Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

SIMULATION IN AN OBJECT-ORIENTED WORLD

Jeffrey A. Joines
Stephen D. Roberts

Department of Industrial Engineering
Campus Box 7906
North Carolina State University
Raleigh, NC 27695-7906, U.S.A.

ABSTRACT describe ways to improve modeling style — through object-
oriented simulation and to describe the fundamentals of

An object-oriented simulation (OOS) consists of a set of object-oriented simulation. It is useful, however, to first

objects that interact with each other over time. This paper consider the matter of programming style — modeling style

provides a presentation of OOS design elements by usually follows programming style.

contrasting OOS with its procedural counterparts. The

elements of component technology is addressed along with2 PROCEDURAL STYLE

the important issue of composition (components) versus

inheritance that distinguishes object-based from object- As long as you can specify statement sequences, define

oriented languages. variables, do branching, perform iteration, and have 1/O,
you can do everything a Turing machine can do which in
1 SIMULATION SOFTWARE CHALLENGE turn means everything a computer can do. Thus the

distinction in programming style is not what can and can'’t

There has been tremendous growth in the capability of be done, but what can be done easily. However, what can
computing hardware during the past three decades. Anbe done easily may be a matter of judgement.
important question for simulation modelers is how can Early programs were long sequences of labeled
simulation can take full advantage of the computing power statements (simulation instructions) where movement of
now available. Software engineering provides part of the program control used labels. Ironically, many fairly recent
answer. However, Writing software “from scratch” is no simulation |anguages maintain this same approach_
longer advisable since software systems tend to be Owing to the repetition of some logical procedures,
complex and several libraries exist for many of the functions or subprograms were added to programming
common functions. Thus, simulation models need to |anguages_ To give these functions genera]ity’ argument
include more than computational efficiency if they are to |ists were added that could change the computation within
have wider utility and acceptance in a multi-media, virtual g function from call-to-call. Using functions to subdivide a
reality, and graphical interface software world. programming pr0b|em gave rise to the notion of

Modeling and software have had a symbiotic “functional decomposition,” which remains today a

relationship. The computer is more than a Computational popu|ar approach to programming and simulation
engine for simulation algorithms and should be regarded asmodeling. In fact, subnetworks are a recent form of

a tool also for modeling. The technology of simulation is functional decomposition.
now a mature and developed methodology. Although there GPSS, SLAM, and SIMAN were the simulation
is plenty of room for additional research on fundamental versions of the “library” approach to simulation, but the
areas (e.g., random number and variate generation, the nexfipraries were invoked much differently and invisibly to the
event simulation process, reliable and appropriate yser. Instead of writing general purpose programming
statistics), there are now widespread adoptions and use ofcode, users constructed text files containing a sequence of
computer simulation techniques. simulation “instructions.” This approach provided a higher
However, the real limits on the future adoption of |evel of abstraction than programming in a low-level
simulation may rest on our ability to represent complex |anguage, making it easier to model complex systems.
systems and to do it easilwhich can be construed as a Simulation language instructions generally have a
matter of modeling style. The purpose of this papepis direct correspondence to a form of a flowchart (also called

132

Joines and Roberts

network). While such input makes it easy to specify the Perhaps the greatest limitation of the procedural style
simulation, it limits the direct impact the modeler can have is its lack of extensibility. From the earliest simulation
on the execution of the simulation, since these simulation languages until the early 1990s, the only way to adapt these
instructions did not constitute a programming language. simulations was through functional extension. In other
Instead they are generic model templates for simulation. words, you could add structural functionality to the

Consequently, many models written in earlier versions simulation but not alter any of its basic processes, like
of these languages were highly augmented by generalgiving properties to resources. For example, if you needed
programming code containing function calls to the the simulation to include a bridge crane, you had to
simulation libraries, since function calls could not be program it completely yourself or model it with the
directly invoked and users could not write functions with features available. One of the reasons for this lack of
the native simulation instructions. In particular, Visual extensibility was that procedural changes were the only
SLAM continues to promote extensive use of programming approach to model changes. Specifically, vendors had no
“inserts” with Visual Basic and C. way to partially hide implementation details and were

It is important to note that while simulation “languages” either forced to give access to source code or restrict the
like GPSS, SLAM, and SIMAN were easy to use, although access to the features. A module or file provided a form of
limited, there were more powerful simulation programming encapsulation (which more recent simulation languages
alternatives. For example SIM-SCRIPT and SIMULA were call templates or subnetworks), but these collections do not
full programming languages with simulation functionality provide for autonomous objects.
built into the language grammar and syntax. Using these
languages, users “programmed” the simulation. SIMULA 3 OBJECT (COMPONENT) STYLE
was not widely appreciated at the time as a simulation
language but would, in fact, form the basis and motive for It is very easy to describe existing simulation languages
much of the modern object-oriented paradigm. using object terminology. A simulation language provides

In all cases (except for SIMULA), the style was pro- a user with a set of pre-defined object classes (i.e.,
cedural based. A problem was decomposed into proceduregesources, activities, etc.) from which the simulation
and either represented by general components, like a queuemmodeler can create needed objects or components. The
or represented in programming code with a data structuresmodeler declares objects and specifies their behavior
and code. Procedural programming represents today athrough the parameters available. The integration of all the
fundamental style of programming usually learned in the objects into a single bundle provides the simulation model.
first exposure to programming or modeling. Component is another word used for object.

There are several fundamental problems with using the Therefore, an object can be described by an entity that
procedural style of modeling and simulation. Procedures holds both the descriptive attributes of the object as well as
do not correspond to real world components. Instead, theydefines its behavior. The class concept evolved out of the
correspond to methods and algorithms. Therefore actsnotion of encapsulation, an idea that originated in
engaged by entities must be given a context for proceduresSIMULA. However SIMULA viewed objects as much
to be easily specified. Many simulation contexts are based more than encapsulation. Objects needed independence of
on networks of queues (often complicated queuing action and a means to hide their implementation details, yet
situations). The modeling approach is to let the queuing provide an interface for their use. Further, there needed to
network create the procedural structure that is traversed bybe way to construct objects and to communicate among
entities. When this structure is appropriate, as it often is in them. C++ borrowed all these ideas from SIMULA (as did
a manufacturing or communications application, the model Smalltalk) and put them into the procedural programming
is a convenient analog to the real system. language C. We use C++ to illustrate the object style.

However modeling languages are limited when
confronted with complicated circumstances, such as the 3.1 An Example: Exponential Random Variable
need to code an algorithm that creates a schedule based on
anticipated volume and current use of facilities. It is then Suppose you are modeling an exponential random variable
that the need for general programming manifests itself. in a simulation. The random variable may be described by a
There is a fundamental difficulty in communication standard exponential statistical distribution, which has a set
between the simulation code, provided by a simulation of parameters, a mean in this case. This mean would be
vendor, and user code from a general programming considered an attribute of the exponential random variable
language. The only means of communication is generally component. It may be important to obtain observations from
through global data exchange or function calls. These this random variable via sampling. One may want to obtain
mechanisms are vulnerable to inappropriate use and wereantithetic samples or to set the random seed. Sampling from
dangerously visible to users. the exponential random variable defines a particular

behavior. Behaviors are more often called “methods.”

133

Simulation in an Obj
3.2 Encapsulation

The entity “encapsulates” the properties of the object

ect-Oriented World
3.2.2 Classes and Instances

Notice, the word “class” not “object” is used in defining

because all of its properties are set within the definition of the object, which can be confusing, since it would seem
the object. In our example, the exponential random that we are defining objects. Lets consider the more
variable’s properties are contained within the definition of complete definition based on our prior discussion of
the random variable so that any need to understand orencapsulation and properties (ignore the “public” for now),
revise these properties are located in a single “place.” Any theExponential class is defined as follows.

users of this object need not be concerned with the internal

“makeup” of the object.
In C++, the keyword “class” is used to begin the
definition of an object followed by the name of the object

class Exponential{
public:
double mu;
double sample(){ return -mu * log(1.0 —

class and then the properties of the entity are defined
within enclosing {}. For example, the following object
defines theexponential class.

randomNumber());}
j#

Rather than defining an object directly, a class is
defined where the class provides a “pattern” for creating
objects and defines the “type.” By defining a class (of
objects), rather than a single object, the opportunity exists
to use the class to create many objects (i.e., re-use existing

' code). Furthermore, as seen later, the class is a description
of a pattern for constructing objects which can be easily

. . . . > extended. Now, objects can be created directly from this
of the same object since each object contains all of itS (|55 once defined. These created objects are called
propertles. FOT exa’.“p'e' common rar_1dom stregms CaNsinstances” of a class. For exampderviceTime is an
easily be applied since eachBxponential object instance of th&xponential class.

contains its own individual random number stream.

class Exponential{
..l Properties of the Exponential

2

Without encapsulation, properties could be spread all over
making changes to the object very difficithcapsulation
also facilitates the ability to easily create multiple instances

. Exponential interarrivalTime, serviceTime;
3.2.1 Class Properties

o - .] 3.3 How Do Objects Communicate?

The class definition specifies the object’s properties, the
attributes and methods. The attributes define all the oA 0OS models the behavior of interacting objects over
singular properties of the object while the behaviors define tjme. However before we can consider a simulation. we
how the object interacts within the environment with other need to understand how objects interact or commur;icate
objects. Attributes are considered the data members of anyith each other. The interaction among objects is
object. In the case of ouExponential random performed by communication called “message passing.”
variable, its mean (given by the identifiex) would be a One object sends a message to another and the receiving
real number attribute. object then responds. An object may simply publish a
message that may be responded to by one of several
objects. For example in a bank simulation, a customer
) o) arrives at a bank and may be served by any of several
Other attributes would be similarly defined. _ tellers. In a O-O context, the customer publishes their

The methods of an object represent actions the object rrjyal and waits for service by a teller. There are several
can perform or take. For example, if the exponential ways in transmitting messages in an object-oriented

random variable needed to obtain a sample, the following program and it depends on the programming language.
member function can be used:

double mu;

double sample(3.3.1 Directed Message

return —mu * log(1.0 — randomNumber());}
Perhaps the simplest form of message passing is a direction

to the object’s attributes or data members. For example, if

where therandomNumber () function yields a uniform s
object needed to have a mean

random variable between 0 and 1. By representing methodsthe interarrivalTime "
with functions, the object can react to parameters passed in®f 5.5, then we could write:
the function argument as well as change variable values

within the function interarrivalTime.mu = 5.5;

134

Joines and Roberts

This message causes the object to receive the value and setias changed to a specific value. Although an object can be
its variablemu It is a forced message because the object instantiated from a class without special instructions, often

has no choice but to perform the action. we want the creation to accomplish certain objectives.
Likewise, we also might want to do something special
3.3.2 Data Methods or Functions when an object is destroyed.

Rather than forcing a value upon an object, a value could 3.4.1 Constructors and Destructors

be communicated to the object and then let it decide how to

deal with the value. For example, if a new “member Special member functions can be defined that act when an
function” or data method to the Exponential class called object is created and destroyed, which are called

setMu() was added as: constructors and destructors, respectively. The constructor
is recognized by having no return type and the same name
void setMu(double initMu }{ mu = initMu; } as the class. For example, the following could be a

] .) constructor for the exponential object.
Now the object is sent theetMu message with a

message value of 5.5 which “communicates” our interest in Exponential(double initMu){ mu = initMu; }
changing the mean andterarrivalTime receives

the message and changes its internal valuewof This function accepts the invocation argument and sets the

internal mean to it. An object whose initial mean is 4.3 can
interarrivalTime.setMu(5.5); be specified upon creation as follows.

Although this example really does the same thing as Exponential - serviceTime(4.3);
the direct reference, there are important distinctions. First,
in our function call we simply “passed” the value of 5.5 to
the object. Second, we didn't tell the object how to change
the attributemu The object’'s function written by the

In C++, functions can be “overloaded” so that they differ
only in their formal arguments (i.e., “polymorphism”).
Therefore, a class can have multiple constructors. For
example, if we wanted the exponential to accept an integer

designer of theExponential class causes the mean o .
. specification of its mean.
parameter to change. The user of the function does not
need to know how the function inside the class works. In Exponential(int startMu){ mu = startMu;}

fact, the class designer could change the internal name of

muto expMean within the class, and all exiting user code Now, exponential objects with either a double or an int as
would remain the same. Further, the same message can barguments can be specified (actually C++ will make
made to respond to several different message value types, appropriate conversions among its built-in types but this

feature often referred to as “polymorphism.” example illustrates the way a user could provide
conversions among user-defined classes). The following

3.3.3 Pointers creates two objects using different argument types.

Another way to communicate is indirectly through pointers Exponential - arrival(9.3), inspect(6);

that are simply addresses of the location of an object. For) _)

example, a pointer to thiaterarrivalTime object Users can also define a special member function called a

can be created and the setMu message can be sent via th@estructor that acts when the object is destroyed. Only one

pointer. destructor can be defined since it has no arguments. For
example, a destructor for the exponential class has the

Exponential * mPtr = &interarrivalTime; following form.

rmPtr->setMu(5.5);
~Exponential(){// print out how often used? }
Pointers have the advantage of not needing to know the
particular object ahead of time, but only the address of the 3.4.2 Visibility of Properties
object. Thus, if we change the pointer to point to the
serviceTime object, the format of the message remains It should be c_Iear that a user of a class does not really need
the same. With a more complex message, use of pointerst0 know the internal workings of the class. For example,

becomes very convenient. they do not need to know what algorithm is used to obtain
the sample (they may want to know for their own
3.4 How Are Objects Formed? assurance). Furthermore, the designer of the class may not

want the user of the class to know everything about the
In our example, the exponential object has no ability to be class. Thus, the class designer has the option of causing
created with different means. Instead, the object's mean properties of the class to become invisible to users of the

135

Simulation in an Object-Oriented World

class and to provide a public interface to those hidden 3.5.1 Composition

properties. The two most frequently used labels are “public”

and “private.” Properties within a class that are public can First, consider the case of composition where we simply
be accessed directly by a user while those that are private areompose the new class from the existing class:

available only to the designer. For example, the variable

containing the mean is made private within the class to class Exponential{
prevent improper use (i.e., direct manipulation). Our class P
would then look like the following. RandomNumber rn:
public:

class Exponential{ void setSeed(long sd){rn.setSeed(sd);}
private: ... I/Public Properties

double mu; I

public:

Exponential(double initialMu Y{mu=initialMu;}

double sample(); Notice that theExponential is defined simply to
void setMu(double changeMu }{mu = changeMu;} “have” a RandomNumber. In O-O parlance, the
double getMu() { return mu; } relationship between theExponential and the

RandomNumber rn is called a “has-a” relationship. The
data member rn is used in teample () function of the
exponential. Notice, aetSeed () needs to be defined in
order to access the one in the random variable.

Now mu cannot be changed directly by a user. Thus the
direct reference tomu as done earlier, will fail.

Communication to the exponential objects must be
performed through member functions. The designer of the
class can now protect the class data members from
unwanted changes while the user of the class is unaffected.

3.5.2 Inheritance

The second kind of relationship among classes is called an
“is-a” relationship and is based on inheritance or a parent-
child relationship. In our example, the exponential can be
considered a kind of random variable. It would be useful for
the Exponential to be a child oRandomNumber and
thus inherit all the random variable properties. Hence, what
could be done to the random variable could also be done
with the exponential. No additionsétSeed () is required
since the one in the random class can be used.

For example, sometimes a sample from an exponential is

3.5 How Are Objects Formed From Others?

One of the fundamental benefits of an O-O design is the
ability to make other objects out of existing ones. We have
already seen how to design a class of objects using the
built-in types from C++. Suppose the following random
number class has been defined which generates uniformly
distributed numbers between 0 and 1.

class RandomNumber{ needed while other times a basic uniform generator is required.
long seed; Suppose the following two objects and pointer are defined:
public

RandomNumber(long seed = -1);
void setSeed(long sd){seed=sd;}
virtual double sample();

h

RandomNumber uni;
Exponential exp(5.5);
RandomNumber * pRN = &uni;

If at an activity in our simulation, a sample from a random
variable is needed, the following message is sent to obtain
an activity time.

In this definition, the constructor argument can be specified
or left blank to default to their initial values (i.e., -1 means
use the next seed). The public member functeample ()

is used to obtain a sample and we will assume that the seed prN -> sample();
will be updated appropriately with each call. The “virtual”

keyword will be discussed later. However, because Exponential is alsRandomNumber,
There are two ways this random number generator i pointer pRN could be assigned to either an

could be used with ouExponential class. The first Exponential or a RandomNumber and the same

method is calle¢omposition, in which a random number 1 as5a4e applies. In themposition example, two separate
object is included within the exponential class. The second g.iivities would be required (i.e., one which used an

method of using the random number generator is through gy ponential and another one which used a uniform).
inheritance which makes the exponential class a kind of

random number. Inheritance is one of the major features PRN = &exp;

that distinguish a “object-based” language from a true

“object-oriented” one.

136

Joines and Roberts

In a true O-O language with inheritance, the message the type of event, the appropriate event handling function is
would be sent to the proper object and the sampling would called. This is an example use of composition.
be from the correct sampling function. In O-O terms,

determining which variate to sample at run-time is called class Event{
“run-time” binding and is performed by specifying the p”"atdeduble eventTime, eventType;
sample () to be “virtual” in the parent class. Source *source; '

To specify that Exponential inherits from bI_ACtivity *activity; //... More properties

o public:
Randon_w!\lumbc.ar, the header for the class definition would Void processEvent(){
be modified as: select EventType{
case ArrivalEvent:
class Exponential: public RandomNumber{... source->newArrival(Entity); break;

case EndofService:

. . . activity->endofService(Entity) break;
showing that RandomNumber is the parent and its ,,._Addmg]al Properties (Entty) B

visibility is “public”. h

Under inheritance, the child class inherits the public
(and protected) properties of the parent. Now these If the user wants to add additional events (e.g., a monitor
properties are directly available to the child class and the event), it would require the designer of teent class to
class type resolves any conflicts. C++ also permits add an appropriate data member, data methods, and then
multiple inheritance, meaning a child can inherit from provide an additional case statement. Therefore, the

several parents. designer has the impossible problem of anticipating every
kind of event any user might need. Extensibility through
4 OBJECT-ORIENTED VS. OBJECT-BASED composition only allows users to create new objects out of

existing ones.
Because many simulation languages offer pre-specified
functionality produced in another language, the user cannot4.2 Object-Oriented Extension
access the internal function of the language. Instead, only
the vendor can modify the internal functionality. Also, An object-oriented simulation deals directly with the
users have only limited opportunity to extend an existing limitation of extensibility by permitting full data
language feature. Some simulation languages allow for al_)stractl_on. Data abs_tract|0n means that new _data types
certain programming-like expressions or statements, which With their own behavior can be added arbitrarily to the
are inherently limited. Most languages allow the insertion programmmg_languag_e. When a new data type is qued, I
of procedural routines written in other general-purpose can assume just as important a role as any implicit data
programming languages. None of this is fully satisfactory types aqd can extend existing types. For example, a new
because, at best, any procedure written cannot use an ser-c_ieﬂned robot class can be_added tonguagg _that
change the behavior of a pre-existing object class. Also, contains standard resources without compromising any

biect ol defined b i Iaspect of the existing simulation language, and the robot
any new object classes defined Dy a user in genera may be used as a more complex resource. There are two
programming language do not co-exist directly with vendor p,dic mechanisms in C++ that allow OOS to provide for

code. extensibility:inheritance andgenericity.

4.1 Object-Based Extension 4.2.1 Inheritance

The object-based approach only allows extensibility in the |nneritance allows classes to exploit similarity through
form of composition (i.e., new objects can only be created gpecialization of parent classes (i.e., child classes inherit
out of existing objects). The simpEvent object will the properties of the parent and extend them). All event
demonstrate the limitations of extensibility only through types have an associatestentTime and eventType
composition. The Event object is used to move the and the appropriate data methods to specify these
simulation from one time to the next. _Events are placed on properties. Therefore, specific event types would inherit
the calendar and, when an event is removed from the these properties and provide additional ones (see Figure 1).
calendar, th@rocessEvent () function is called to handle Now, the class designer only has to provide the mechanism
the event. The following gives a portion of tBeent class to extend the key classes.

that can be used to process arrival of entities into the

network and end of service events. Notice that depending on

137

Simulation in an Object-Oriented World

getEventTimeq— Efgri”;ime 4.2.2 Parameterized Types
setEventTime—| Event Typ—é—bprocessEvent

Even with inheritance, many O-O languages like Java and

NodeEvent _ Procesgvent Smalltalk can still be limiting in terms of extensibility.
getNode Entit getEntity 4= Entit

setNodproCESSE"em SelEnty—p ProccebdProcessEvent Eiffel and C++ provides an additional method of

extensibility called genericity or parameterized types (i.e.

MonitorEvent i i
qetMonitorFund e templates). Parameterized types are special forms of
setMonitorFun—p Function] ™ PrOceSSEVent composition that exploit commonality of function. For
example, most simulations would declare a source object
Figure 1: Inheritance Hierarchy that is used to place entities into the network. In an OOS

environment, the user may want TVs or Orders to arrive
rather than generic entities. The user can create several
different source nodes by inheriting from the base Source
class as seen in Figure 2. Each of the new classes defines a
new type of object to be created (i.e., TV, Order) and the
“virtual function” executelLeaving

For example,NodeEvent, which provides events
that occur at nodes (e.g., end of service at an activity),
provides a pointer to thidode of interest and thEntity
which caused the event. ThprocessEvent() is
declared virtual so that the appropriptecessEvent is
fired when the event is pulled off the calendar (i.e., run- Source
time binding). The Event'processEvent () is a pure getinterArrivalTime €— Entiy] .
virtual function meaning any child classes must re-define setinterArtivalTime— | interrrval] % S*CoUeLeavng
itt The NodeEvent’'s invokes the nodes

) . . . TVSource OrderSource
executeLeaving () (another virtual function in the node getTVef~] e ecuteLeing getOrder— orgo
. - —p executelLeaving
hierarchy). setTv—p setOrder—p-
ResourceSource
//[Event's processEvent getResource®#f= " Resourc ’
void virtual processEvent() = 0 setResource—jp —¥ executeleaving

// ProcessEvent’s processEvent . 2: Inheri . h c l
void virtual processEvent(){ Figure 2: Inheritance Hierarchy versus Commonality

processPtr->executeProcess(entityPtr);}

//NodeEvent's processEvent Notice, only thenterarrival object and methods
void virtual processEvent(){ ‘ are re-used in the child class. Each of the child classes
nodePtr->executeLeaving(entityPtr);} must define its owrexecuteLeaving () when the only

/IExecuteLeaving -virtual function in Node . - . .
9 difference is the type of object released into the network.

When objects provide the same functionality,
parameterized types are used (see Figure 3.). Now, the user
specifies the type of entity to be released into the network
and all remaining code is used. This ability is further
demonstrated when a user wants to add statistics to the
source node. The user only has to inherit from one class
rather than create a TVSourceStat ,
OrderSourceStat , etc.

Now the designer does not have to anticipate every
type of event. Users have the ability to define their own
events provided they inherit from an existing event class
and provide an appropriatgrocessEvent () function.
Given a pointer to an event, the simulation will invoke the
appropriate event'sprocessEvent () function at run
time. Unlike Java, C++ provides for multiple inheritance
that facilitates a very useful and powerful feature with
some subtle idiosyncrasies. Multiple inheritance allows

you to combine the collection of data and behavior of getinterATivalTime 4 2urces Type >

several classes. For example, when modeling a textile setinterArTvalTime—p | |nterarry AT €¥ecuteLeaving
distribution network, there are nodes that are vendors,

distribution centers (DCs), and stores. Vendors are

; . i Figure 3: Parameterized Type
suppliers that ship garments to consumers while stores are

strict consumers that receive shipments. However, DCs are))

considered both suppliers and consumers (i.e., DCs can Inhe following would declare two different source
supply other DCs and stores while receive shipments from Nodes.

other suppliers (either DCs or vendors)). In a single
inheritance hierarchy, the designer must repeat similar
code for either the supplier or consumer behavior or force
an unnatural inheritance hierarchy.

Source<TV> tvSource(...);
Source<Order> orderSource(...);

138

Joines and Roberts

5 CREATING A SPECIFIC OOS The higher level node#\§sign , Activity , Queue,
Source , and Sink) are used directly by the YANSL

A key to the creation of a fully integrated simulation modeler. Lower level nodes provide abstractions which are

package is the use ofcdass inheritance hierarchyThe less specific, allowing specialization for other simulation

formation of such a hierarchy is described in Joines and constructs (e.g., the QueueNodeBase class excludes ranking

Roberts (1996). Object-based “frames” are used to and statistics). Sink and queue nodes can have transactions

collect classes into levels of abstraction. frameis a branched to them and are therefore destination nodes, while
set of classes that provide a level of abstraction in the the source node is a departure node.
simulation and modeling platform. A frame is a The delay and assign nodes are both departure and

convenient means for describing various “levels” within destination nodes, so they inherit from both the departure

the simulation class hierarchy and is a conceptual term. and destination node classes. Departure nodes may need a
While frames provide a convenient means to branching choice and calleBranchingDeparture

describe the levels of abstraction within the entire Nodes. An activity is a “kind of” delay but includes

object-oriented simulation platform, another means of resource requirements. The properties of the YANSL

encapsulation is to place higher level complex nodes allow transactions to be created at source nodes, wait

interactions into “frameworks.” For our purposes, at queue nodes, receive attribute assignment at assign

frameworksare used to describe those collections of hodes, be delayed at activity nodes, and exit the network at

classes that provide a set of specific modeling facilities. Sink nodes. Resources may service transactions at activity

The frameworks may consist of one or more class nodes. for YANSL, (see Figure 5) allows resources to be

hierarchies. These collections make the use and reuse ofidentified as individuals, as member of alternative

simulation modeling features more intuitive and provide groupings, or as members of teams.

for greater extensibility. Special simulation languages

and packages may be created from these object classes. — :

For more information, see Joines and Roberts (1998b) in [Letoees]

the creation of YANSL, which is just onestanceof the

kind of simulation capability that can be developed

within an OOS environment.

| ResourceBaseII RequirememsAIternati\,ln
IResourceDecisionH ResourceSeIeIectionI:

| Resource<ResDC=" ResourceTeaml | ResourceGroup<R;;Selq>

5.1 Example Classes Specific to YANSL !
P P Figure 5: Resource Framework

Several classes are selected from the modeling frameworks . .
(Joines and Roberts, 1998b) to create the YANSL The resource framework takes advantage of both inheritance

modeling package. These classes are collected together t@"d Parameterized types. Activities actually request an

form a “simple” modeling/simulation language which can RequirementAlternative - Because single resources,
be extended to create more complicated features. Thef€Source teams, and groups of resources inherit from
general simulation support classes, such as variate RequirementAlternative , Activity nodes can

generation, statistics collection, and time management, are€xcept any type. If the three types are not suitable for your
used indirectly throughout the modeling frameworks. The application, you can inherit from the three types (i.e., create
network concepts are somewhat enhanced, but are taker® robot resource) or directly fromRequirement

from the modeling framework. The node hierarchy for Alternative . When there is a choice of resource service
YANSL is shown in Figure 4. at an activity, then a resource selection method (i.e., a
parameterized type) is used to select the individual resource
among a group of resourcéResourceGroup) . The
Resource object is parameterized with a resource decision
DepartureNod [DestinationNoa} object that allows the resource the ability to choose among

several different queues to service (i.e., the resources are
allowed to move through the network as well). The ability to

| BranchirgDepartureNode<BranchChoicd>

[SourceNodeBase<ed> [DelayNode<c>] [QueueNodeBash [SinkNodeBasq request a resource service at run-time without specifying it
| \ explicitly is another example of polymorphism (e.g., the user
[Source<tran, BC[ActivityNodeBase<ReP.SzP B§ QueueNode<Rankch my request either a single particular resource or a team of

[emsorar] [‘R = B ‘R %) resources or select among a set of resources or teams).
L) Clivity<l , > ueue<Ran Ini . Iy . .
= Owing to the extensibility throughinheritance and

Figure 4: YANSL Node Hierarchy ?eesnoelﬂgléyag;ieg%snesr has the ability to easily model complex

139

Simulation in an Object-Oriented World

5.2 Modeling with YANSL which is itself only object-based. AweSim wraps its
functionality in a few objects, whereas Arena contains a

When modeling with YANSL, the modeler views the model object model (not with Siman features) that is integrated

as a network of elemental queuing processes (graphicalwith Visual Basic.

symbols could be used). Building the simulation model A simulation language called SLX from Wolverine

requires the modeler to select from the pre-defined set of Software provides a new object-based simulation product

node types and integrate these into a network. Transactiondrom the makers of GPSS/H. This language has all the

flow through the network, can be assigned attributes, may object-based facilities but has none of the object-oriented

require resources to serve them, and thus may queue to awaitacilities. It does contain an extended macro facility for

resource availability. Unlike some network languages, adding statements and extended features for representing

resources in YANSL are active entities, like transactions, the simultaneous behavior of objects.

and may be used to model a wide variety of real-world To take full advantage of object-oriented simulation

items. The real power of a simple language like YANSL requires more skill from the user. However, that same skill

lies in the ability to extend and adapt the simulation would be required of any powerful simulation modeling

language to directly model the complex problem rather than package but with greater limitations.

trying to adapt the problem to fit the modeling blocks given

by standard simulation packages. REFERENCES

6 FINAL THOUGHTS Joines, J.A. and S. D. Roberts. 1996. Design of object-
oriented simulations in C++. IRroceedings of the
Modeling and simulation in an O-O language possesses 1996 Winter Simulation Conferenceed., John
many advantages. As shown, internal functionality of a Charnes, Douglas Morrice, Dan Brunner, and James
language now becomes available to a user (at the discretion ~ Swain, 65-72. Institute of Electrical and Electronics
of the class designer). Such access means that existing Engineers, New Jersey.
behavior can be altered and new objects with new behaviorJoines, J.A. and S. D. Roberts. 1997. An Introduction to
introduced. The O-O approach provides a consistent Object-Oriented Simulation in C++. IRAroceedings

means of handling these problems. of the 1997 Winter Simulation Conferened., Sigrun
0O-0 systems view the world as a set of autonomous Andradottir, Kevin J. Healy, David H. Withers, Barry

agents that interact or work together to solve some L. Nelson, 78-89. Institute of Electrical and

complex task. Each object is responsible for a specific task Electronics Engineers, New Jersey.

that helps one organize the complexity of complex systems Fundamentals of Object-Oriented Simulation. In

which in turn simplifies the computer programming tasks. Proceedings of the 1998 Winter Simulation

0O-O designs yield smaller systems through the reuse of Conference ed., Sigrun Andradottir, D.J. Medeiros,
common mechanisms. They are more reliant to change and Edward F. Watson, John S. Carson, and Mani S.
are better able to adapt over time. O-O designs greatly Manivannan, 141-150. Institute of Electrical and

reduces the risk of building complex software systems Electronics Engineers, New Jersey.

because they are developed to evolve incrementally from Joines, J.A. and S. D. Roberts. 1998b. Object-oriented
smaller systems in which they have been tested for simulations. InHandbook of Simulatigned., Jerry
reliability and stability. Banks, 397-428. John Wiley & Sons, Inc. New York

The O-O ideas have re-rooted in simulation, after
being initiated by simulation through SIMULA. The AUTHOR BIOGRAPHIES
Smalltalk environment is fully O-O and contains fully
OOS. Obviously simulation languages based on C++, like JEFFERY A. JOINES is a Research Associate in the
C++/CSIM and C++SIM, possess all the object-oriented Furniture Manufacturing and Management Center at
capability described in this paper. Simple++ and NCSU. He received his B.S.I.E, B.S.E.E, M.S.I.LE and
MODSIM Il are further examples of object-oriented Ph.D. I.E. from NCSU. He was the 1997 winner of the
languages that employ most of these concepts within Pritsker IIE Doctoral Outstanding Dissertation Award. He
different simulation frameworks. is the WSC 2000 Proceedings Editor

The queuing network based languages like Arena and
AweSim have beginnings of object-based. Both languagesSTEPHEN D. ROBERTS is a Professor in the
provide a composition approach to creating network macros, Department of Industrial Engineering at NCSU. He
through Arena templates and AweSim subnetworks. received his B.S.I.E., M.S.L.E., and Ph.D. from Purdue
However neither are autonomous and independent objects inUniversity. He was the recipient of the 1994 Distinguished
the sense described here and extensibility cannot be used t&ervice Award. He has served as Proceedings Editor and
extend the active entities. Both have access to Visual Basic,Program Chair for WSC.

140

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

