
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

SLX: PYRAMID POWER

James O. Henriksen

Wolverine Software Corporation
2111 Eisenhower Avenue, Suite 404
Alexandria, VA 22314-4679, U.S.A.

-

rs
,

n

X
e
v
te
X
e

s
io
.
a
te

f a
ing
nt of

e
are

 of

rs
 of
ide
for

al
 to
ces

me
t,
al
the
er
le

or
ABSTRACT

SLX is Wolverine Software’s “next generation” simula
tion language. SLX stands for Simulation Language with
Extensibility. SLX provides an inverted pyramid of laye
which range from its C-like SLX kernel, at the bottom
through traditional simulation languages, e.g., GPSS/H,
the middle, to application-specific language dialects a
extensions at the top. Building new layers atop old ones
facilitated by SLX’s unique extensibility mechanisms. SL
also contains innovative features for coupling SLX to oth
languages and packages. This paper presents an over
of SLX. Earlier papers (Henriksen 1997, 1998) presen
the development of a conveyor modeling package in SL
and examples of how SLX has been coupled with oth
software, respectively.

1 INTRODUCTION

SLX is a unique simulation language:

• It is implemented as a multiplicity of layers,
rather than a collection of monolithic, “black
box” building blocks. In SLX, you can get
inside higher-level building blocks by
“drilling down” to lower layers.

• SLX has extensibility, or layering
mechanisms which allow you to expand
existing layers or build new ones atop old
ones.

• SLX has provides a development
environment which allows you to put a model
under the microscope through the use of
windows which mirror a model’s hierarchy of
layers.

The layers of SLX form an inverted pyramid, a
shown in Figure 1. Traditional language-based simulat
tools fall in the middle of the SLX pyramidal hierarchy
By “traditional” we mean simulation tools that provide
set of building blocks which are combined and connec
167
in
d
is

r
iew
d
,
r

n

d

to form a network or block diagram representation o
system being simulated. This approach to model build
has been used for a long time, at least since the adve
GPSS in 1962, if not earlier.

Packages for Non-Simulationists

Application-Specific Packages

GPSS/H-Like Languages

Kernel Extensions

C-Like Kernel

Figure 1: The SLX Pyramid

In the sections which follow, we will examine th
strengths and weaknesses of traditional simulation softw
and explain how SLX expands upon the capabilities
such tools.

1.1 Strengths and Weaknesses of Traditional
Simulation Software

The traditional, building-block approach to modeling offe
a number of advantages. A well-conceived collection
building blocks is easily mastered, applicable to a w
variety of systems, and provides a good framework
conceptualizing models.

There are also a few problems with the tradition
approach. First, the collection of building blocks tends
grow over time, as the tool’s vendor extends and enhan
the product. No matter how well this is done, so
additions are obviously “grafted onto” the produc
detracting from the conceptual integrity of the origin
collection. Second, no matter how well-conceived
collection of building blocks is, it’s possible to encount
new modeling situations in which none of the availab
building blocks exactly fits a particular need. Third, f

Henriksen

a
o
t

ri
a

o
k
e

ld
 t
e
g
”

iv
in
a

ic
tl
t

a
t

n
,

e
e

h
.
d
he
g
st
g
g
en
le

ly
ed
ck

l
 it
ld
an

re
some users of simulation, a level of abstraction higher th
that of the basic building blocks is appropriate. F
example, a foreman on a factory floor might be able
make excellent use of a simulation, but be unable to w
one. For him/her, a higher level of abstraction is necess
in order to specify model inputs and parameters, and
evaluate model outputs.

1.2 Improving on the Traditional Approach

SLX is the result of Wolverine Software’s many years
experience in developing traditional, building-bloc
languages. In the development of SLX, we were concern
with three primary issues: layers, layering mechanism
and the model development environment which wou
provide access to the layers. Our first objective was
devise a hierarchy of well-conceived layers such that us
of SLX would be able to spend most of their time usin
higher layers of the software, but be able to “drill down
into lower layers when appropriate. Our second object
was to develop layering mechanisms which made mov
up and down the hierarchy easy. Our third objective w
to provide Windows-based model development tools wh
were (1) hidden at higher levels of abstraction, (2) instan
available on demand, and (3) able to provide insight in
the innermost (lowest level) workings of SLX

1.3 The Layers of the SLX Pyramid

The pyramidal appearance of Figure 1 depicts the size
diversity of SLX layers. The SLX kernel is a small, bu
very powerful collection of simulation primitives. It is the
result of carefully studying our own GPSS/H language a
GPSS/H-like building blocks to identify their common
“root” functionality. SLX’s kernel has the following
distinguishing characteristics:

• The number of required simulation primitives
is astonishingly small (about a dozen,
depending on how you choose to count
them).

• Due to their atomic nature, kernel primitives
can be combined in many ways, providing a
foundation which supports a wide variety of
higher level modeling paradigms.

• Kernel primitives are directly accessible.
Traditional simulation software may include
a number of building blocks which share a
common underlying feature, but provide no
direct access to the required feature, per se.
For example, many building blocks require
that traffic flowing through them be forced to
wait until one or more components of the
system attain particular states. Different
building blocks may exist for acquiring
168
n
r
o
te
ry
to

f

d
s,

o
rs

e
g
s
h
y
o

nd

d

control of a resource, waiting for a switch to
become true or false, waiting for the contents
of a queue to exceed a threshold value, etc.
Each of these requirements can be fulfilled by
SLX’s kernel-level wait until statement.

• Access to kernel level primitives guarantees
that there are no language-imposed
limitations on model fidelity. The phrase
“precision modeling” has come into vogue
for describing very detailed simulations. In
the SLX pyramid, the lower you go, the more
precise you can be. At the kernel level,
precision is virtually unlimited.

• The kernel provides C-like computational
capability. Most traditional simulation
software is lacking in computational
capabilities, perhaps because greater
emphasis is placed on features for managing
parallel activities over time, than on
computation.

• All kernel primitives, including those
modeled after the C language, are
implemented with exhaustive run-time error
checking. Errors such as storing off the end
of an array or using an invalid pointer value
(the bane of a C programmer’s existence) are
trapped and diagnosed during model
execution. Thus as one moves down the
hierarchy, protection against errors is always
present, even at the lowest levels.

Each of the higher layers in Figure 1 is wider than th
layer below it. This is because higher layers includ
combinations of lower-layer features, with eac
combination tailored to fulfilling a particular requirement
Consider the SEIZE block, a GPSS/H building block use
to acquire a single server in queueing systems. In SLX, t
SEIZE block is implemented as a subroutine comprisin
only 9 lines of executable kernel-level code. The mo
important of these 9 lines of code are a wait until, waitin
for the single server to be idle, and code for invokin
statistics collection features contained in the layer betwe
GPSS/H and the SLX kernel. The 9 lines are remarkab
for two reasons: first, a 9-line subroutine is astonishing
small; and second, those 9 lines can be directly examin
or stepped through by SLX users. What would be a bla
box in other tools is directly accessible in SLX.

1.4 Layering (Extensibility) Mechanisms

SLX’s layers are only a part of the SLX story. Of equa
importance are SLX’s layering mechanisms, which make
easy to extend existing layers or build new layers atop o
ones. Higher layers provide more abstract descriptions th
a lower layers; i.e., lower-level implementation details a

amid Power

C
g

h
n

l

f

l

o
a
l

Z

I
v

e

n

a

a,
/or

a

 of
X
ed
f

y
r
d
is
SLX: Pyr

hidden at the upper layers. SLX provides both data a
procedural abstraction mechanisms. Like C, SLX provid
the ability to define new data types, and to build objec
which are aggregations of data types. The procedu
abstraction mechanisms of SLX, which go well beyond
are extremely powerful. SLX provides a macro langua
and a statement definition capability which allow
introduction of new statements into SLX. (The SLX-hosted
implementation of GPSS/H makes heavy use of t
statement definition feature.) The definitions of macros a
statements can contain extensive logic, includin
conditional expansion, looping, optional arguments, lists
arguments, etc. In fact, such definitions are actua
compiled by SLX, allowing use of virtually all kernel-level
statements. Macros and statement definitions offer
more than simple text substitution.

1.5 The SLX Model Development Environment

The final portion of the SLX story is SLX’s mode
development and debugging environment. The SL
debugger provides unprecedented features for “putting
simulation model under the microscope.” A variety o
Windows can be opened during model execution to sh
model data, model source code, and simulation d
structures such as event lists. Source code displays a
you to watch, at a desired level of detail, code as it
executed. Consider, for example, the GPSS/H SEI
block discussed above. If one were stepping through
GPSS/H model, one could choose either to treat the SE
block as an atomic statement, or to step into its lower-le
implementation. Figure 2 shows SLX’s Calls &
Expansions window, which depicts where you are in
model and how you got there. Figure 2 shows the state
affairs when a user has stepped all the way into t
statistics collection code supporting the SEIZE block. B
clicking on various levels of the Calls & Expansions tre
one can quickly move from layer to layer. This allow
examination of implementation details when necessary a
quickly determining “how on earth did I get to this point i
my model.”

Data windows can be opened for global data and d
unique to individual units of traffic flowing through a
model. Such windows are updated as data values chang

Figure 2: SLX Calls & Expansions Window
16
nd
es
ts
ral
,
e

s

e
d
g
of
ly

ar

X
 a
f
w
ta

low
is
E
 a
ZE
el

a
 of
he
y
,

s
nd

ta

e.

A wide variety of information is available by “right
clicking” on data and/or source code displayed in SLX
windows. Figure 3 shows sample options for viewing dat
and Figure 4 shows options for viewing source code and
setting debugger breakpoints.

Figure 3: Sample Data Display Options

Figure 4: Sample Code Display/Breakpoint Options

Collectively, SLX’s layers, layering mechanisms, and
model development/debugging environment comprise
unique, powerful simulation tool.

In the sections which follow, SLX’s extensibility
(layering) mechanisms are illustrated; selected features
the SLX kernel are presented; the ability to integrate SL
with other software is described; and examples are cit
which illustrate how SLX has been used in a variety o
large-scale projects.

2 EXTENSIBILITY FEATURES

The SLX pyramid supports development of a wide variet
of higher level simulation applications. Much of the powe
of SLX derives from the ease with which one can exten
existing layers or build new ones atop old ones. In th
9

Henriksen

t

e

e

s

a
nd
iler
for
6,
ion
ded

er
is

 in
ey
sion

nt

ta-
g

le
of
ave
os.
,
es.

fer
f

In
LX
t

section we provide an overview of how SLX’s extensibili
mechanisms facilitate such efforts.

2.1 SLX Compiler Extensions

Extensions to the SLX compiler are available in thr
forms:

• SLX macros provide the simplest form of
extension. SLX macros are similar to macros
found in many programming languages,
spreadsheets, etc.

• SLX statement definitions allow the
introduction of new statements into SLX. We
have used statement definitions to provide
SLX equivalents to many GPSS/H blocks.

• SLX precursor modules provide a mechanism
for grouping together collections of compiler
extensions into packages which can
incorporate very powerful compile-time
functionality.

2.2 Unbounded Compiler Extensions

In a traditional language compiler, elements of a progr
(referred to below as modules) are translated into som
form (referred to below as object code) which can be
executed by a computer or interpreted by an interpr
program. The architecture of a traditional compiler
shown in Figure 5.

 Source Code Object Code

 Module A A’
 Traditional

 Module B B’
 Compiler

 Module C C’

Figure 5: Traditional Compiler Architecture

In SLX, macros, statement definitions, and precur
modules can be used to extend the SLX compiler. T
architecture is shown in Figure 6.

 Source Code Object Code

 Module A A’
 SLX

 Extension B Compiler

 B’
 Module C C’

Figure 6: SLX Compiler Architecture
17
y

ee

am

ter
is

or
his

When the SLX compiler encounters the definition of
compiler extension, it sets aside its current work a
processes the extension in its entirety. When the comp
resumes its work, the compiled extension is available
use throughout the rest of the compilation. In Figure
Module C can make use of extensions defined in Extens
B. This process can be used repeatedly; i.e., the exten
compiler can be further extended, without bound.

2.3 SLX’s Statement Definition Facility

One of the most commonly used forms of SLX compil
extensions is the SLX statement definition facility. Th
facility allows the introduction of new statements into the
SLX language. Such statements are similar to macros
traditional programming languages, except that th
operate at the statement level, rather than at the expres
level, as is commonly the case.

There are four major components of a stateme
definition:

A. a prototype which specifies the syntax of the
statement (informally, “what it looks like”);

B. optional logic and looping within the
definition, responding to the presence,
absence, and other characteristics of
statement components;

C. one or more expand statements which inject
“generated” text into the source stream seen
by the SLX compiler; and

D. optional diagnose statements which issue
mean-ingful messages when errors in
statement usage are made.

SLX statement prototypes are described using a me
language which permits specification of the followin
kinds of statement components:

A. User-supplied expressions
B. User-defined keywords
C. Optional components
D. Repeated components; e.g., lists of items
E. Punctuation characters

Perhaps the most striking feature of SLX is the vehic
by which the logic, looping, expansion, and issuance
diagnostics are expressed. Most languages which h
macros employ special sublanguages for defining macr
Typically such sublanguages are radically different from
and weaker in expressive power than, their host languag
For example, #if, #else, and #endif in the C language of
very weak capabilities for conditional expansion o
macros, and their syntax differs from that of C itself.
SLX, no separate sublanguage is used; rather, the S
language itself is used. The only limitation is tha
0

SLX: Pyramid Power

g

h

r
e

e

I

e

l

cts
 a
Its
by
.)
e
a
an
ests
ic
or

li
ld

n

ed
 a
are

y
e.

e
d.
sed
re

-

m
as
ve
.

er

n
ar
o
e

a
uld
s
be
simulation constructs such as time delays, fork, and w
until, which have no meaningful interpretation durin
program compilation, cannot be used.

The ability to use (almost) all of the SLX language i
statement definitions permits tremendous flexibility an
complexity in statement definitions. For example,
statement definition can read information from a file an
store the information in user-defined, compile-time da
structures which are interrogated and manipulated by ot
statement definitions.

In addition to statement definitions, SLX support
more traditional macros and precursor modules. Precursor
modules are “large” SLX compiler extensions. They a
not limited to just macros and statement definitions; rath
they can contain a host of functions and data which are
be made available at compile-time, run-time, or both.

As stated at the end of Section 2.2, extensions can
built upon extensions upon extensions, without boun
One might ask whether the complexity of model translatio
becomes unwieldy in such circumstances. All three form
of SLX compiler extensions (statement definitions, macro
and precursor modules) are compiled into executab
machine instructions by SLX. Thus, there is no translatio
performance penalty for heavy use of extensions. T
process of cumulative extension of SLX is therefor
described as “unbounded, executable, end-user extensio

3 SLX KERNEL FEATURES

The number of primitives required to support simulation
surprisingly small. However, for a simulation softwar
developer, implementing some of these primitives in
general form can be quite difficult.

Features such as SLX’s generalized wait until are
extremely difficult to implement. Not surprisingly, this
feature has rarely appeared in other simulation softwa
Paradoxically, some of the features which are the mo
difficult to implement are the most easily understood.
the remainder of this section, we will present som
representative features, to illustrate the functionality, eas
of-of-use, and ease-of-learning of SLX.

3.1 Objects and Pointers to Objects

In SLX, two kinds of objects are used to represe
components of systems being modeled. Passive objects are
used for modeling entities which have no “executable
behavior. In a model of a factory, widgets being produc
would be modeled as passive objects, since they have
self-determined, executable behavior. Their behavi
results from being acted upon by other objects. (For tho
readers familiar with C, passive objects are very much li
C structs.) Active objects have executable, at least partial
self-determined behavior patterns. In a model of a facto
a foreman would be modeled as an active object.
17
ait

n
d
a
d
ta
er

s

e
r,

 to

 be
d.
n
s

s,
le
n

he
e
n.”

is

a

re.
st
n
e
e-

nt

”
d

 no
or
se

ke
y
ry,

Some entities can be modeled either as active obje
or passive objects. For example, a simple server with
FIFO queue can be modeled as a passive object.
behavior depends solely on the requests made for it
active objects. (This is the way Facilities work in GPSS/H
For more complicated servers, an active object may b
more appropriate. Consider a butcher in a model of
supermarket. In a simple queueing model, the butcher c
be represented as a passive object, responding to requ
for service one customer at a time. In a more realist
model, a butcher would have a more complex behavi
pattern, cycling through activities of cutting meat,
arranging products in refrigerators, interacting with the de
department, taking breaks, etc. Such behavior wou
require modeling the butcher as an active object.

Objects are created by using the new operator, which
returns a pointer to the newly created object. When a
activate operator is applied to a pointer to an object, a puck
(defined in Section 3.2) is created for the object and plac
on the Current Events Chain; i.e., the puck is placed in
ready-to-execute state. The new and activate operators
almost always used in a single statement:

activate new butcher;

The manipulation of pucks is the basic mechanism b
which a collection of objects experiences events over tim
By rapidly switching from puck to puck, the SLX
simulator creates the illusion of parallelism among th
activities of the objects to which the pucks are attache
Scheduled time delays, e.g., service times, and state-ba
delays, e.g., waiting for a server to become available, a
operations performed on pucks.

3.2 What’s a Puck?

The original version of GPSS introduced the transac-tion
flow modeling world-view in 1962. In the transaction-flow
world view, attention is focused on units of traffic, called
transactions, which flow through the block diagram
representation of a system, competing for syste
resources. In the 37-year period since GPSS w
introduced, a large number of other languages ha
implemented variations of the transaction-flow world view
Implementation of this world view, and the terminology
used to describe it vary widely (See (Schriber and Brunn
1997)).

In traditional transaction-flow languages, a transactio
contains two types of data, (1) user-defined data particul
to the unit of traffic, and (2) “scheduling” data needed t
keep track of the state and location (current block in th
block diagram) of the unit of traffic in a model. Figure 7
illustrates this architecture. In a GPSS model of
supermarket, a transaction representing a shopper wo
have attributes such as probabilities of visiting variou
departments, e.g., the deli, expected number of items to
1

Henriksen

g

n
e

f

s
as
ct

 is
t
or

ry,
le
e
e

 be
h

ve
rk

e
e
in

t
ine
 to
 is
do

f

 a
by
purchased in each department, etc. Scheduling data wo
include priority, next scheduled event time, next mod
statement to be executed, etc. Scheduling data inclu
values which can be modified by a program, e.
transaction priority, and other values which are “interna
values maintained by run-time support routines for t
simulation language. All user-defined transaction data c
be both read and written by user code.

Scheduling
Data

User-Defined
Attribute Data

 Block

 Current Block
 Block

 Block

Figure 7: Traditional Transaction Architecture

In SLX the functionality of a transaction is broke
down into independent lower-level components, and th
are no transactions, per se. The role of a transaction’s user
defined data is played by an instance of an SLX us
defined object class. The role of a transaction’s schedulin
data is played by an SLX puck. Each SLX object created is
an instance of its object class and has its own copy of
object class’s data. The statements which are executed
the object are contained in the actions property of the
object’s class and any lower-level procedures invoked
the actions property. In SLX, it is possible to have mo
than one puck for a given object. An object instance
which there are two pucks is shown in Figure 8.

 Puck 1 Object Instance Data

class x
 {

 Puck 2 actions
 {
 statement
 statement
 statement
 }
 };

Figure 8: An Active Object With Two Pucks
17
uld
el
des
.,
l”

he
an

re
-
er-
g

the
 by

by
re
or

3.3 Inter-Object and Intra-Object Parallelism

In SLX, parallelism can be modeled in two ways: a
interactions among objects (inter-object parallelism) and
multiple actions performed on behalf of the same obje
(intra-object parallelism). Inter-object parallelism, in which
there is a 1:1 relationship between objects and pucks,
functionally equivalent to transaction flow. Intra-objec
parallelism is achieved by creating more than one puck f
an active object. This is accomplished by means of a fork
statement. Suppose that in developing a model of a facto
we need to model a complicated machine which is capab
of performing three operations simultaneously. Som
components of the machine are common to all thre
operations. The data describing such components must
easily accessible within the portions of the model for eac
of the three operations. Figure 9 shows how an acti
object can be used to model such a machine, using fo
statements.

Each fork statement creates a new puck for th
machine object. The offspring puck is placed on th
Current Events Chain, poised to execute the actions with
the braces (“{…}”) following the fork statement. The
parent puck continues its execution with the nex
statement. After the second fork is executed, the mach
object has three pucks, each of which has direct access
data common to the entire machine, and each of which
independently scheduled. Thus our active machine can
three things at once.

class machine
{
“Declarations for variables local to the machine”

actions
{
fork

{
“actions for operation 1”
}

fork
{
“actions for operation 2”
}

“actions for operation 3”
}

};

Figure 9: Intra-Object Parallelism Using Forks

Most transaction-flow simulation languages offer only
inter-object parallelism. Most also offer some form o
“cloning” operation which is superficially similar to SLX’s
fork statement. When such an operation is performed,
new transaction is created. The new transaction,
2

SLX: Pyramid Power

i

i

h

r
o

o

a

lt

b
c
g

e
a

a
n

t

o

in

i

in

e

t,
to
a
no

r

f
e

a

n,

.
t
d
re
definition, has its own scheduling data, and usually th
user-defined attributes of the parent transaction are cop
into the offspring (clone). A new transaction is anothe
complete instance of Figure 7. SLX’s fork statemen
creates a new puck (scheduling data only) which shares the
user-defined attributes with other pucks, as shown
Figure 8.

If a language has only a transaction-cloning verb, an
no fork verb, modeling system components (such as t
complicated machine discussed above) is much mo
difficult, although certainly not impossible. Consider, fo
example, GPSS/H’s SPLIT block, which creates a clone
an entire transaction. We could use SPLIT blocks to mod
our machine. The difficulty arises in choosing where t
store the data that must be shared by all three transactio
If multiple GPSS/H transactions need to share a sing
copy of data describing a component of a system, the d
must be stored in global variables. (In GPSS/H
transactions can easily change their own attributes, b
changing the attributes of other transactions is difficu
Thus, storing the shared data in any given transaction
impractical.) If only one such machine exists, storing th
shared data in global variables is easy. If there is more th
one such machine, separate collections of shared glo
variables must be used, one collection for each su
machine. If the collection of machines does not chan
during model execution, the shared data can be statica
allocated. However, if the collection of machines chang
during model execution, some form of dynamic dat
management must be implemented by the modeler, sin
GPSS/H global variables are statically allocated at the st
of model execution; i.e., they cannot be created a
destroyed during model execution.

The fork statement is an extremely handy modelin
tool. In complex modeling situations, intra-objec
parallelism can be indispensable. The use of multiple puc
offers easy shared access to object attributes among all
pucks which belong to any given instance of the objec
while preventing access by pucks which belong to
different instance.

3.4 SLX’s Generalized Wait Until

As units of traffic flow through a model, they are subject t
two forms of delay, scheduled delays, and state-bas
delays. In SLX, state-based delays are modeled us
control variables and the wait until statement. The keyword
“control” is used as a prefix on SLX variable declarations:

control integer count;
control boolean repair_completed;

 The “control” keyword tells the SLX compiler that at
each point at which the value of the control variable
changed, a check must be made to see whether any pu
in the model are currently waiting for the variable to atta
173
e
ed
r
t

n

d
e

re

f
el

ns.
le
ta
,
ut
.
is

e
an
al
h
e
lly
s

ce
rt
d

g

ks
the
t,
a

ed
g

s
cks

a particular value or range of values. Such waits ar
described using the wait until statement:

wait until (count > 10);
wait until (repair_completed);

Compound conditions are allowed as well:

wait until (count >= 10
or repair_completed
and not repairman_busy);

SLX also supports indefinite (user-managed) waits. Three
steps are required to implement an indefinite wait. Firs
the puck which is going to wait must be made accessible
other pucks. This is usually done by placing the puck into
set. Second, the puck executes a wait statement with
“until” clause. Finally, at a subsequent point in simulated
time, another puck executes a reactivate statement to
reactivate the waiting puck.

Wait until expressions can include a time-based
condition.

optimistic_event_time = “some expression”

wait until (time == optimistic_event_time
or “some other condition”);

4 SLX AS A COMPONENT OF YOUR WORLD

Although SLX is extremely powerful and flexible, there
are situations in which it is convenient to use othe
software tools in conjunction with SLX. For example, if
you have a pre-existing collection of C functions, it may be
very handy to be able to call them from SLX. The
remainder of this section provides examples of how SLX
can be integrated with the other tools in your world.

4.1 SLX’s DLL Interface

SLX has very powerful facilities for calling C/C++
functions which are contained in a DLL (dynamic link
library). To call functions in a DLL, you must supply to
SLX a function prototype which defines the arguments (i
any) of each function, the values returned (if any), and th
name of the DLL file. The SLX development environment
has a menu item which can be clicked to generate
C/C++-compatible .h file which maps all SLX data passed
to and from DLL functions into C syntax. SLX objects
contain hidden elements which are used for error detectio
debugging and other internal bookkeeping functions. If an
SLX object is to be manipulated by a C function, the
hidden information must be taken into account when
constructing an analagous C/C++ struct definition
Accordingly, object elements for which there is a direc
counterpart in C/C++ are described using straightforwar
declarations in a generated .h file, and hidden elements a

Henriksen

d
c
to

o
h

e

m
th
u

e
h
n
h
e

le

d

f
 o

is
in
s
d
n

X

n
y

X
y
h
d,
d
a
e

ale

rs
 if
an
g
st
 to
ir
g
as

ns.
d.
,

,
le

d
n

.
d

 J.
cs
declared as arrays of bytes with the dimension chosen
“pad” the C/C++ struct to achieve agreement with SLX.

When SLX detects the first call of any function in a
given DLL, it checks to see if the DLL has a function
named “connect.” If so, this function is called first, an
SLX passes it a pointer to a vector of pointers to callba
functions inside SLX. These functions can be used
perform functions that are risky or impossible to perform
from C/C++ subsequently called DLL functions. At the
completion of execution, each DLL used is interrogated f
the existence of a “disconnect” function. Any suc
functions found are called by SLX prior to SLX program
termination. This allows DLLs to perform any final
“cleanup” operations, e.g., closing open files.

4.2 SLX-Proof Interface

Wolverine Software has developed an interface betwe
SLX and Proof Animation (Henriksen 1999) using SLX’s
statement definition facility. Proof requires an input strea
of ASCII commands that create and destroy objects on
screen, move them, change their colors, etc. A small, b
powerful collection of commands is used for this purpos
SLX statements have been defined for generating t
commonly used Proof commands and command optio
The syntax of the SLX statements matches that of t
corresponding Proof commands. For example, to generat

place 27 on loop

Proof command, one might write

PA_place objectID on “loop”;

In the example shown above, “27” and “loop” are variab
components of the Proof place on command. The SLX
code supplies “27” as the value of a variable name
objectID and supplies “loop” as a string constant.

The SLX-Proof interface can either write Proo
command streams to files for post-processed animation
transmit them directly to the DLL version of Proof for
concurrent or even real-time animation.

A third party has developed an SLX package that
capable of reading entire Proof layout files, storing them
SLX data structures, and rewriting the layout files. Thu
geometric characteristics of layouts drawn or modifie
using Proof are accessible to SLX programs. In additio
Proof layout files can be modified by an SLX program.

4.3 SLX-HLA Interface

SLX’s DLL interface has been used to connect SL
models with the run-time infrastructure (RTI) of HLA
(DoD 1997), DoD’s High Level Architecture for
distributed simulations (Strassburger, Schulze, Klein, a
Henriksen 1998). Integration was accomplished b
174
to

k

r

n

e
t

.
e
s.
e
 a

r

,

d

building C++ wrapper functions which sit between SL
and the RTI. The integration of SLX and HLA is highl
synergistic. It brings to SLX an architecture whic
promises to achieve widespread adoption for distribute
interoperable simulations. For people who know HLA an
want to develop such simulations, SLX provides
powerful alternative to developing simulations from th
ground up in a high-level language such as C++ or ADA.

5 APPLICATIONS OF SLX

SLX has been used in a variety of complex, large-sc
applications:

• Large, multi-modal transportation center
• Material-handling & Conveyor Systems
• HLA federation component
• HLA animator (with Proof Animation)
• Telecommunication systems
• Pneumatic tube hospital specimen delivery

system

5 CONCLUSIONS

SLX is a well-conceived, layered simulation system. Use
of the upper layers can ignore lower layers. However,
their requirements are not met at a given level, they c
move down one or more levels, without exertin
extraordinary effort and without losing protection again
potentially disastrous errors. Developers, who are used
working down among the lower layers, have at the
disposal powerful extensibility mechanisms for buildin
higher layers for use by themselves or others. SLX h
been used in a variety of very large, complex applicatio
Its extensibility mechanisms have been heavily exploite
SLX is easily integrated with other simulation tools
including HLA. If you’re teaching or learning simulation
or developing simulations, SLX can be an invaluab
component of your world. SLX = pyramid power.

REFERENCES

Brill, J.C and D.E. Whitney. 1997. Development an
Application of an Intermodal Mass Transit Simulatio
with Detailed Traffic Modeling. In Proceedings of the
1997 Winter Simulation Conference, ed. S
Andradóttir, K.J. Healy, D.H. Withers, and B.L
Nelson. 1230-1235. Institute of Electrical an
Electronics Engineers, Piscataway, New Jersey.

Crain, R.C. Simulation With GPSS/H. 1998. Proceedings
of the 1998 Winter Simulation Conference, ed.
Madeiros, D.J., E. Watson, M.S. Manivannan, and
Carson. 235-240. Institute of Electrical and Electroni
Engineers, Piscataway, New Jersey.

SLX: Pyramid Power

nd

.

f
w

.

w

t

l

n.
lf

n.
s

e
.
n
ion
ss

n
ors
Department of Defense (DoD). High Level Architecture
Interface Specification Version 1.2 (1997). Available
on-line at http://hla.dmso.mil.

Henriksen, J.O., 1999 General-Purpose Concurrent a
Post-Processed Animation with Proof. In Proceedings
of the 1999 Winter Simulation Conference, ed. P.A.
Farrington, H.B. Nembhard, G.W. Evans, and D
Sturrock. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Henriksen, J.O., 1997 An Introduction to SLX. In
Proceedings of the 1997 Winter Simulation
Conference, ed. S Andradóttir, K.J. Healy, D.H.
Withers, and B.L. Nelson. 559-566. Institute o
Electrical and Electronics Engineers, Piscataway, Ne
Jersey.

Henriksen, J.O. 1996. An Introduction to SLX. In
Proceedings of the 1996 Winter Simulation
Conference, eds. J. Charnes, D. Moore, D. Brunner, J
Swain. 468-475. Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

Henriksen, J.O., 1995. An Introduction to SLX. In
Proceedings of the 1995 Winter Simulation
Conference, ed. C. Alexopoulos. 502-509. Institute of
Electrical and Electronics Engineers, Piscataway, Ne
Jersey.

Schriber, T.J. and D.T. Brunner. 1997. Inside Discrete-
Event Simulation Software: How it Works and Why I
Matters. In Proceedings of the 1997 Winter Simulation
Conference, ed. S Andradóttir, K.J. Healy, D.H.
Withers, and B.L. Nelson. 14-22. Institute of Electrica
and Electronics Engineers, Piscataway, New Jersey.

Strassburger, S., T. Schulze, U. Klein, and J.O. Henrikse
1998. Internet-Based Simulation Using Off-the-She
Simulation Tools and HLA. In Proceedings of the
1998 Winter Simulation Conference, ed. Madeiros,
D.J., E. Watson, M.S. Manivannan, and J. Carso
1669-1676. Institute of Electrical and Electronic
Engineers, Piscataway, New Jersey.

AUTHOR BIOGRAPHY

JAMES O. HENRIKSEN is the president of Wolverine
Software Corporation. He was the chief developer of th
first version of GPSS/H, of Proof Animation, and of SLX
He is a frequent contributor to the literature on simulatio
and has presented many papers at the Winter Simulat
Conference. Mr. Henriksen has served as the Busine
Chair and General Chair of past Winter Simulatio
Conferences. He has also served on the Board of Direct
of the conference as the ACM/SIGSIM representative.
175

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

