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ABSTRACT

An object-oriented simulation (OOS) consists of a set 
objects that interact with each other over time.  This pa
provides a presentation of OOS design elements 
contrasting OOS with its procedural counterparts. T
elements of component technology is addressed along w
the important issue of composition (components) vers
inheritance that distinguishes object-based from obje
oriented languages.

1 SIMULATION SOFTWARE CHALLENGE

There has been tremendous growth in the capability
computing hardware during the past three decades.  
important question for simulation modelers is how ca
simulation can take full advantage of the computing pow
now available. Software engineering provides part of t
answer.  However, writing software “from scratch” is n
longer advisable since software systems tend to 
complex and several libraries exist for many of th
common functions.  Thus, simulation models need 
include more than computational efficiency if they are 
have wider utility and acceptance in a multi-media, virtu
reality, and graphical interface software world.

Modeling and software have had a symbiot
relationship.  The computer is more than a computatio
engine for simulation algorithms and should be regarded
a tool also for modeling. The technology of simulation 
now a mature and developed methodology.  Although th
is plenty of room for additional research on fundamen
areas (e.g., random number and variate generation, the 
event simulation process, reliable and appropria
statistics), there are now widespread adoptions and us
computer simulation techniques.

However, the real limits on the future adoption o
simulation may rest on our ability to represent compl
systems and to do it easily, which can be construed as 
matter of modeling style. The purpose of this paper is to
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describe ways to improve modeling style – through obje
oriented simulation and to describe the fundamentals
object-oriented simulation.   It is useful, however, to fir
consider the matter of programming style – modeling sty
usually follows programming style.

2 PROCEDURAL STYLE

As long as you can specify statement sequences, de
variables, do branching, perform iteration, and have I/
you can do everything a Turing machine can do which
turn means everything a computer can do.  Thus 
distinction in programming style is not what can and can
be done, but what can be done easily.  However, what 
be done easily may be a matter of judgement.

Early programs were long sequences of label
statements (simulation instructions) where movement 
program control used labels. Ironically, many fairly rece
simulation languages maintain this same approach.

Owing to the repetition of some logical procedure
functions or subprograms were added to programm
languages.  To give these functions generality, argum
lists were added that could change the computation wit
a function from call-to-call.  Using functions to subdivide 
programming problem gave rise to the notion o
“functional decomposition,” which remains today 
popular approach to programming and simulatio
modeling.  In fact, subnetworks are a recent form 
functional decomposition.

GPSS, SLAM, and SIMAN were the simulation
versions of the “library” approach to simulation, but th
libraries were invoked much differently and invisibly to th
user.  Instead of writing general purpose programmi
code, users constructed text files containing a sequenc
simulation “instructions.” This approach provided a high
level of abstraction than programming in a low-leve
language, making it easier to model complex systems.

Simulation language instructions generally have 
direct correspondence to a form of a flowchart (also call
2



Joines and Roberts

t

t
g
.

e
h
b
i

i

s

n

it

L
t
 

o

u
u

t

 

t
a
u

i

d
s
d

e

e

i

a
e
w

le

se
r

e
ed
to

of
ly
no
e
the
of
es
ot

es
s

e.,
n
he

ior
he
el.

at
as
he
in

e of
yet
 to
ng
d
g

ble
y a
set
be
le
m
in
om
ar
network). While such input makes it easy to specify 
simulation, it limits the direct impact the modeler can ha
on the execution of the simulation, since these simula
instructions did not constitute a programming langua
Instead they are generic model templates for simulation

Consequently, many models written in earlier versio
of these languages were highly augmented by gen
programming code containing function calls to t
simulation libraries, since function calls could not 
directly invoked and users could not write functions w
the native simulation instructions.  In particular, Visu
SLAM continues to promote extensive use of programm
“inserts” with Visual Basic and C.

It is important to note that while simulation “language
like GPSS, SLAM, and SIMAN were easy to use, althou
limited, there were more powerful simulation programmi
alternatives.  For example SIM-SCRIPT and SIMULA we
full programming languages with simulation functional
built into the language grammar and syntax.  Using th
languages, users “programmed” the simulation. SIMU
was not widely appreciated at the time as a simula
language but would, in fact, form the basis and motive
much of the modern object-oriented paradigm.

In all cases (except for SIMULA), the style was pr
cedural based.  A problem was decomposed into proced
and either represented by general components, like a q
or represented in programming code with a data struct
and code.  Procedural programming represents toda
fundamental style of programming usually learned in 
first exposure to programming or modeling.

There are several fundamental problems with using
procedural style of modeling and simulation.  Procedu
do not correspond to real world components.  Instead, 
correspond to methods and algorithms.  Therefore 
engaged by entities must be given a context for proced
to be easily specified.  Many simulation contexts are ba
on networks of queues (often complicated queu
situations).  The modeling approach is to let the queu
network create the procedural structure that is traverse
entities.  When this structure is appropriate, as it often i
a manufacturing or communications application, the mo
is a convenient analog to the real system.

However modeling languages are limited wh
confronted with complicated circumstances, such as 
need to code an algorithm that creates a schedule bas
anticipated volume and current use of facilities.  It is th
that the need for general programming manifests its
There is a fundamental difficulty in communicatio
between the simulation code, provided by a simulat
vendor, and user code from a general programm
language.  The only means of communication is gener
through global data exchange or function calls.  Th
mechanisms are vulnerable to inappropriate use and 
dangerously visible to users.
13
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Perhaps the greatest limitation of the procedural sty
is its lack of extensibility.  From the earliest simulation
languages until the early 1990s, the only way to adapt the
simulations was through functional extension.  In othe
words, you could add structural functionality to the
simulation but not alter any of its basic processes, lik
giving properties to resources.  For example, if you need
the simulation to include a bridge crane, you had 
program it completely yourself or model it with the
features available. One of the reasons for this lack 
extensibility was that procedural changes were the on
approach to model changes.  Specifically, vendors had 
way to partially hide implementation details and wer
either forced to give access to source code or restrict 
access to the features. A module or file provided a form 
encapsulation (which more recent simulation languag
call templates or subnetworks), but these collections do n
provide for autonomous objects.

3 OBJECT (COMPONENT) STYLE

It is very easy to describe existing simulation languag
using object terminology.  A simulation language provide
a user with a set of pre-defined object classes (i.
resources, activities, etc.) from which the simulatio
modeler can create needed objects or components. T
modeler declares objects and specifies their behav
through the parameters available.  The integration of all t
objects into a single bundle provides the simulation mod
Component is another word used for object.

Therefore, an object can be described by an entity th
holds both the descriptive attributes of the object as well 
defines its behavior. The class concept evolved out of t
notion of encapsulation, an idea that originated 
SIMULA.  However SIMULA viewed objects as much
more than encapsulation. Objects needed independenc
action and a means to hide their implementation details, 
provide an interface for their use.  Further, there needed
be way to construct objects and to communicate amo
them.  C++ borrowed all these ideas from SIMULA (as di
Smalltalk) and put them into the procedural programmin
language C.   We use C++ to illustrate the object style.

3.1 An Example: Exponential Random Variable

Suppose you are modeling an exponential random varia
in a simulation.  The random variable may be described b
standard exponential statistical distribution, which has a 
of parameters, a mean in this case. This mean would 
considered an attribute of the exponential random variab
component.  It may be important to obtain observations fro
this random variable via sampling. One may want to obta
antithetic samples or to set the random seed. Sampling fr
the exponential random variable defines a particul
behavior.  Behaviors are more often called “methods.”
3
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3.2 Encapsulation

The entity “encapsulates” the properties of the objec
because all of its properties are set within the definition o
the object. In our example, the exponential random
variable’s properties are contained within the definition o
the random variable so that any need to understand 
revise these properties are located in a single “place.” An
users of this object need not be concerned with the intern
“makeup” of the object.

In C++, the keyword “class” is used to begin the
definition of an object followed by the name of the objec
class and then the properties of the entity are define
within enclosing {}. For example, the following object
defines the Exponential  class.

class Exponential{
…// Properties of the Exponential
};

Without encapsulation, properties could be spread all ove
making changes to the object very difficult. Encapsulation
also facilitates the ability to easily create multiple instance
of the same object since each object contains all of i
properties.  For example, common random streams c
easily be applied since each Exponential object
contains its own individual random number stream.

3.2.1  Class Properties

The class definition specifies the object’s properties, th
attributes and methods. The attributes define all th
singular properties of the object while the behaviors defin
how the object interacts within the environment with othe
objects. Attributes are considered the data members of 
object.  In the case of our Exponential  random
variable, its mean (given by the identifier mu) would be a
real number attribute.

double    mu;

Other attributes would be similarly defined.
The methods of an object represent actions the obje

can perform or take.  For example, if the exponentia
random variable needed to obtain a sample, the followin
member function can be used:

double   sample(){
   return –mu * log( 1.0 – randomNumber() );}

where the randomNumber () function yields a uniform
random variable between 0 and 1. By representing metho
with functions, the object can react to parameters passed
the function argument as well as change variable valu
within the function.
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3.2.2  Classes and Instances

Notice, the word “class” not “object” is used in defining
the object, which can be confusing, since it would see
that we are defining objects.  Lets consider the mo
complete definition based on our prior discussion o
encapsulation and properties (ignore the “public” for now
the Exponential  class is defined as follows.

class Exponential{
   public:
     double mu;
     double sample(){ return –mu * log( 1.0 –
                       randomNumber() );}
};

Rather than defining an object directly, a class 
defined where the class provides a “pattern” for creatin
objects and defines the “type.” By defining a class (o
objects), rather than a single object, the opportunity exis
to use the class to create many objects (i.e., re-use exis
code). Furthermore, as seen later, the class is a descrip
of a pattern for constructing objects which can be eas
extended. Now, objects can be created directly from th
class once defined. These created objects are cal
“instances” of a class.  For example, serviceTime  is an
instance of the Exponential  class.

Exponential   interarrivalTime, serviceTime;

3.3 How Do Objects Communicate?

An OOS models the behavior of interacting objects ove
time. However before we can consider a simulation, w
need to understand how objects interact or communica
with each other.  The interaction among objects 
performed by communication called “message passing
One object sends a message to another and the receiv
object then responds.  An object may simply publish 
message that may be responded to by one of seve
objects.  For example in a bank simulation, a custom
arrives at a bank and may be served by any of seve
tellers.  In a O-O context, the customer publishes the
arrival and waits for service by a teller.  There are seve
ways in transmitting messages in an object-oriente
program and it depends on the programming language.

3.3.1  Directed Message

Perhaps the simplest form of message passing is a direc
to the object’s attributes or data members. For example,
the interarrivalTime  object needed to have a mean
of 5.5, then we could write:

interarrivalTime.mu = 5.5;
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This message causes the object to receive the value and
its variable mu.  It is a forced message because the obje
has no choice but to perform the action.

3.3.2  Data Methods or Functions

Rather than forcing a value upon an object, a value cou
be communicated to the object and then let it decide how
deal with the value.  For example, if a new “membe
function” or data method to the Exponential class calle
setMu()  was added as:

void setMu( double initMu ){ mu = initMu; }

Now the object is sent the setMu  message with a
message value of 5.5 which “communicates” our interest
changing the mean and interarrivalTime  receives
the message and changes its internal value of mu.

interarrivalTime.setMu(5.5);

Although this example really does the same thing 
the direct reference, there are important distinctions.  Fir
in our function call we simply “passed” the value of 5.5 t
the object.  Second, we didn’t tell the object how to chan
the attribute mu.  The object’s function written by the
designer of the Exponential  class causes the mean
parameter to change.  The user of the function does 
need to know how the function inside the class works.  
fact, the class designer could change the internal name
mu to expMean  within the class, and all exiting user code
would remain the same.  Further, the same message ca
made to respond to several different message value type
feature often referred to as “polymorphism.”

3.3.3  Pointers

Another way to communicate is indirectly through pointer
that are simply addresses of the location of an object.  F
example, a pointer to the interarrivalTime  object
can be created and the setMu message can be sent via
pointer.

Exponential * rnPtr = &interarrivalTime;
rnPtr->setMu(5.5);

Pointers have the advantage of not needing to know t
particular object ahead of time, but only the address of t
object.  Thus, if we change the pointer to point to th
serviceTime  object, the format of the message remain
the same. With a more complex message, use of point
becomes very convenient.

3.4 How Are Objects Formed?

In our example, the exponential object has no ability to b
created with different means. Instead, the object’s me
135
d Roberts

 set
ct

ld
to
r
d

in

s
t,

e

ot
n
of

 be
, a

or

 the

e
e

e
s
rs

e
n

was changed to a specific value. Although an object can
instantiated from a class without special instructions, oft
we want the creation to accomplish certain objective
Likewise, we also might want to do something spec
when an object is destroyed.

3.4.1  Constructors and Destructors

Special member functions can be defined that act when
object is created and destroyed, which are call
constructors and destructors, respectively.  The constru
is recognized by having no return type and the same na
as the class.  For example, the following could be
constructor for the exponential object.

Exponential( double initMu ){ mu = initMu; }

This function accepts the invocation argument and sets 
internal mean to it. An object whose initial mean is 4.3 c
be specified upon creation as follows.

Exponential   serviceTime(4.3);

In C++, functions can be “overloaded” so that they diffe
only in their formal arguments (i.e., “polymorphism”)
Therefore, a class can have multiple constructors.  F
example, if we wanted the exponential to accept an inte
specification of its mean.

Exponential( int startMu ){ mu = startMu;}

Now, exponential objects with either a double or an int 
arguments can be specified (actually C++ will mak
appropriate conversions among its built-in types but th
example illustrates the way a user could provid
conversions among user-defined classes). The follow
creates two objects using different argument types.

Exponential   arrival(9.3), inspect(6);

Users can also define a special member function calle
destructor that acts when the object is destroyed. Only 
destructor can be defined since it has no arguments.  
example, a destructor for the exponential class has 
following form.

~Exponential(){// print out how often used? }

3.4.2  Visibility of Properties

It should be clear that a user of a class does not really n
to know the internal workings of the class. For examp
they do not need to know what algorithm is used to obt
the sample (they may want to know for their ow
assurance). Furthermore, the designer of the class may
want the user of the class to know everything about 
class. Thus, the class designer has the option of cau
properties of the class to become invisible to users of 
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Simulation in an O

class and to provide a public interface to those hid
properties. The two most frequently used labels are “pub
and “private.”  Properties within a class that are public c
be accessed directly by a user while those that are privat
available only to the designer. For example, the varia
containing the mean is made private within the class
prevent improper use (i.e., direct manipulation). Our cl
would then look like the following.

class Exponential{
 private:
  double mu;
 public:
  Exponential(double initialMu ){mu=initialMu;}
  double sample();
  void setMu( double changeMu ){mu = changeMu;}
  double getMu( ) { return mu; }
};

Now mu cannot be changed directly by a user.  Thus 
direct reference to mu, as done earlier, will fail.
Communication to the exponential objects must 
performed through member functions.  The designer of 
class can now protect the class data members f
unwanted changes while the user of the class is unaffec

3.5 How Are Objects Formed From Others?

One of the fundamental benefits of an O-O design is 
ability to make other objects out of existing ones.  We h
already seen how to design a class of objects using
built-in types from C++. Suppose the following rando
number class has been defined which generates unifo
distributed numbers between 0 and 1.

class RandomNumber{
      long   seed;
   public
      RandomNumber( long seed = -1);
      void setSeed(long sd){seed=sd;}
      virtual double sample();
};

In this definition, the constructor argument can be specif
or left blank to default to their initial values (i.e., -1 mea
use the next seed).  The public member function sample ()
is used to obtain a sample and we will assume that the 
will be updated appropriately with each call. The “virtua
keyword will be discussed later.

There are two ways this random number genera
could be used with our Exponential  class.  The first
method is called composition, in which a random numbe
object is included within the exponential class.  The sec
method of using the random number generator is thro
inheritance which makes the exponential class a kind 
random number.  Inheritance is one of the major featu
that distinguish a “object-based” language from a tr
“object-oriented” one.
13
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3.5.1  Composition

First, consider the case of composition where we simp
compose the new class from the existing class:

class Exponential{
   private:
      double mu;
      RandomNumber rn;
   public:
      void setSeed(long sd){rn.setSeed(sd);}
… //Public Properties
};

Notice that the Exponential  is defined simply to
“have” a RandomNumber.  In O-O parlance, the
relationship between the Exponential  and the
RandomNumber rn is called a “has-a” relationship.  The
data member rn is used in the sample () function of the
exponential. Notice, a setSeed () needs to be defined in
order to access the one in the random variable.

3.5.2  Inheritance

The second kind of relationship among classes is called
“is-a” relationship and is based on inheritance or a pare
child relationship. In our example, the exponential can 
considered a kind of random variable.  It would be useful f
the Exponential  to be a child of RandomNumber and
thus inherit all the random variable properties.  Hence, wh
could be done to the random variable could also be do
with the exponential.  No additional setSeed () is required
since the one in the random class can be used.

For example, sometimes a sample from an exponentia
needed while other times a basic uniform generator is requir
Suppose the following two objects and pointer are defined:

RandomNumber   uni;
Exponential   exp(5.5);
RandomNumber * pRN = &uni;

If at an activity in our simulation, a sample from a random
variable is needed, the following message is sent to obt
an activity time.

pRN -> sample();

However, because Exponential is also a RandomNumber,
the pointer pRN could be assigned to either an
Exponential  or a RandomNumber and the same
message applies. In the composition example, two separate
activities would be required (i.e., one which used a
exponential and another one which used a uniform).

pRN = &exp;
6
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In a true O-O language with inheritance, the mess
would be sent to the proper object and the sampling wo
be from the correct sampling function. In O-O term
determining which variate to sample at run-time is cal
“run-time” binding and is performed by specifying th
sample () to be “virtual” in the parent class.

To specify that Exponential  inherits from
RandomNumber, the header for the class definition wou
be modified as:

class Exponential: public RandomNumber{...

showing that RandomNumber is the parent and its
visibility is “public”.

Under inheritance, the child class inherits the pub
(and protected) properties of the parent.  Now th
properties are directly available to the child class and 
class type resolves any conflicts.  C++ also perm
multiple inheritance, meaning a child can inherit fro
several parents.

4 OBJECT-ORIENTED VS. OBJECT-BASED

Because many simulation languages offer pre-speci
functionality produced in another language, the user can
access the internal function of the language.  Instead, 
the vendor can modify the internal functionality. Als
users have only limited opportunity to extend an exist
language feature. Some simulation languages allow 
certain programming-like expressions or statements, wh
are inherently limited.  Most languages allow the insert
of procedural routines written in other general-purpo
programming languages.  None of this is fully satisfacto
because, at best, any procedure written cannot use
change the behavior of a pre-existing object class.  A
any new object classes defined by a user in gen
programming language do not co-exist directly with vend
code.

4.1 Object-Based Extension

The object-based approach only allows extensibility in 
form of composition (i.e., new objects can only be crea
out of existing objects). The simple Event  object will
demonstrate the limitations of extensibility only throug
composition. The Event object is used to move 
simulation from one time to the next.  Events are placed
the calendar and, when an event is removed from 
calendar, the processEvent () function is called to handle
the event. The following gives a portion of the Event  class
that can be used to process arrival of entities into 
network and end of service events.  Notice that dependin
137
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the type of event, the appropriate event handling function
called. This is an example use of composition.

class Event{
private:

double eventTime, eventType;
Source *source;
Activity *activity; //… More properties

public:
void processEvent(){
select EventType{
case ArrivalEvent:

source->newArrival(Entity);  break;
case EndofService:

activity->endofService(Entity) break;}}
//… Additional Properties

};

If the user wants to add additional events (e.g., a mon
event), it would require the designer of the Event  class to
add an appropriate data member, data methods, and 
provide an additional case statement. Therefore, 
designer has the impossible problem of anticipating eve
kind of event any user might need.  Extensibility throug
composition only allows users to create new objects out
existing ones.

4.2 Object-Oriented Extension

An object-oriented simulation deals directly with th
limitation of extensibility by permitting full data
abstraction. Data abstraction means that new data ty
with their own behavior can be added arbitrarily to th
programming language. When a new data type is added
can assume just as important a role as any implicit d
types and can extend existing types.  For example, a n
user-defined robot class can be added to a language that
contains standard resources without compromising a
aspect of the existing simulation language, and the ro
may be used as a more complex resource. There are 
basic mechanisms in C++ that allow OOS to provide f
extensibility: inheritance and genericity.

4.2.1  Inheritance

Inheritance allows classes to exploit similarity throug
specialization of parent classes (i.e., child classes inh
the properties of the parent and extend them).  All eve
types have an associated eventTime  and eventType
and the appropriate data methods to specify the
properties. Therefore, specific event types would inhe
these properties and provide additional ones (see Figure
Now, the class designer only has to provide the mechan
to extend the key classes.
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Simulation in an Ob

Entity
Node

NodeEvent
getNode

setNode
 processEvent

Monitor-
Function

MonitorEvent
getMonitorFun

setMonitorFun  processEvent

Entity
Process

ProcessEvent
getEntity

setEntity  processEvent

Event Time
Event Type

Event
getEventTime

setEventTime  processEvent

Figure 1:  Inheritance Hierarchy

For example, NodeEvent,  which provides events
that occur at nodes (e.g., end of service at an activity
provides a pointer to the Node of interest and the Entity
which caused the event. The processEvent()  is
declared virtual so that the appropriate processEvent  is
fired when the event is pulled off the calendar (i.e., run
time binding). The Event’s processEvent () is a pure
virtual function meaning any child classes must re-defin
it. The NodeEvent ’s invokes the nodes
executeLeaving () (another virtual function in the node
hierarchy).

//Event’s processEvent
void virtual processEvent() = 0

// ProcessEvent’s processEvent
void virtual processEvent(){
  processPtr->executeProcess(entityPtr);}

//NodeEvent’s processEvent
void virtual processEvent(){
      nodePtr->executeLeaving(entityPtr);}
//ExecuteLeaving -virtual function in Node

Now the designer does not have to anticipate ever
type of event. Users have the ability to define their ow
events provided they inherit from an existing event clas
and provide an appropriate processEvent () function.
Given a pointer to an event, the simulation will invoke the
appropriate event’s processEvent () function at run
time. Unlike Java, C++ provides for multiple inheritance
that facilitates a very useful and powerful feature with
some subtle idiosyncrasies.  Multiple inheritance allow
you to combine the collection of data and behavior o
several classes.  For example, when modeling a texti
distribution network, there are nodes that are vendor
distribution centers (DCs), and stores.   Vendors ar
suppliers that ship garments to consumers while stores a
strict consumers that receive shipments. However, DCs a
considered both suppliers and consumers (i.e., DCs c
supply other DCs and stores while receive shipments fro
other suppliers (either DCs or vendors)).  In a singl
inheritance hierarchy, the designer must repeat simila
code for either the supplier or consumer behavior or forc
an unnatural inheritance hierarchy.
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4.2.2  Parameterized Types

Even with inheritance, many O-O languages like Java a
Smalltalk can still be limiting in terms of extensibility
Eiffel and C++ provides an additional method o
extensibility called genericity or parameterized types (i
templates). Parameterized types are special forms 
composition that exploit commonality of function. Fo
example, most simulations would declare a source obj
that is used to place entities into the network. In an OO
environment, the user may want TVs or Orders to arri
rather than generic entities. The user can create sev
different source nodes by inheriting from the base Sou
class as seen in Figure 2. Each of the new classes defin
new type of object to be created (i.e., TV, Order) and t
“virtual function” executeLeaving .

getTV

setTV
TV

TVSource

executeLeaving

Resource

ResourceSource
getResource

setResource

Order

OrderSource
getOrder

setOrder executeLeaving

Entity
InterArrival

Source
getInterArrivalTime

setInterArrivalTime executeLeaving

executeLeaving

Figure 2:  Inheritance Hierarchy versus Commonality

Notice, only the Interarrival  object and methods
are re-used in the child class.  Each of the child clas
must define its own executeLeaving () when the only
difference is the type of object released into the netwo
When objects provide the same functionality
parameterized types are used (see Figure 3.). Now, the 
specifies the type of entity to be released into the netw
and all remaining code is used. This ability is furth
demonstrated when a user wants to add statistics to 
source node. The user only has to inherit from one cl
rather than create a TVSourceStat ,
OrderSourceStat , etc.

Figure 3:  Parameterized Type

The following would declare two different source
nodes.

Source<TV> tvSource(…);
Source<Order> orderSource(…);

Type
InterArrival

Source< Type >
getInterArrivalTime

setInterArrivalTime executeLeaving
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Joines a

5 CREATING A SPECIFIC OOS

A key to the creation of a fully integrated simulation
package is the use of a class inheritance hierarchy. The
formation of such a hierarchy is described in Joines a
Roberts (1996).  Object-based “frames” are used 
collect classes into levels of abstraction.  A frame is a
set of classes that provide a level of abstraction in t
simulation and modeling platform.  A frame is a
convenient means for describing various “levels” within
the simulation class hierarchy and is a conceptual term

While frames provide a convenient means t
describe the levels of abstraction within the entir
object-oriented simulation platform, another means o
encapsulation is to place higher level comple
interactions into “frameworks.” For our purposes
frameworks are used to describe those collections o
classes that provide a set of specific modeling facilitie
The frameworks may consist of one or more clas
hierarchies. These collections make the use and reuse
simulation modeling features more intuitive and provid
for greater extensibility.  Special simulation language
and packages may be created from these object clas
For more information, see Joines and Roberts (1998b)
the creation of YANSL, which is just one instance of the
kind of simulation capability that can be develope
within an OOS environment.

5.1 Example Classes Specific to YANSL

Several classes are selected from the modeling framewo
(Joines and Roberts, 1998b) to create the YANS
modeling package.  These classes are collected togethe
form a “simple” modeling/simulation language which ca
be extended to create more complicated features.  T
general simulation support classes, such as varia
generation, statistics collection, and time management, 
used indirectly throughout the modeling frameworks.  Th
network concepts are somewhat enhanced, but are ta
from the modeling framework. The node hierarchy fo
YANSL is shown in Figure 4.

Figure 4:  YANSL Node Hierarchy

Queue<RankC>Activit y<Req, BC> Sink

Source<Tran, BC>

DelayNode<BC>

Activit yNodeBase<ReP,SzP,BC

QueueNodeBase

QueueNode<RankC>

SourceNodeBase<BC> SinkNodeBase

BranchingDepartureNode<BranchChoice>

DestinationNodeDepartureNode

Node

Assign<BC,Tran>
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The higher level nodes (Assign , Activity , Queue,
Source , and Sink ) are used directly by the YANSL
modeler. Lower level nodes provide abstractions which a
less specific, allowing specialization for other simulatio
constructs (e.g., the QueueNodeBase class excludes ran
and statistics).  Sink and queue nodes can have transact
branched to them and are therefore destination nodes, w
the source node is a departure node.

The delay and assign nodes are both departure a
destination nodes, so they inherit from both the departu
and destination node classes.  Departure nodes may nee
branching choice and called BranchingDeparture
Nodes .  An activity is a “kind of” delay but includes
resource requirements. The properties of the YANS
nodes allow transactions to be created at source nodes, w
at queue nodes, receive attribute assignment at ass
nodes, be delayed at activity nodes, and exit the network
sink nodes. Resources may service transactions at activ
nodes. for YANSL, (see Figure 5) allows resources to b
identified as individuals, as member of alternativ
groupings, or as members of teams.

Figure 5:  Resource Framework

The resource framework takes advantage of both inheritan
and parameterized types.  Activities actually request 
RequirementAlternative . Because single resources
resource teams, and groups of resources inherit fro
RequirementAlternative , Activity  nodes can
except any type.  If the three types are not suitable for yo
application, you can inherit from the three types (i.e., crea
a robot resource) or directly from Requirement
Alternative . When there is a choice of resource servic
at an activity, then a resource selection method (i.e.,
parameterized type) is used to select the individual resou
among a group of resources (ResourceGroup) .  The
Resource  object is parameterized with a resource decisio
object that allows the resource the ability to choose amo
several different queues to service (i.e., the resources 
allowed to move through the network as well). The ability t
request a resource service at run-time without specifying
explicitly is another example of polymorphism (e.g., the us
my request either a single particular resource or a team
resources or select among a set of resources or team
Owing to the extensibility through inheritance and
genericity, the user has the ability to easily model comple
resource decisions.

ResourceBase

SimulationElement

RequirementsAlternative

Resource<ResDC> ResourceTeam ResourceGroup<ResSelC>

ResourceSelelectionCResourceDecisionC

Choices
9
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5.2 Modeling with YANSL

When modeling with YANSL, the modeler views the mod
as a network of elemental queuing processes (grap
symbols could be used). Building the simulation mo
requires the modeler to select from the pre-defined se
node types and integrate these into a network. Transac
flow through the network, can be assigned attributes, m
require resources to serve them, and thus may queue to 
resource availability.  Unlike some network languag
resources in YANSL are active entities, like transactio
and may be used to model a wide variety of real-wo
items.  The real power of a simple language like YAN
lies in the ability to extend and adapt the simulat
language to directly model the complex problem rather t
trying to adapt the problem to fit the modeling blocks giv
by standard simulation packages.

6 FINAL THOUGHTS

Modeling and simulation in an O-O language posses
many advantages.  As shown, internal functionality o
language now becomes available to a user (at the discr
of the class designer).  Such access means that exi
behavior can be altered and new objects with new beha
introduced.  The O-O approach provides a consis
means of handling these problems.

O-O systems view the world as a set of autonom
agents that interact or work together to solve so
complex task.  Each object is responsible for a specific 
that helps one organize the complexity of complex syste
which in turn simplifies the computer programming tas
O-O designs yield smaller systems through the reus
common mechanisms. They are more reliant to change
are better able to adapt over time. O-O designs gre
reduces the risk of building complex software syste
because they are developed to evolve incrementally f
smaller systems in which they have been tested 
reliability and stability.

The O-O ideas have re-rooted in simulation, af
being initiated by simulation through SIMULA.  Th
Smalltalk environment is fully O-O and contains ful
OOS.  Obviously simulation languages based on C++, 
C++/CSIM and C++SIM, possess all the object-orien
capability described in this paper.  Simple++ a
MODSIM III are further examples of object-oriente
languages that employ most of these concepts wi
different simulation frameworks.

The queuing network based languages like Arena 
AweSim have beginnings of object-based.  Both langua
provide a composition approach to creating network mac
through Arena templates and AweSim subnetwor
However neither are autonomous and independent objec
the sense described here and extensibility cannot be us
extend the active entities.  Both have access to Visual B
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which is itself only object-based.  AweSim wraps it
functionality in a few objects, whereas Arena contains 
object model (not with Siman features) that is integrate
with Visual Basic.

A simulation language called SLX from Wolverine
Software provides a new object-based simulation produ
from the makers of GPSS/H.  This language has all t
object-based facilities but has none of the object-orient
facilities.  It does contain an extended macro facility fo
adding statements and extended features for represen
the simultaneous behavior of objects.

To take full advantage of object-oriented simulatio
requires more skill from the user.  However, that same sk
would be required of any powerful simulation modelin
package but with greater limitations.
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