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ABSTRACT

In this paper, we describe and discuss alternative in
models for the coefficients in synthetic optimizatio
problems.  Synthetic, or randomly generated, problems 
often used in computational studies to establish t
efficacy of solution methods or to facilitate comparativ
evaluations of solution methods.  The selection of an inp
model for the coefficients in synthetic optimization
problems is important because such a selection may af
the outcome of a computational study.  Understanding h
an assumed input model affects the characteristics of 
problems can assist researchers in their efforts 
accurately quantify and interpret the performance 
solution methods.

1 INTRODUCTION

When conducting a computational experiment wi
solution methods for optimization problems, a research
has to decide on which test problems will be used.  So
options are to use real-world test problems, perturbatio
of real-world test problems, or synthetic test problems. In
simulation context, we can think of these options 
corresponding to the use of empirical distributions, fitte
empirical distributions, and theoretical distributions
respectively. Another option is to use standard libraries
test problems. The experimenter’s decision on test probl
selection can affect the inferences that may be drawn fr
the results of the computational experiment.

Each option for test problem selection has its pros a
cons.  For instance, the use of real-world test problems 
the advantage of providing results consistent with tho
for, at least some, example problems encountered 
practice. The principal disadvantage is that there may 
be a sizable set of such problems to constitute 
satisfactory experiment.

Perturbations of real-world examples provide a larg
sample space from which to draw test problems.  Howev
the variability across test problems may not adequat
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represent the variability among practical proble
instances.

Libraries of standard test problems can facilita
comparisons across computational studies.  However,
inference space is limited to the problems contained in 
library.

Synthetic test problem generators offer a virtua
infinite supply of test problems.  Any number of te
problems with specified sizes and properties may 
generated. A shortcoming of these generators is that
problems that they generate may bear little resemblanc
problems encountered in practice.  The selection of 
appropriate input model can alleviate this concern, at le
to a certain extent.

This paper focuses on input models for synthe
optimization problems that are featured in research pap
Broadly speaking, these problem-generation methods m
be classified as independent sampling, implicit correlat
induction, and explicit correlation induction.

The paper is organized as follows. For convenien
we define the 0-1 Knapsack Problem, which we u
throughout the paper as an example class of optimiza
problems, in §2. We describe and discuss each of th
classes of problem-generations methods, or input mod
in §3, 4, and 5, respectively. In §6, we discuss implicatio
of input model selection on the conduct and results
computational experiments. Finally, we list open resea
questions related to input modeling for synthe
optimization problems in §7.

2 0-1 KNAPSACK PROBLEM

We define the 0-1 Knapsack Problem (KP01) as follows:

Maximize  

Subject to  
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where all cj > 0 , all a j > 0 , c bj
j

∑ > , and

max j ja b{ } ≤ .  We assume that the cj s  are i.i.d.

realizations of some random variable C  and that the a j s

are i.i.d. realizations of some random variable A . Some
rule for setting the value of b would have to be specified
before any instance could be completely generated. For
purpose, such a rule need not be specified.

KP01 is a classical optimization problem for whic
many solution procedures have been devised.  We use 
the basis for our discussion of input models for synthe
optimization problems because of its relatively simp
form. Certainly, other optimization problems besides KP
could be used for this purpose.

3 INDEPENDENT SAMPLING

Almost every computational study on synthet
optimization problems includes some test problems that
generated under independent sampling. Typically, 
discrete uniform distribution is assumed for the values
each type of coefficients. Then, coefficient values a
generated independently for each coefficient type until 
of the needed coefficients are generated.

Let α and β be positive integers. We now present
procedure for generating KP01 coefficients und
independent sampling.

Procedure GENER8

1. }.,,2,1{~ αëUAa j ←
2. }.,,2,1{~ βëUCc j ←

Independent sampling is certainly easy to impleme
Under this implementation of independent sampling, ev
possible KP01 test problem, or combination of coefficie
values, is equally likely. The expected correlation betwe
coefficient types (in this case, objective and constra
coefficients) is zero. But due to sampling error, the sam
correlation between the coefficient types is not likely to 
zero. The number of decision variables in the test proble
will affect the distribution of sample correlation value
The larger the test problems, the less dispersed the sa
correlation values are likely to be. As the size of the t
problems is increased, it will become increasingly rare
find a test problem with even modest correlation betwe
the coefficient types (Reilly 1993).

We would not expect that coefficient types in practic
instances of KP01 or many other optimization proble
would be uncorrelated, let alone independent. For exam
consider a set covering problem in which warehouse s
are to be selected so that some collection of markets 
be served at minimum cost.  In such a case, we wo
expect that the cost to build and/or maintain a warehous
117
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a particular site would be directly related to the number o
markets that could be served from that site.

Furthermore, as the size of the test problems 
increased, the coefficients in test problems generated und
independent sampling will be increasingly likely to pas
tests of independence. Often, researchers will include lar
test problems in their experiments, and doing so affects t
variety of the test problems that may be generated, at le
in terms of the correlation between coefficient types. Eve
though there is a tendency to try to solve larger and larg
test problems, we see that doing so with problem
generated under independent sampling yields test proble
that become more and more alike and unrealistic. Whe
considered collectively, these larger test problem
represent a smaller portion of the set of all possible te
problems.

Conducting a computational study only on tes
problems generated under independent sampling is like
to produce results consistent with the median performan
of the solution method(s) being considered. So that we m
get a sense of the range of performance by a soluti
method, test problems should not be limited to those who
coefficients are generated independently.

4 IMPLICIT CORRELATION INDUCTION

It has been suggested that correlation among coefficie
types in synthetic optimization problems can affec
solution procedure performance in computationa
experiments, and consequently, correlation ought to be 
experimental factor is such experiments. The convention
wisdom is that an extreme level of correlation between ke
types of coefficients can produce very challenging te
problems. For some problems (such as KP01, S
Covering, Multidimensional Knapsack), strong positive
correlation is associated with difficult problem instances
For other problems (such as Generalized Assignmen
strong negative correlation is thought to make a proble
instance more challenging.

Many researchers include test problems in whic
correlation is induced between certain types of coefficien
in an effort to create more challenging test problems and/
to produce test problems that are more like instances th
might be encountered in practice.

When test problems are generated under implic
correlation induction (ICI), parameters for a problem
generation method are specified. The values specified f
these parameters imply some population correlatio
structure between coefficient types.

Unfortunately, the implied correlation levels are no
normally quantified in any of the papers in which ICI
methods are utilized. Rather, computational results fo
problems generated under ICI are compared to the resu
for problems generated under independent sampling. Ev
when different sets of parameter values are specified for 
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ICI method, the test problems generated under ICI a
sometimes considered collectively when the results a
analyzed.

Calculating correlation levels induced under IC
methods is not difficult. Instead of quantifying the induce
correlation levels, qualitative labels are used to distinguis
the various of levels of correlation induced. Reilly (1997
provides closed form expressions for the correlation leve
induced under ICI methods for some classical optimizatio
problems.

Perhaps the most commonly used form of ICI wa
introduced by Martello and Toth (1979) for KP01.
Additional examples of the use of ICI to generate KP0
instances include Balas and Zemel (1980), Martello an
Toth (1988, 1997), Pisinger (1997), and Martello, Pisinge
and Toth (1999).

Similar ICI methods have been used to genera
instances of Multidimensional Knapsack Problems (Bala
and Martin, 1980; Fréville and Plateau 1994, 1996), S
Covering Problems (Rushmeier and Nemhauser 1993) a
Generalized Assignment Problems (Martello and Tot
1981; Amini and Racer 1994).

Let α be a positive integer, and let δ and γ be
nonnegative integers.  In order to generate coefficients f
a KP01 instance with ICI, we might use the following
procedure.

Procedure ICI

1. },...,2,1{~ αUAa j ← .

2. }.,...,1,{~ δδδ +−−← UTt j

3. .γ++= jjj tac

With Procedure ICI, the coefficients generated are sa
to be “weakly correlated” if γ=0, “strongly correlated” if
δ=0, and “value independent” if δ=0 and γ=0. When
neither δ nor γ is 0, the coefficients are said to be “almos
strongly correlated”. Reilly (1998) points out that for
typical values of these parameters, the induced correlati
is over 0.97 for the weakly correlated coefficients and ve
nearly 1 for the almost strongly correlated coefficients
With value independent problems and strongly correlate
coefficients, the induced correlation is perfect.

Reilly (1998a) shows that, under Procedure ICI,

.
1)1(4

1
),(Corr

2

2

−++
−=
δδα

α
CA

It is unfortunate that correlation levels are apparent
not quantified by the researchers who implement IC
problem-generation methods. The computational resu
reported for different classes of KP01 instances sugge
that the performance of solution methods may b
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significantly affected by relatively minor changes in th
correlation level. This observation underscores th
importance of selecting an input model for computation
experiments and of understanding what properties t
resulting test problems will have.

Other types of ICI methods of KP01 include
“uncorrelated coefficients with similar weights” (see, e.g
Martello and Toth, 1997) and “inversely strongly
correlated coefficients” (see, e.g., Martello, Pisinger, an
Toth 1999).

ICI methods are effective because they do inde
induce correlation between selected types of coefficients
is not clear that the correlation that is induced is indicativ
of the correlation that would be found among coefficien
in real-world instances. ICI methods are not difficult t
implement.

A serious drawback with ICI methods is that change
in the coefficients’ population correlation structure ar
confounded with the marginal distributions of coefficien
values (Cario et al. 1995; Reilly 1997, 1998).

5 EXPLICIT CORRELATION INDUCTION

An alternative to implicit correlation induction is explicit
correlation induction. Under explicit correlation induction
(ECI), a joint distribution of coefficient values is specified
or marginal distributions of values for each type o
coefficient and a correlation structure are specified. 
either case, the coefficients’ population correlatio
structure is known or may be quantified.

Under ECI, it is easy to control the correlation
structure among coefficient types because the correlat
structure can be varied without affecting the margin
distributions of coefficient values. As a result, the effect o
correlation on solution procedure performance is easier
isolate and measure.

Reilly (1991, 1993) suggests that ECI can be
implemented for KP01 by “mixing” coefficient values
generated under independent sampling with valu
generated based on extreme correlation. (Hill and Rei
1999) extend this idea to multivariate sampling fo
optimization problems with more than two types o
coefficients.)

Let },,2,1{~ αëUA  and },,2,1{~ βëUC . Also, let

Af , AF , and 1−
AF be the mass function, cumulative mas

function, and inverse cumulative distribution function fo

A, respectively. Then, Cf , CF , and 1−
CF are similarly

defined for C.

Let +ρ be the maximum possible correlation betwee

A and C. The minimum possible correlation is then

.+− −= ρρ  If ρ is the desired value of the correlation an

if a value for θ is chosen such that
+− −≤≤− ραβθρραβθ ))/(1())/(1( and )/(10 αβθ ≤≤ ,
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then a composite mass function for (A,C) may be
constructed as follows:

),()(),(),( 0 cfafcagcag CAλλλ ++ −−++

where ),( and ),( cagcag −+  are the maximum- and

minimum-correlation distributions for (A,C), respectively,

and 2/)/1( ++ +−= ρραβθλ , 2/)/1( +− −−= ρραβθλ ,

and .0 αβθλ =
The following procedure may be used to genera

coefficients with explicitly induced correlation:

Procedure ECI

1. Generate )1,0(~Uu .

2. Generate as follows:

(a) If 0λ≤u , generate (a,c) using GENER8.

(b) If ++≤< λλλ 00 u , generate (a,c) based

on ),( cag + .

(c) Otherwise, generate (a,c) based on

),( cag − .

Procedure ECI is not difficult to implement. The
primary advantage of ECI over ICI is that the correlatio
structure among the coefficient types can be controll
systematically in a computational experiment. With th
ECI implementation recommended here, an experimen
also is able to control the entropy of the distribution fo
(A,C) by varying the parameter θ (Peterson and Reilly
1995). (The parameter θ represents the smallest join
probability for any possible value of (A,C). So, by varying
θ, an experimenter can effect changes in entropy.)

Of course, the distribution of coefficient values unde
ECI may not be similar to the distribution of coefficien
values observed for practical problem instance. Howev
the fact that distributional parameters can be systematic
varied and controlled without affecting the margina
distributions of coefficient values is a decided advantage
ECI over ICI.

6 DISCUSSION

Computational experiments are usually conducted so t
the effectiveness of a solution method can be assesse
so that the performances of alternative solution metho
can be compared. There is too little guidance abo
generating synthetic optimization problems available 
researchers who wish to conduct computation
experiments. Hall and Posner (1999) provide some gene
but helpful, guidelines for experimenters.
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It seems that researchers tend to follow the lead 
their predecessors when deciding on what types of te
problems to use. There is clearly some merit to doing s
However, once a particular problem-generation method 
used in one study, it can become the standard approach
generating test problems from a particular class, whethe
generates good sets of test problems or not.

We think that it is unfortunate that input models ar
not examined and understood to the same extent that, s
random number generators are, before they are wide
adopted.

We regret that we may leave the reader with th
impression that correlation is the most significan
distributional factor on solution procedure performance
Correlation is indeed important, but there are othe
distributional factors that can influence performance o
solution methods as well. For example, other factors th
matter include distribution family (Loulou and Michaelides
1979) and the range of coefficient values (Yang 199
Reilly 1998a).

Hooker (1994) advocates the development on a
empirical science of algorithms. By recognizing the
characteristics of synthetic optimization problems an
understanding how those characteristics affect th
performance of solution methods, one can better interp
the results of computational experiments and better ass
the true capabilities and limitations of solution methods.

Cario et al. (1995) conducted a study of the
performance of a general-purpose solver (LINDO) o
Generalized Assignment Problem instances generat
under ICI and ECI. They attempted to facilitate
comparisons of results across the problem-generati
methods by synchronizing some of the parameters of t
distributions of the coefficient values. Based on their wor
it appears that ECI instances are more challenging to so
than the comparable ICI instances are. We know of n
other study that includes instances generated under b
ICI and ECI.

We think that ECI methods offer clear advantages ov
ICI methods, and even more so over independent sampli
This is not to say that we think that ECI, and in particula
the ECI approach we have presented, is the definiti
problem-generation method. Much additional research a
experimentation with synthetic optimization problems i
needed.

7 OPEN QUESTIONS

Interesting open research questions include:

• How should synthetic instances of a given
class of optimization problems be generated?

• What distributions of coefficient values
should be used when generating instances of
a particular class of optimization problem?
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• How do the distribution families and the
parameters of the assumed distributions of
coefficient values affect the performance of
solution methods?

• How should relationships between different
types of coefficients observed in real-world
instances be accounted for in synthetic
optimization problems?

• How can the characteristics of practical
instances of optimization problems be
measured and represented in synthetic
problem instances?

• How should the purposes of a computational
experiment affect the selection of an input
model for the coefficients in synthetic
optimization problems?

• How can we “synchronize” instances of a
particular optimization problem that are
generated with different problem-generation
methods?

• How can we generate instances with
comparable difficulty for different
optimization problems?

• How can the results from computational
studies on synthetic optimization problems be
used to design more effective solution
methods?

• How can we determine in advance the best
way to solve an instance of some
optimization problem?
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