techniques. The univariate techniques can be used
to develop c.i., and with the use of the Bonferroni inequality
(Law and Kelton 1991), s.c.i. The multivariate techniques
can be used to develop s.c.i. and j.c.r. Both parametric and
nonparametric techniques can be used.

The method of data collection must satisfy the underly-
ing assumptions of the statistical technique being used. The
standard statistical techniques and data collection methods
used in simulation output analysis (Banks, Carson, and Nel-
son 1996, Law and Kelton 1991) can be used for developing
the model range of accuracy, e.g., the methods of replication
and (nonoverlapping) batch means.

It is usually desirable to construct the model range of
accuracy with the lengths of the c.i. and s.c.i. and the sizes
of the j.c.r. as small as possible. The shorter the lengths or
the smaller the sizes, the more useful and meaningful the
model range of accuracy will usually be. The lengths and
the sizes (1) are affected by the values of confidence levels,
variances of the model and system output variables, and

I, «, is calledmodel builder’s risk and the probability of
the type Il error,B, is calledmodel user’s riskBalci and
Sargent 1981). In model validation, the model user’s risk
is extremely important and must be kept small. Thosh
type | and type Il errors must be carefully considered when
using hypothesis testing for model validation.

The amount of agreement between a model and a system
can be measured by a validity measurgwhich is chosen
such that the model accuracy or the amount of agreement
between the model and the system decreases as the value
of the validity measure increases. The acceptable range of
accuracy can be used to determine an acceptable validity
range,0 < A <A™,

The probability of acceptance of a model being valid,
P,, can be examined as a function of the validity measure by
using an Operating Characteristic Curve (Johnson 1994).
Figure 6 contains three different operating characteristic
curves to illustrate how the sample size of observations
affect P, as a function of.. As can be seen, an inaccurate
model has a high probability of being accepted if a small
sample size of observations is used, and an accurate model

sample sizes, and (2) can be made smaller by decreasing thehas a low probability of being accepted if a large sample

confidence levels or increasing the sample sizes. A tradeoff

size of observations is used.

needs to be made among the sample sizes, confidence levels,

and estimates of the length or sizes of the model range of
accuracy, i.e., c.i., s.c.i., or j.c.r. Tradeoff curves can be
constructed to aid in the tradeoff analysis.

Details on the use of c.i., s.c.i., and j.c.r. for operational
validity, including a general methodology, are contained in
Balci and Sargent (1984b). A brief discussion on the use
of c.i. for model validation is also contained in Law and
Kelton (1991).

7.3 Hypothesis Tests

Hypothesis tests can be used in the comparison of means,
variances, distributions, and time series of the output vari-
ables of a model and a system for each set of experimental
conditions to determine if the model’'s output behavior has
an acceptable range of accuracy. An acceptable range of
accuracy is the amount of accuracy that is required of a
model to be valid for its intended purpose.

The first step in hypothesis testing is to state the hy-
potheses to be tested:

Ho: Model is valid for the acceptable range of accuracy
under the set of experimental conditions.

Hiy: Model is invalid for the acceptable range of accuracy
under the set of experimental conditions.

Two types of errors are possible in testing hypotheses.
The first, or type | error, is rejecting the validity of a valid
model and the second, or type Il error, is accepting the
validity of an invalid model. The probability of a type error
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The location and shape of the operating characteristic
curves are a function of the statistical technique being used,
the value ofx chosen foi. = 0, i.e.,a™, and the sample size
of observations. Once the operating characteristic curves
are constructed, the intervals for the model user’s giék)
and the model builders risk can be determined for a given
A* as follows:

o® < model builder’s riske < (1 — %)
0 < model user’s riskB(1) < B*.

Thus there is a direct relationship among the builder’s risk,
model user’s risk, acceptable validity range, and the sample
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size of observations. A tradeoff among these must be made 9
in using hypothesis tests in model validation.

Details of the methodology for using hypothesis tests in  This author recommends that, as a minimum, the following

RECOMMENDED PROCEDURE

comparing the model’'s and system’s output data for model steps be performed in model validation:

validations are given in Balci and Sargent (1981). Examples
of the application of this methodology in the testing of output
means for model validation are given in Balci and Sargent
(198243, 1982b, 1983). Also, see Banks et al. (1996).

8 DOCUMENTATION

Documentation on model verification and validation is usu-
ally critical in convincing users of the “correctness” of a
model and its results, and should be included in the simu-
lation model documentation. (For a general discussion on
documentation of computer-based models, see Gass (1984).)
Both detailed and summary documentation are desired. The
detailed documentation should include specifics on the tests,
evaluations made, data, results, etc. The summary docu-
mentation should contain a separate evaluation table for data
validity, conceptual model validity, computer model verifi-
cation, operational validity, and an overall summary. See
Table 2 for an example of an evaluation table of conceptual
model validity. (See Sargent (1994, 1996b) for examples
of two of the other evaluation tables.) The columns of the
table are self-explanatory except for the last column, which
refers to the confidence the evaluators have in the results
or conclusions, and this is often expressed as low, medium,
or high.

1.

Have an agreement maggor to developing
the model between (a) the model development
team and (b) the model sponsors and (if possi-
ble) the users, specifying the basic validation
approach and a minimum set of specific vali-
dation techniques to be used in the validation
process.

Specify the amount of accuracy required of
the model’s output variables of interest for the
model’s intended application prior to starting
the development of the model or very early in
the model development process.

Test, wherever possible, the assumptions and
theories underlying the model.

In each model iteration, perform at least face
validity on the conceptual model.

In each model iteration, at least explore the
model's behavior using the computerized
model.

In at least the last model iteration, make com-
parisons, if possible, between the model and
system behavior (output) data for several sets
of experimental conditions.

Develop validation documentation for inclu-
sion in the simulation model documentation.
If the model is to be used over a period of
time, develop a schedule for periodic review
of the model’s validity.

Table 2: Evaluation Table for Conceptual Model Validity

Category/ltem | Technique(s) Justification for | Reference to Result/ Confidence
Used Technique Used Supporting Reporf Conclusion| In Result
e Theories e Face validity
e Assumptions | e Historical
e Model e Accepted
representation  approach
e Derived from
empirical data
e Theoretical
derivation
Strengths
Weaknesses
Overall evaluation for Overall Justification for Confidence
Computer Model Verification Conclusion Conclusion In Conclusion
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Validation and Verification of Simulation Models

Models occasionally are developed to be used more Balci, O. and R. G. Sargent. 1984b. Validation of Simu-

than once. A procedure for reviewing the validity of these

models over their life cycles needs to be developed, as
specified by step 8. No general procedure can be given, as

each situation is different. For example, if no data were
available on the system when a model was initially developed
and validated, then revalidation of the model should take

lation Models via Simultaneous Confidence Intervals,
American Journal of Mathematical and Management
Science4, 3, pp. 375-406.

Banks, J., J. S. Carson I, and B. L. Nelson. 19B@screte-
Event System Simulatip@nd Ed., Prentice-Hall, En-
glewood Cliffs, N.J.

place prior to each usage of the model if new data or system Banks, J., D. Gerstein, and S. P. Searles. 1988. Model-

understanding has occurred since its last validation.
10 SUMMARY

Model validation and verification are critical in the devel-
opment of a simulation model. Unfortunately, there is no

set of specific tests that can easily be applied to determine

the “correctness” of the model. Furthermore, no algorithm

exists to determine what techniques or procedures to use.
Every new simulation project presents a new and unique

challenge.

There is considerable literature on verification and val-
idation. Articles given in the limited bibliography can
be used as a starting point for furthering your knowl-
edge on model verification and validation. For a fairly
recent bibliography, see the following UHL on the WWW:
http://manta.cs.vt.edu/biblio/.
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