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ABSTRACT

There are known pragmatic and theoretical difficulties as
ciated with some standard approaches for input distribut
selection for discrete-event simulations. One difficulty
a systematic underestimate of the variance of the expec
simulation output that comes from not knowing the ‘true
parameter values. Another is a lack of quantification of t
probability that a given distribution is best. Bayesian met
ods have been proposed as an alternative, but accept
has not yet been achieved, in part because of increa
computational demands, as well as challenges posed by
specification of prior distributions. In this paper, we sho
that responses to questions like those already asked and
swered in practice can be used to develop prior distributio
for a wide class of models. Further, we illustrate techniqu
for addressing some computational difficulties thought
be associated with the implementation of Bayesian meth
ology.

1 INTRODUCTION

A central problem in the design of simulations is the s
lection of appropriate input distributions to characterize t
stochastic behavior of the modeled system (Law and Kel
1991; Wagner and Wilson 1995). Failure to select app
priate input distributions can lead to misleading simulatio
output, and therefore to poor system design decisions.

Still, there is controversy about both classical and su
jective techniques that are commonly used for input dist
bution selection. Critiques of classical techniques includ
use of a single distribution and parameter underestima
the uncertainty in the distribution’s functional form and pa
rameter (Draper 1995); goodness-of-fit and P-value crite
don’t quantify the probability that an input distribution i
best (Berger and Delampady 1987); with few data poin
few distributions are rejected, and with many data poin
all distributions are rejected (Raftery 1995); and there
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no coherent method for selecting among non-rejected di
tributions.

A critique of several approaches to subjective specifi
cation of an input distribution is that a single probability
distribution (such as the triangular, truncated normal, Bézier,
or ‘smoothed’ histograms) with a specific parameter valu
is chosen. As with the classical approach, this tends t
underestimate the uncertainty about the underlying natu
of the random process generating the data. Further, it is d
ficult to analyze how additional relevant data should affec
the selected input distribution.

The Bayesian model average (BMA) approach de
scribed in Sec. 3 has been proposed as a mechanism
overcoming these difficulties (Draper 1995). The BMA has
been considered in a simulation context (Cooke 1994, Sco
1996, Chick 1997), as well as applications in econome
rics, artificial intelligence, sociology and medicine (e.g.,
see Draper 1995, Madigan and York 1995, Raftery 199
and references therein). The BMA approach (like classica
maximum likelihood techniques) uses likelihood functions
to infer parameter values. Unlike classical techniques,
also quantifies uncertainty about which input distribution is
most appropriate. Both the BMA approach and subjectivis
techniques incorporate prior information. Unlike some sub
jectivist techniques that fit a specific histogram and provid
little formalism for incorporating additional historical data,
the BMA explicitly uses Bayes’ rule and historical data for
inference.

Still, there have been difficulties with implementing
the BMA approach in practice. First, the BMA approach
requires the assessment of prior probability distributions
a task perceived by many as difficult. Second, there i
a computational price to pay for implementing the BMA
approach. Two sources of this price are the (a) computatio
of posterior probability that a given model is correct, given
available historical data, and (b) implementation of ‘mode
averaging’, which requires that input parameters be sample
from an appropriate posterior distribution for input into each
replication. This latter point of the BMA approach allows for
7
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an evaluation of how input distribution uncertainty induce
uncertainty in the expected value of the simulation outp

This paper describes a general approach for convert
responses to questions similar to thosealready asked in
simulation practiceinto prior distributions for parameters of
distributions in the regular exponential family (including th
exponential, gamma, normal, and Bernoulli distribution
or for parameters of shifted versions of distributions
the regular exponential family (such as the three-parame
gamma distribution).

The general approach is presented in Sec. 5 and
lustrated by numerical example. For some cases wh
regularity conditions are lacking, such as for the shifte
gamma distribution, we indicate that it is possible to app
Markov Chain Monte Carlo techniques, including the ada
tive rejection Metropolis sampler (ARMS) of Gilks, Best
and Tan (1995), to generate random variates from appro
ate posterior distributions. A Bayesian analysis, therefo
is a feasible and implementable approach for selecting in
distributions for stochastic simulations in a way that cohe
ently represents the effects of input distribution uncertain
on output uncertainty.

2 INPUT SELECTION PROBLEM

The input selection problem has many nuances and variati
(e.g., see Cheng 1994, Cario and Nelson 1997, and Lee
1995). Here, we restrict attention input distribution selectio
for a single source of randomness in a simulation. Multip
sources of randomness are treated similarly.

Suppose that a sequence of real-valued random qua
tiesX1, X2, . . . are needed as input to a simulation, whe
theXi are believed to be independent given the distributi
and parameter, and historical dataxN = (x1, . . . , xN ) are
available to help selection an input distribution.

The general problem is how to select distributions an
their parameters for input into stochastic simulations. T
describe the data, we chooseq < ∞ candidate distri-
butions, where distributionm has continuous paramete
3m = (3m,1, . . . , 3m,dm), and dm is the dimension of
3m, for m = 1, . . . , q. The parameter takes on value
λm = (λm,1, . . . , λm,dm) in the spaceQm. Denote by
fX|m,λm (x) the probability density function (pdf) forX,
given m andλm.

By means of example, suppose that a distribution f
the times to failure of a machine is required for input to
stochastic simulation, and that3distributions are considered

1. Exponential.λ1 = (θ), with rateθ > 0,

fX|m=1,λ1 (x) = θe−xθ .
31
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2. Normal. λ2 = (µ, τ), with τ = 1/σ 2 > 0,

fX|m=2,λ2 (x) = τ 1/2

(2π)1/2
e−(x−µ)2τ/2.

3. Shifted gamma.λ3 = (ξ, α, β), with ξ, α, β

> 0.

fX|m=3,λ3 (x) = βα

0(α)
(x − ξ)(α−1)e−(x−ξ)β .

This choice of parametrization simplifies the analysis below
Although the support of the normal distribution is the entire
real line, and failure times are non-negative, in practice
the parameters of the normal distribution give exceedingl
small probabilities to negative values. If a negative value
is generated during the simulation, it might be rejected
(giving a truncated normal distribution). We similarly ‘re-
ject’ negative values, but discuss the non-truncated norm
distribution to simplify the exposition.

3 A BAYESIAN FORMULATION

Since the input distribution is unknown, letM be a random
variable so thatM = m is the event that input distribution
m is correct, form = 1, . . . , q. A Bayesian approach
requires prior probability distributions to describe initial
uncertainty regarding the unknown input distribution and
parameter. LetpM (m) be the probability mass function
(pmf) that describes prior belief that distributionm is the
correct distribution. Letf3m|m (λm) be the prior pdf that
λm is the true parameter, given thatm is correct. Sec. 5
describes how prior distributions can be specified.

Given the above assumptions, a Bayesian version inpu
distribution selection problem is focused on the severa
posterior probability distributions, given that historical data
xN is available. The relevant distributions are: the margina
pdf fXN |m (xN ) of the data, given that distributionm is
correct,

fXN |m (xN ) =
∫

Qm

fXN |m,λm (xN )f3m|m (λm)dλm (1)

the posterior pmfpM|xN (m) that distributionM is correct,
given xN ,

pM|xN (m) = fXN |m (xN ) pM (m)∑q

k=1 fXN |k (xN ) pM (k)
(2)

the posterior pdff3m|m,xN
(λm) that a parameter3m, given

m andxN

f3m|m,xN
(λm) = fXN |m,λm (xN ) f3m|m (λm)

fXN |m (xN )
(3)
8
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and the predictive pdffO|xN (o) of the simulation output
O, given xN :

fO|xN (o) =
q∑

m=1

pM|xN (m) · (4)

∫
Qm

fO|m,λm (o) f3m|m,xN
(λm) dλm

Eq. 4 is called a Bayesian model average, and it descr
uncertainty inO due to both input uncertainty and stocha
tic effects. To estimateE[O | xN ] with simulation, one
samples input distributions and parameters for each re
cation from the posterior distributions in Eq. 2 and Eq.
and holds them fixed during a replication used to gene
an observationO = o. This allows for uncertainty in the
input parameters to propogate through to the output.

Eq. 4 assumes thatfO|m,λm,xN (o) = fO|m,λm (o), which
reflects the reasonable modeling assumption that histo
data forX and simulation outputO are conditionally inde-
pendent, given the distributionm and parameterλm. This
assumption states that if (m, λm) is the known true model
neither additional historical data nor additional random va
ates from the (m, λm) distribution will change our mind tha
(m, λm) is the true distribution.

4 INPUT SELECTION COMPUTATIONS

One practical issue for implementing the BMA approach
the determination ofpM|xN (m) andf3m|m,xN

(λm). In some
situations, closed-form results are available, as discusse
Sec. 4.1. In many cases, however,f3m|m,xN

(λm) may be
known only up to a constant of proportionality. To determi
this constant, one might apply one of five general techniq
(Evans and Swartz 1995): asymptotic methods, Mar
chain methods, importance sampling, adaptive importa
sampling, and multiple quadrature. Here, we look at clos
form expressions, and the use of the ARMS sampler.
further discussion, see Chick (1999).

A second practical issue is the generation of varia
from the posterior distribution of3m, given m, xN . We
indicate that even for many distributions that do not sati
certain regularity conditions, such as the shifted gam
distributions, it is possible to generate samples from
posterior distributions of their parameters, given histori
data.

4.1 Closed-Form Expressions

The posterior distributionf3m|m,xN
(λm) can be determined

exactly for certain special cases. Of particular importa
is the regular exponential family of distributions, whencon-
jugateprior distributions are employed (e.g., see Berna
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and Smith 1994). Members of this family include the
exponential, normal, gamma, and Bernoulli, among other

More formally, let the likelihood function be

fX|λ (x) = a(x)g(λ)e
∑b

j=1 cj φj (λ)hj (x) (5)

for someb, cj , a(·), g(·), φj (·), hj (·), and that the (conju-
gate) prior distribution is

f3|t (λ) = [g(λ)]t0
K(t)

e
∑b

j=1 cj φj (λ)tj (6)

where the prior distribution parametert = (t0, . . . , tb) is
chosen so thatf3|t,xN

(λ) is proper (i.e.,K(t) = [g(λ)]t0 exp[∑b
j=1 cj φj (λ)tj

]
dλ < ∞). Then the posterior distribu-

tion of λ is

f3|t,xN
(λ) = f3|t+t ′(xN ) (λ), (7)

where t ′(xN ) = (N,
∑N

i=1 h1(xi), . . . ,
∑N

i=1 hb(xi)) are
sufficient statistics forxN , and f3|t+t ′(xN ) (λ) indicates
that the posterior results from inserting the coordinatewis
sum t + t ′(xN ) into Eq. 6.

For the regular exponential family with conjugate prior
then, the integral in Eq. 1 simplifies to:

fXN |m (xN ) = K(t + t ′(xN ))
∏N

i=1 a(xi)

K(t)
(8)

4.1.1 Examples of Interest for Discrete-Event
Stochastic Simulation

We now provide examples of conjugate analysis for distribu
tions that arise often in discrete-event stochastic simulatio
practice, and indicate how the parameters of the conjuga
prior distributions relate to statements about the mean a
variance of the unknown input parameters themselves. Mo
of the results are known in Bayesian circles, but are n
always presented in the form given here, and are not a
well-known in non-Bayesian circles. The results are use
in Sec. 5.1 to help assess prior distributions. The analys
for the gamma distribution has apparently not yet appear
in the literature.

Exponential. For the exponential distribution of Sec. 2,
b = 1, a(x) = 1, g(θ) = θ , c1 = 1, φ1(θ) = −θ , h1(x) =
x. This leads to the conjugate prior

f2|t0,t1 (θ) ∝ θ t0e−θt1, (9)

the gamma(t0 + 1, t1) distribution, soK(t0, t1) = 0(t0 +
1)/(t1)t0+1. It follows that the mean time to failure1/θ has
inverted gamma distribution with meant1/t0 and variance
t1

2/(t0
2(t0 − 1)).
19
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Normal. For the normal distribution with unknown
mean µ and precisionτ , b = 2, a(x) = 1, g(µ, τ) =
(τ/2π)1/2 exp[−τµ2/2], c1 = 1, φ1(µ, τ) = µτ , h1(x) =
x, c2 = 1, φ2(µ, τ) = −τ/2, h2(x) = x2. The conjugate
prior is then

fµ,τ |t (µ, τ) = 1

K(t)

[( τ

2π

)1/2
e− τµ2

2

]t0

eµτt1− τ t2
2 , (10)

which can be manipulated to deduce thatτ has gamma((t0+
1)/2, t̃2/2) distribution, wheret̃2 = t2 − t1

2/t0, and the
conditional distribution ofµ, givenτ , is normal(t1/t0, τ t0).
Thusσ 2 = 1/τ has inverted gamma distribution with mean
t̃2/(t0 − 1), andµ has Student-t marginal distribution with
meant1/t0, precisiont0(t0 + 1)/t̃2, and t0 + 1 degrees of
freedom. The marginal variance ofµ is then t̃2/(t0(t0 −
1)). By integrating Eq. 10 with respect toµ, then τ ,
and noting the distributions ofµ, τ , one obtainsK(t) =
0((t0 + 1)/2)/

(
(t0)

1
2 (2π)

t0−1
2 (t̃2/2)(t0+1)/2

)
.

Two-parameter Gamma. Set b = 2, a(x) = 1,
g(α, β) = (β)α/ 0(α), c1 = 1, φ1(α, β) = α − 1, h1(x) =
logx, c2 = 1, φ2(α, β) = −β, h2(x) = x. The conjugate
prior is then

fα,β|t0,t1,t2 (α, β) ∝
(

βα

0(α)

)t0

e(α−1)t1−βt2

∝ et1(α−1)

(0(α))t0
βαt0e−βt2 (11)

Thus, the conditional distribution ofβ, given α, is
gamma(αt0 + 1, t2). The expected value of the un-
known mean α/β is E[α/β] = E[αE[1/β | α]] =
E[α(t2/(αt0))] = t2/t0. The varianceα/β2 does not ex-
ist when αt0 ≤ 1, and the support ofα allows for this
event. However, conditional onαt0 > 1 (e.g., to reflect
prior belief that a failure rate is increasing),E[α/β2 | αt0 >

1] = E[E[α/β2 | α, αt0 > 1]] = (E[1/(αt0 − 1) | αt0 >

1]) t2
2/t0. Similarly, uncertainty about the unknown mean

can be expressed Var[α/β | αt0 > 1] = (E[1/(αt0 − 1) |
αt0 > 1]) t2

2/t0
2.

Bernoulli. The Bernoulli distribution with parameter
ν ∈ [0, 1] and outcomesx ∈ {0, 1} can be writtenf (x |
ν) = (1 − ν) exp

[
log

(
ν

1−ν

)
x

]
. Thus b = 1, a(x) = 1,

g(ν) = (1 − ν), c1 = 1, φ1(ν) = log
(

ν
1−ν

)
, h1(x) = x.

The conjugate prior is then

fν|t0,t1 (ν) = [K(t0, t1)]−1νt1(1 − ν)t0−t1 (12)

This recovers the beta distribution as the conjugate prior
distribution (often written with parametersα = t1 + 1, β =
t0 − t1 + 1). It follows that K(t0, t1) = 0(t1 + 1)0(t0 −

t1 + 1)/ 0(t0 + 2). s

320
4.2 Non-Regular Distribution?

There are many distributions of interest in simulation tha
are not members of the regular exponential family. This
includes many shifted versions of exponential distributions
such as the shifted gamma and shifted log-normal, th
triangular, and the Weibull distribution. The analysis of
Sec. 4.1 does not apply to these distributions for which
regularity conditions do not hold.

Fortunately, imporantace sampling, Markov chain
Monte Carlo(MCMC), and other techniques are often use
ful for determining the posterior distributions of Eq. 2 and
Eq. 3, and even generating samples from those distribution

A published Bayesian work that deals with the shifted
gamma distribution in particular is unknown to the author
however, we were able to modify the generic adaptive
rejection Metropolis sampler (ARMS) of Gilks, Best, and
Tan (1995) to the specific problem of the shifted distribution
The ARMS was adapted for calculations in Sec. 6 that involv
the shifted gamma distribution.

5 PRIOR DISTRIBUTION SELECTION

The BMA approach requires the selection of a prior pm
pM (m) and a proper prior pdff3m|m (λm) (e.g., see Savage
1972 for an early discussion of subjective specification o
prior distributions, and Bernardo and Smith 1994 for a mor
recent treatment). However, prior distribution assessme
is typically viewed as an onerous task, requiring significan
involvement on the part of the decision-maker. There i
therefore significant interest in tools that can simplify the
process of selecting a prior distribution over the spac
of unknown input distributions and parameters. Sec. 5.
describes a moment-matching method that uses respon
to questions similar in nature to those already asked an
answered in simulation practice.

Note that there are several alternative approaches f
automating the selection of prior distributions (e.g., Kas
and Wasserman 1996). Berger and Pericchi (1996) discu
an intrinsic Bayes factor, present examples for the expo
nential, log-normal, and Weibull distributions, and more
generally consider all location-scale distribution, i.e. such
that fXN |µ,σ (xN ) = ∏N

j=1 g((xj − µ)/σ)/σ . An alternate
approach is the fractional Bayes factor of O’Hagan (1995)
Each approach has strengths and weaknesses.

5.1 Moment-Matching Method

First, a common (but not obligatory) choice forpM (m)

is the discrete uniform distribution,pM (m) = 1/q. For
continuous parametersλm, we describe a moment matching
approach that more fully explores a general idea for selectin
prior distributions described by Berger (1985). The idea i
to select prior distributions by insuring that certain moment
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of functions of the unknown parameters reflect beliefs o
a decision-maker. Here, we treat separately the specifi
case of parameters of input distributions in the regula
exponential family, as well as the case of shifted version
of those distributions.

In broad strokes, we use the conjugate prior distribution
for regular exponential distributions to model prior beliefs,
and to choose a parametert so that the prior distribution (i) is
proper (integrates to 1), and (ii) covers a ‘reasonable range
of values, as judged by the decision-maker. Paramete
for the conjugate prior distribution are determined by the
responses to a few general questions about the decisio
makers beliefs about likely values of low-order moments
of the random quantity being modeled. Sample question
are:

• What is a likely value of the unknown mean
of the random quantity being modeled (e.g.,
what is a likely value for the mean time to
failure)?

• What is a likely range for the unknown mean of
the random quantity being modeled (e.g., the
unknown mean time to failure is most likely
to be found in what range)?

• What is a likely value for the unknown variance
of the random quantity being modeled (e.g.,
what is a likely value for the variance of times
to failure)?

These questions aresimilar to those already asked in common
practicewhen subjective assessment of input distributions is
required for a simulation. The number of questions required
to assess the parameters equals the number of parameters
the conjugate distribution (one more than the dimensionalit
of the parameterλ).

Examples. Suppose that a prior distribution for the
unknown rateθ of the exponential distribution is desired,
and that a decision-maker indicates that the unknown mea
of the exponential distribution is likely to be240± 100
minutes (in response to the first two questions above). Thi
is reasonably be translated into the statementsE[1/θ ] = 240
and Var[1/θ ] = 1002. Using Sec. 4.1.1, this implies that
the parameters for the conjugate prior satisfyt1/t0 = 240
and t1

2/(t0
2(t0 − 1)) = 1002, or (t0, t1) = (6.76, 1622.4).

There may be argument as to whether or not this is th
‘best’ translation of the responses to mathematical state
ments, as some might argue that modes are better tha
means, or that a multiplicative factor should be included
with the variance. However, for each variations, the basic
idea can be used without change: constrain the paramete
of the prior distribution with responses to a few simple

questions. -
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Turn now to the assessment of the prior distribution
unknown meanµ and precisionτ of the normal distribution.
The conjugate prior has 3 parameters, so we use the t
questions listed at the beginning of this section. In addit
to the response that the unknown mean is likely to
240± 100, we use a response of1202 min2 as an estimate
for the unknown variance in times to failure. Followin
Sec. 4.1.1, these natural language statements are trans
into t1/t0 = 240; t̃2/(t0(t0−1)) = 1002; t̃2/(t0−1) = 1202.
Algebra indicates that(t0, t1, t̃2) = (1.44, 345.6, 6336), so
that t2 = 89280.

A modeling issue might arise in general for the norm
distribution, although the issue did not arise for this spec
example. To obtain a proper prior distribution, one mu
havet0 > 1. This requires that the estimate for the unknow
variance (1202 in the example) exceed the estimate for t
variance in the unknown mean (1002 in the sexample). If
the decision maker’s responses violate this constraint,
might modify the response to the third question to a va
slightly larger than the response to the second quest
Then t0 will exceed 1, and historical data will typically
outweigh the prior distribution.

Shifted distributions. The shifted gamma distri-
bution, like many shifted distributions, does not itself l
within the regular exponential family. There is therefo
no finite-dimensional conjugate distribution for the shifte
gamma distribution. Here we propose a method for
sessing prior distributions for shifted versions of memb
of the regular exponential family when there is no finit
dimensional conjugate prior, and apply the methodology
the specific case of the shifted gamma distribution.

The idea is (i) to assess a prior distribution for th
shift parameter, then (ii) to assess a prior distribution
the remaining parametersindependentof the value of the
shift parameter. While this assumption might not accurat
reflect all beliefs about input distributions, one can ass
the parameters in a way that produces a sufficiently d
fuse prior distribution so as not to dominate the poster
distribution. For a given value of the shift parameterξ ,
then, the dataxi − ξ have an unshifted regular exponenti
family distribution. Typically,ξ and the other parameter
are correlated, conditional onxN , even though the prior
distribution initially has them independent.

We illustrate this process for the specific case of t
shifted gamma distribution. First, we assess a prior distri
tion for the shift parameterξ . Since times-to-failure must be
positive, we haveξ > 0. Suppose that the decision-mak
has a hard time believing that the minimum time to failu
is more than 10 minutes. Any prior distribution on (0,1
might be selected forξ . For sake of argument, we sele
uniform(0,10).

By analogy for with the conjugate prior for the two
parameter gamma distribution in Sec. 4.1.1, for the thr
1
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parameter gamma distribution we select a prior distribut
for α, β as

fα,β|3 (α, β) ∝
(

βα

0(α)

)t0

e(α−1)t1−βt2, (13)

so the conditional posterior pdf, givenξ , is

f·|3,ξ,xN (α, β) ∝ βα(t0+N)

0(α)t0+N

e(α−1)(t1+∑N
i=1 log(xi−ξ))

e
β

(
t2+∑N

i=1(xi−ξ)
) . (14)

Next, we match moments as above. Clearly,

E[ξ + α/β] = E[ξ ] + E[α/β] = 5 + t2/t0.

Similarly, it is straightforward to determine

Var[ξ + α/β | αt0 > 1] = Var[ξ ] + $

(
t2

t0

)2

E[α/β2 | αt0 > 1] = $
t2

2

t0

where$ = E[1/(αt0 − 1) | αt0 > 1], by analogy with the
arguments in Sec. 4.1.1.

These equations provide constraints to help solve
(t0, t1, t2), using the same responses to the questions u
to determine a prior for the unknown parameters of t
normal distribution. In particular,t2/t0 = 235; 100/12+
$(t2/t0)2 = 1002; and $t2

2/t0 = 1202. The constraint
t0 > 1 is implicitly required, as with the normal distribution
Thust0 = 1.441; t2 = 338.7; andt1 is chosen to satisfy some
additional requirements that bear a complicated relations
with the other parameters (a largert1 corresponds to a smalle
sample variance forα/β in MCMC experiments).

A ‘reasonable’ value oft1 can be determined heuristi
cally, since one might not wish to condition on the eve
αt0 > 1 (this event does not have probability 1 under t
conjugate prior). Intuitively, sincet1 is associated with the
sum of logarithms of the data in terms of data sufficien
and t2 is associated with the sum of the roughlyt0 data
elements, the choicet1 = log(t2/t0) ≈ 5.46 may be reason-
able. Sincet0 is small, the posterior distribution will not
be too sensitive to small changes int1 if any appreciable
amount of historical data is available.

Comments on Moment Matching. The questions
asked for specifying moments are similar to, but not t
same as, questions already asked in practice for subjecti
specifing an input distribution. Take the normal distributio
for example. In practice, a decision-maker is asked to spe
a mean and variance (response to first and third ques
above) that is input deterministically into each replicatio
With the above moment matching approach, arange for
the unknown mean and an estimated variance are obta
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from the decision maker, and that prior is used with th
data to provide appropriate samples of parameters for inp
into each replication.

Although the above treatment of the shifted gamm
distribution requires somead hoctricks, it does not appear
more (or less)ad hocthan ‘tricks’ used in widely-available
software to handle related difficulties for maximum likeli
hood approaches for non-regular distributions.

In the above examples, the same responses to the qu
tions at the beginning of this section were used to determi
the prior distributions for the unknown parameters of eac
candidate input distribution. It is also possible to allow
the responses to be conditional on the input distributio
This allows a decision-maker to tailor responses to addre
peculiarities associated with each input distribution.

6 COMPUTATIONAL EXPERIMENTS

Because of space limitations, charts and graphs that illustr
the results of computational experiments are not present
They will be displayed during the conference presentatio

6.1 Inferring a Downtime Distribution

The 3 input distributions from Sec. 2 and the prior distr
butions from Sec. 5 were used together with time-to-failu
data (N=37 observations) taken from a factory floor. Th
posterior distributions for the input distributions and param
eters in Eq. 2 and Eq. 3 were then determined. Calculatio
for the exponential and normal distributions used the close
form calculations of Sec. 4.1.1. Calculations for the shifte
gamma distributions were implemented by (a) running
customized ARMS algorithm (1000 iterations) to explor
the shape of the posterior distribution ofξ, α, β, (b) using
importance sampling (2000 samples) to estimate the integ
in Eq. 1 (the importance sampling measure resembled
histogram of the marginals of theξ, α, β).

The exponential and normal distributions were effec
tively eliminated from consideration (posterior probabilitie
of less than10−8), and the shifted gamma was the clea
favorite. Results took about 2 seconds on a vanilla SPAR
station, but less time is actually required, as less than 20
IS samples would be required to identify the shifted gamm
as the most likely distribution in this case.

Discrete-event simulations of system indicate that ma
imum likelihood/goodness of fit techniques indeed unde
estimate the variance in the mean output, as a result
ignoring the structural uncertainty about the values of th
input parameters.

6.2 Detecting a Known Distribution

Several experiments were run to test the ability of identifyin
a known, true distribution. Artificially generated sets of dat
22
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with (i) exponential, (ii) normal, and (iii) shifted gamma
distributed random variates were used in conjunction with th
same prior distributions that were used above. The Bayes
formulation identified the true distribution as the ‘favorite’
for experiments whre the true distribution was exponenti
or normal. For the shifted gamma withα = 1/2, the
exponential was sometimes initially favored with few dat
points, but the shifted gamma is favored as the number
data points increases. Whenα = 3, the normal distribution
is also sometimes heavily favored. For those data se
however, classical goodness-of-fit tests also favored t
normal distribution, rather than the true shifted gamma.

6.3 Diagnostics

One Bayesian diagnostic is to test the sensitivity of th
posterior probabilities to small changes in the paramete
of the prior distributions. The results of the above analys
are relatively stable with respect to the parameters of th
prior distribution.

Another diagnostic is to nest the most likely distribution
into a larger distribution. Since the most likely input distri-
bution in Sec. 6.1 was the shifted gamma distribution, th
analysis was re-run by testing if the data is better describ
by a shifted gamma or a shifted mixture of two gamma dis
tributions. The shifted mixture of two gamma distributions
turned out to be more likely, a result that supports the fie
observation that two failure mechanisms were at work (on
for short, the other for long times-to-failure). Theχ2-test
of goodness of fit, on the other hand, was ambiguous
to whether the shifted gamma or shifted mixture of two
gamma distributions was better supported by the data.

7 DISCUSSION AND CONCLUSIONS

A number of authors (e.g., Draper 1995, Chick 1997) argu
that Bayesian techniques are required in order to faithful
account for the effect of parameter uncertainty on the outp
of a model.

This paper illustrates the practical use of tools for im
plementing Bayesian input distribution selection. Particula
attention is given to addressing two of the reasons that ha
been presented for avoiding Bayesian methods for inp
distribution selection. First, the paper presents practic
examples for specifying prior probability distributions for
the unknown input parameters. Second, the paper indica
that the ARMS algorithm can be used to handle shifte
distributions, distributions that typically do not satisfy a
number of regularity conditions.

While the techniques outlined in this paper are appl
cable to a wide variety of distributions used in simulation
practice, they do not apply to all distributions. Some ad
ditional work is needed to handle distributions that ar
not in the regular exponential family, and there may b
32
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some demand from practitioners to have data-driven pr
distribution selection, so that no questions need be aske
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