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ABSTRACT

There are known pragmatic and theoretical difficulties asso-
ciated with some standard approaches for input distribution
selection for discrete-event simulations. One difficulty is

no coherent method for selecting among non-rejected dis-
tributions.

A critique of several approaches to subjective specifi-
cation of an input distribution is that a single probability
distribution (such as the triangular, truncated normakier,

a systematic underestimate of the variance of the expectedor ‘smoothed’ histograms) with a specific parameter value

simulation output that comes from not knowing the ‘true’
parameter values. Another is a lack of quantification of the
probability that a given distribution is best. Bayesian meth-

is chosen. As with the classical approach, this tends to
underestimate the uncertainty about the underlying nature
of the random process generating the data. Further, it is dif-

ods have been proposed as an alternative, but acceptancdicult to analyze how additional relevant data should affect
has not yet been achieved, in part because of increasedthe selected input distribution.

computational demands, as well as challenges posed by the

specification of prior distributions. In this paper, we show

The Bayesian model average (BMA) approach de-
scribed in Sec. 3 has been proposed as a mechanism for

that responses to questions like those already asked and an-overcoming these difficulties (Draper 1995). The BMA has

swered in practice can be used to develop prior distributions
for a wide class of models. Further, we illustrate techniques
for addressing some computational difficulties thought to

be associated with the implementation of Bayesian method-

ology.

1 INTRODUCTION

A central problem in the design of simulations is the se-
lection of appropriate input distributions to characterize the

been considered in a simulation context (Cooke 1994, Scott
1996, Chick 1997), as well as applications in economet-
rics, artificial intelligence, sociology and medicine (e.qg.,

see Draper 1995, Madigan and York 1995, Raftery 1995
and references therein). The BMA approach (like classical
maximum likelihood techniques) uses likelihood functions

to infer parameter values. Unlike classical techniques, it
also quantifies uncertainty about which input distribution is

most appropriate. Both the BMA approach and subjectivist
techniques incorporate prior information. Unlike some sub-

stochastic behavior of the modeled system (Law and Kelton jectivist techniques that fit a specific histogram and provide

1991; Wagner and Wilson 1995). Failure to select appro-
priate input distributions can lead to misleading simulation
output, and therefore to poor system design decisions.
Still, there is controversy about both classical and sub-
jective techniques that are commonly used for input distri-
bution selection. Critiques of classical techniques include:

use of a single distribution and parameter underestimates a task perceived by many as difficult.

the uncertainty in the distribution’s functional form and pa-
rameter (Draper 1995); goodness-of-fit and P-value criteria
don't quantify the probability that an input distribution is
best (Berger and Delampady 1987); with few data points,
few distributions are rejected, and with many data points,
all distributions are rejected (Raftery 1995); and there is
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little formalism for incorporating additional historical data,
the BMA explicitly uses Bayes’ rule and historical data for
inference.

Still, there have been difficulties with implementing
the BMA approach in practice. First, the BMA approach
requires the assessment of prior probability distributions,
Second, there is
a computational price to pay for implementing the BMA
approach. Two sources of this price are the (a) computation
of posterior probability that a given model is correct, given
available historical data, and (b) implementation of ‘model
averaging’, which requires that input parameters be sampled
from an appropriate posterior distribution for input into each
replication. This latter point of the BMA approach allows for
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an evaluation of how input distribution uncertainty induces
uncertainty in the expected value of the simulation output.

This paper describes a general approach for converting
responses to questions similar to thadeeady asked in
simulation practicento prior distributions for parameters of
distributions in the regular exponential family (including the
exponential, gamma, normal, and Bernoulli distributions)
or for parameters of shifted versions of distributions in
the regular exponential family (such as the three-parameter
gamma distribution).

The general approach is presented in Sec. 5 and il-
lustrated by numerical example. For some cases where
regularity conditions are lacking, such as for the shifted
gamma distribution, we indicate that it is possible to apply
Markov Chain Monte Carlo techniques, including the adap-
tive rejection Metropolis sampler (ARMS) of Gilks, Best,
and Tan (1995), to generate random variates from appropri-

ate posterior distributions. A Bayesian analysis, therefore, ¢ , ,
t Ject’ negative values, but discuss the non-truncated normal

is a feasible and implementable approach for selecting inpu
distributions for stochastic simulations in a way that coher-
ently represents the effects of input distribution uncertainty
on output uncertainty.

2 INPUT SELECTION PROBLEM

The input selection problem has many nuances and variations
(e.g., see Cheng 1994, Cario and Nelson 1997, and Leemis
1995). Here, we restrict attention input distribution selection
for a single source of randomness in a simulation. Multiple
sources of randomness are treated similarly.

Suppose that a sequence of real-valued random quanti-
ties X1, X, ... are needed as input to a simulation, where
the X; are believed to be independent given the distribution
and parameter, and historical datg = (x1,...,xy) are
available to help selection an input distribution.

The general problem is how to select distributions and
their parameters for input into stochastic simulations. To
describe the data, we chooge < oo candidate distri-
butions, where distributionn has continuous parameter

Ap = (Amas .- s Ama,), andd,, is the dimension of
A, form =1,...,q. The parameter takes on values
Am = (Auts--. 5 Ama,) in the spaceQ,,. Denote by

Sfxima, (x) the probability density function (pdf) fokX,
givenm and,,.
By means of example, suppose that a distribution for
the times to failure of a machine is required for input to a
stochastic simulation, and thHatlistributions are considered.
1. Exponential.A; = (0), with rate6 > O,

Fxim=11, (x) = e,
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2. Normal. A2 = (u, 1), with t = 1/U2 > 0,
1/2
__t —(x—w?t/2
Txim=2., (¥) = o2 X2,
3. Shifted gammais = (&, «, B), with &, «, 8
> 0.
* 1
fxXim=325 () = (x — &)@ Dem=08,

(@)

This choice of parametrization simplifies the analysis below.
Although the support of the normal distribution is the entire
real line, and failure times are non-negative, in practice
the parameters of the normal distribution give exceedingly
small probabilities to negative values. If a negative value
is generated during the simulation, it might be rejected
(giving a truncated normal distribution). We similarly ‘re-

distribution to simplify the exposition.
3 A BAYESIAN FORMULATION

Since the input distribution is unknown, 1&f be a random
variable so that¥ = m is the event that input distribution
m is correct, form = 1,...,¢q. A Bayesian approach
requires prior probability distributions to describe initial
uncertainty regarding the unknown input distribution and
parameter. Letpy, (m) be the probability mass function
(pmf) that describes prior belief that distributien is the
correct distribution. Letfa,,;» (A,) be the prior pdf that
A is the true parameter, given that is correct. Sec. 5
describes how prior distributions can be specified.

Given the above assumptions, a Bayesian version input
distribution selection problem is focused on the several
posterior probability distributions, given that historical data
x y is available. The relevant distributions are: the marginal
pdf fx,m (xn) of the data, given that distributiom is
correct,

fXN\m (xn) = /Q fXNlm,km (xN)fAmlm Am)dAp, (1)

the posterior pmpyx, (m) that distributionM is correct,
givenxy,

fxyim (XN) pym (m)
Yy fxwk en) pu (k)

()

PMixy (M) =

the posterior pdffa,, jm.xy (Am) that a parameteA,,, given
m andxy

Sxwimam CN) fAnim Rin)
fxnim (xn)

fA,,,lm,xN ()vm) = (3)
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and the predictive pdffo|x, (0) of the simulation output
0, givenxy:

q
foren ©) =D Pujry (m) -

m=1

/ fOlm,lm (0) fAm|m,xN (Am) dhy,
Q’n

(4)

Eqg. 4 is called a Bayesian model average, and it describes

uncertainty inO due to both input uncertainty and stochas-
tic effects. To estimaté[O | x ] with simulation, one
samples input distributions and parameters for each repli-
cation from the posterior distributions in Eg. 2 and Eq. 3,
and holds them fixed during a replication used to generate
an observatiorD = o. This allows for uncertainty in the
input parameters to propogate through to the output.
Eqg.4assumesthiib|m i, xxy (©) = foim.a, (0), Which

reflects the reasonable modeling assumption that historical

data forX and simulation output? are conditionally inde-
pendent, given the distributiom and parametek,,. This
assumption states that ifu( A,,,) is the known true model,
neither additional historical data nor additional random vari-
ates from ther, A,,,) distribution will change our mind that
(m, A,,) is the true distribution.

4 INPUT SELECTION COMPUTATIONS

One practical issue for implementing the BMA approach is
the determination 0|, (m) andfa,,im.xy (Am). INSOMeE

and Smith 1994). Members of this family include the
exponential, normal, gamma, and Bernoulli, among others.
More formally, let the likelihood function be
Frin () = a(x)g (e XL it M@ 5)
for someb, ¢j,a(-), g(), ¢;(-), h;(-), and that the (conju-
gate) prior distribution is

[T 5t cio00

Jaie ) = K0

(6)
where the prior distribution parameter= (7, ... , t) IS
chosensothafs s« (A)isproper (i.e.K () = [g(L)] exp
[Z’]’-zl cj¢>j(X)tj] d\ < o0). Then the posterior distribu-
tion of A is
Sait ey Q) = fajede ey A, (7)

where t'(xy) = (N, YN ha(xi), ..., YN hyp(x;)) are
sufficient statistics forxy, and fajr4ry) (A) indicates
that the posterior results from inserting the coordinatewise
sum¢ + t'(xy) into Eq. 6.

For the regular exponential family with conjugate prior,
then, the integral in Eq. 1 simplifies to:

K+t )TV a)
K ()

(8)

Sxyim (xn) =

situations, closed-form results are available, as discussed in4.1.1 Examples of Interest for Discrete-Event

Sec. 4.1. In many cases, howevek, m xy (An) may be
known only up to a constant of proportionality. To determine

Stochastic Simulation

this constant, one might apply one of five general techniques We now provide examples of conjugate analysis for distribu-
(Evans and Swartz 1995): asymptotic methods, Markov tions that arise often in discrete-event stochastic simulation
chain methods, importance sampling, adaptive importance practice, and indicate how the parameters of the conjugate

sampling, and multiple quadrature. Here, we look at closed-
form expressions, and the use of the ARMS sampler. For
further discussion, see Chick (1999).

A second practical issue is the generation of variates
from the posterior distribution of\,,, givenm, xy. We
indicate that even for many distributions that do not satisfy
certain regularity conditions, such as the shifted gamma
distributions, it is possible to generate samples from the
posterior distributions of their parameters, given historical
data.

4.1 Closed-Form Expressions
The posterior distributiorfa,, jm.xy (An) can be determined
exactly for certain special cases. Of particular importance

is the regular exponential family of distributions, wheam-
jugate prior distributions are employed (e.g., see Bernardo
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prior distributions relate to statements about the mean and
variance of the unknown input parameters themselves. Most
of the results are known in Bayesian circles, but are not
always presented in the form given here, and are not all
well-known in non-Bayesian circles. The results are used
in Sec. 5.1 to help assess prior distributions. The analysis
for the gamma distribution has apparently not yet appeared
in the literature.
Exponential. For the exponential distribution of Sec. 2,
b=1a(x)=1g0) =0,c1=1 ¢1(0) = =0, h1(x) =
x. This leads to the conjugate prior
Jfolig.n (0) o 0™, ©9)
the gammag + 1, r1) distribution, SoK (tp, t1) = I'(tp +
1)/(r))*1, It follows that the mean time to failurk/6 has
inverted gamma distribution with meag/7p and variance
1%/ (t0*(to — 1)).
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Normal.  For the normal distribution with unknown
mean . and precisiont, b = 2, a(x) = 1, g(u, 1) =
(r/2m)Y2 exp—tpu?/2], c1 = 1, ¢1(u. 1) = pt, hi(x) =
x, c2 =1, ¢o(u, 1) = —1/2, ha(x) = x2. The conjugate
prior is then

T _u?

1 12
Surie (u, 1) = m [(Z) e 2

which can be manipulated to deduce th&ias gammafo +
1)/2, 72/2) distribution, wheref, = 1, — 1?/tg, and the
conditional distribution ofx, givent, is normalfy /1o, tto).
Thuso? = 1/t has inverted gamma distribution with mean
f2/(to — 1), and . has Student-t marginal distribution with
meant, /tg, precisionso(fg + 1)/f2, and o + 1 degrees of
freedom. The marginal variance of is thenz/(to(to —
1)). By integrating Egq. 10 with respect ta, then r,
and noting the distributions of, , one obtainsK (t) =

L(to + D/2)/ (102 @)% (32/2) /7).
Two-parameter Gamma. Seth = 2, alx) = 1,

g, B) =P/ T(a), c1=1, ¢p1(a, B) = — 1, h1(x) =
logx, c2 = 1, ¢2(a, B) = —B, ha(x) = x. The conjugate
prior is then

fo .
} ett1=F | (10)

( ) -
t 15
f ,ﬁ‘IOst 12 (C(, ﬂ) <T) e oa— /S 2

e[]_(ot—l) wto —pio .
CHL -
Thus, the conditional distribution of8, given «, is

gammagro + 1,12). The expected value of the un-
known meana/g is Ela/f]l = E[«E[1/8 | o]l =
Ela(r2/(atg))] = t2/to. The variancex/s? does not ex-
ist whenaty < 1, and the support ofr allows for this
event. However, conditional oarg > 1 (e.g., to reflect
prior belief that a failure rate is increasind)[o/ 82 | atg >
1] = E[Ela/B* | a,at0 > 1] = (E[1/(ato — 1) | ato >
1]) 122 /10. Similarly, uncertainty about the unknown mean
can be expressed Vat/8 | atg > 1] = (E[1/(atg — 1) |
atg > 1)) 1‘22/t02.

Bernoulli.  The Bernoulli distribution with parameter
v € [0, 1] and outcomes € {0, 1} can be writtenf (x |

V) =(1-v) exp[log (ﬁ) x]. Thusb = 1, a(x) = 1,

g0 = L=}, c1 =1 1) = log (), ha(x) = x.
The conjugate prior is then

Foor ) = [K (10, )] (L —n)0™ (12)
This recovers the beta distribution as the conjugate prior
distribution (often written with parametess= 11 + 1, 8 =

to — 11 + 1). It follows that K (19, 11) = I'(r1 + DI (1 —
n+1)/T(to+ 2).
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4.2 Non-Regular Distribution?

There are many distributions of interest in simulation that
are not members of the regular exponential family. This
includes many shifted versions of exponential distributions,
such as the shifted gamma and shifted log-normal, the
triangular, and the Weibull distribution. The analysis of
Sec. 4.1 does not apply to these distributions for which
regularity conditions do not hold.

Fortunately, imporantace sampling, Markov chain
Monte Carlo(MCMC), and other techniques are often use-
ful for determining the posterior distributions of Eq. 2 and
Eq. 3, and even generating samples from those distributions.

A published Bayesian work that deals with the shifted
gamma distribution in particular is unknown to the author,
however, we were able to modify the generic adaptive
rejection Metropolis sampler (ARMS) of Gilks, Best, and
Tan (1995) to the specific problem of the shifted distribution.
The ARMS was adapted for calculations in Sec. 6 thatinvolve
the shifted gamma distribution.

5 PRIOR DISTRIBUTION SELECTION

The BMA approach requires the selection of a prior pmf
pum (m) and a proper prior pdfa,,;» (A») (€.9., see Savage
1972 for an early discussion of subjective specification of
prior distributions, and Bernardo and Smith 1994 for a more
recent treatment). However, prior distribution assessment
is typically viewed as an onerous task, requiring significant
involvement on the part of the decision-maker. There is
therefore significant interest in tools that can simplify the
process of selecting a prior distribution over the space
of unknown input distributions and parameters. Sec. 5.1
describes a moment-matching method that uses responses
to questions similar in nature to those already asked and
answered in simulation practice.

Note that there are several alternative approaches for
automating the selection of prior distributions (e.g., Kass
and Wasserman 1996). Berger and Pericchi (1996) discuss
an intrinsic Bayes factor, present examples for the expo-
nential, log-normal, and Weibull distributions, and more
generally consider all location-scale distribution, i.e. such
that fxju.0 (xn) = [1}-1 8((x; — w)/0)/o. An alternate
approach is the fractional Bayes factor of O’'Hagan (1995).
Each approach has strengths and weaknesses.

5.1 Moment-Matching Method

First, a common (but not obligatory) choice fen, (m)

is the discrete uniform distributionpy, m) = 1/q. For
continuous parameteks,, we describe a moment matching
approach that more fully explores a general idea for selecting
prior distributions described by Berger (1985). The idea is
to select prior distributions by insuring that certain moments
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of functions of the unknown parameters reflect beliefs of Turn now to the assessment of the prior distribution for

a decision-maker. Here, we treat separately the specific unknown meam and precisiorr of the normal distribution.

case of parameters of input distributions in the regular The conjugate prior has 3 parameters, so we use the three

exponential family, as well as the case of shifted versions questions listed at the beginning of this section. In addition

of those distributions. to the response that the unknown mean is likely to be
In broad strokes, we use the conjugate prior distribution 240+ 100, we use a response ®2(° min? as an estimate

for regular exponential distributions to model prior beliefs, for the unknown variance in times to failure. Following

and to choose a parameteso that the prior distribution (i) is Sec. 4.1.1, these natural language statements are translated

proper (integrates to 1), and (i) covers a ‘reasonable range’ intor /tg = 240, 2/ (to(to— 1)) = 100; 12/ (tg—1) = 1202,

of values, as judged by the decision-maker. Parameters Algebra indicates thatto, 11, 2) = (1.44, 3456, 6336, SO

for the conjugate prior distribution are determined by the thatr = 89280

responses to a few general questions about the decision- A modeling issue might arise in general for the normal

makers beliefs about likely values of low-order moments distribution, although the issue did not arise for this specific

of the random quantity being modeled. Sample questions example. To obtain a proper prior distribution, one must

are: haverg > 1. This requires that the estimate for the unknown
variance 120? in the example) exceed the estimate for the
e Whatis a likely value of the unknown mean variance in the unknown meadd® in the sexample). If
of the random quantity being modeled (e.g., the decision maker's responses violate this constraint, one
what is a likely value for the mean time to might modify the response to the third question to a value
failure)? slightly larger than the response to the second question.
e Whatis alikely range for the unknown mean of Then 7o will exceed 1, and historical data will typically
the random quantity being modeled (e.g., the outweigh the prior distribution.
unknown mean time to failure is most likely Shifted distributions. ~ The shifted gamma distri-
to be found in what range)? bution, like many shifted distributions, does not itself lie
e Whatis alikely value for the unknown variance within the regular exponential family. There is therefore
of the random quantity being modeled (e.g., no finite-dimensional conjugate distribution for the shifted
what is a likely value for the variance of times gamma distribution. Here we propose a method for as-
to failure)? sessing prior distributions for shifted versions of members

. L ) of the regular exponential family when there is no finite-
These questions asémilar to those already askedincommon  gimensional conjugate prior, and apply the methodology to
practicewhen subjective assessment of input distributions is 1,4 specific case of the shifted gamma distribution.
required for a simulation. The number of questions required The idea is (i) to assess a prior distribution for the
to assess the parameters equals the number of parameters of it parameter, then (i) to assess a prior distribution for
the conjugate distribution (one more than the dimensionality the remaining parameteisdependenbf the value of the

of the parametek). S shift parameter. While this assumption might not accurately
Examples. ~ Suppose that a prior distribution for the  yefiect all beliefs about input distributions, one can assass
unknown ratey of the exponential distribution is desired, 1o parameters in a way that produces a sufficiently dif-
and that a decision-maker indicates that the unknown mean f,5e prior distribution so as not to dominate the posterior
of the exponential distribution is likely to b240£ 100 gisyribution. For a given value of the shift parameger
minutes (in response to thg first two questions above). This then, the data; — & have an unshifted regular exponential
is reasonably be trgglslate'd into the statem#ige] = 240 family distribution. Typically,é and the other parameters
and Vafl/6] = 100". Using Sec. 4.1.1, this implies that 5.6 correlated, conditional ony, even though the prior
the pa;ramzeters for the conjugate prior satisfyfo = 240 distribution initially has them independent.
andn?/(to?(t0 — 1)) = 10(%, or (t0.11) = (6.76,16224). We illustrate this process for the specific case of the

There may be argument as to whether or not this is the gpitted gamma distribution. First, we assess a prior distribu-
‘best’ translation of the responses to mathematical state- (o for the shift parametey. Since times-to-failure must be
ments, as some might argue that modes are better thanqjiive, we haves > 0. Suppose that the decision-maker
means, or that a multiplicative factor should be included 55 5 hard time believing that the minimum time to failure
with the variance. However, for each variations, the basic is more than 10 minutes. Any prior distribution on (0,10)

idea can be used without change: constrain the parametersmight be selected fog. For sake of argument, we select
of the prior distribution with responses to a few simple uniform(0,10). ’

questions. By analogy for with the conjugate prior for the two-
parameter gamma distribution in Sec. 4.1.1, for the three-
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parameter gamma distribution we select a prior distribution
for a, B as

a \ 0
fapi3 (@, ) <%) @~ n-pro, (13)
so the conditional posterior pdf, given is
Blio+N) pla—D) i+ 314 logtxi —£))
Fiaexy (@, B) o (14)

F@otV  plerrlii-o)
Next, we match moments as above. Clearly,

E[§ +a/Bl = E[§] + E[a/B] = 5+ 12/1t0.

Similarly, it is straightforward to determine

2
Varlg +a/f |ato> 1] = Vargl+ o (i_z)
0
2
Ela/B? | atg > 1] = 127
Io

wherew = E[1/(atg — 1) | atp > 1], by analogy with the
arguments in Sec. 4.1.1.

These equations provide constraints to help solve for
(t0, 11, £2), Using the same responses to the questions used
to determine a prior for the unknown parameters of the
normal distribution. In particulany /g = 235 100/12 +
@ (t2/t0)? = 100%; and w1?/1yp = 1207. The constraint
to > lisimplicitly required, as with the normal distribution.
Thustg = 1.441; 1, = 3387; andry is chosen to satisfy some
additional requirements that bear a complicated relationship
with the other parameters (a largecorresponds to a smaller
sample variance foe/8 in MCMC experiments).

A ‘reasonable’ value of; can be determined heuristi-
cally, since one might not wish to condition on the event
atfg > 1 (this event does not have probability 1 under the
conjugate prior). Intuitively, since is associated with the
sum of logarithms of the data in terms of data sufficiency,
and t; is associated with the sum of the roughly data
elements, the choicg = log(r2/1p) ~ 5.46 may be reason-
able. Sincery is small, the posterior distribution will not
be too sensitive to small changes:inif any appreciable
amount of historical data is available.

Comments on Moment Matching. The questions
asked for specifying moments are similar to, but not the
same as, questions already asked in practice for subjectively
specifing an input distribution. Take the normal distribution,
forexample. In practice, adecision-maker is asked to specify
a mean and variance (response to first and third question
above) that is input deterministically into each replication.
With the above moment matching approachraage for
the unknown mean and an estimated variance are obtained
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from the decision maker, and that prior is used with the
data to provide appropriate samples of parameters for input
into each replication.

Although the above treatment of the shifted gamma
distribution requires somad hoctricks, it does not appear
more (or lesspd hocthan ‘tricks’ used in widely-available
software to handle related difficulties for maximum likeli-
hood approaches for non-regular distributions.

In the above examples, the same responses to the ques-
tions at the beginning of this section were used to determine
the prior distributions for the unknown parameters of each
candidate input distribution. It is also possible to allow
the responses to be conditional on the input distribution.
This allows a decision-maker to tailor responses to address
peculiarities associated with each input distribution.

6 COMPUTATIONAL EXPERIMENTS

Because of space limitations, charts and graphs that illustrate
the results of computational experiments are not presented.
They will be displayed during the conference presentation.

6.1 Inferring a Downtime Distribution

The 3 input distributions from Sec. 2 and the prior distri-
butions from Sec. 5 were used together with time-to-failure
data (N=37 observations) taken from a factory floor. The
posterior distributions for the input distributions and param-
eters in Eq. 2 and Eq. 3 were then determined. Calculations
for the exponential and normal distributions used the closed-
form calculations of Sec. 4.1.1. Calculations for the shifted
gamma distributions were implemented by (a) running a
customized ARMS algorithm (1000 iterations) to explore
the shape of the posterior distribution &f«, 8, (b) using
importance sampling (2000 samples) to estimate the integral
in Eg. 1 (the importance sampling measure resembled the
histogram of the marginals of the «, 8).

The exponential and normal distributions were effec-
tively eliminated from consideration (posterior probabilities
of less than10~8), and the shifted gamma was the clear
favorite. Results took about 2 seconds on a vanilla SPARC-
station, but less time is actually required, as less than 2000
IS samples would be required to identify the shifted gamma
as the most likely distribution in this case.

Discrete-event simulations of system indicate that max-
imum likelihood/goodness of fit techniques indeed under-
estimate the variance in the mean output, as a result of
ignoring the structural uncertainty about the values of the
input parameters.

6.2 Detecting a Known Distribution

Several experiments were run to test the ability of identifying
a known, true distribution. Artificially generated sets of data
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with (i) exponential, (i) normal, and (iii) shited gamma some demand from practitioners to have data-driven prior
distributed random variates were used in conjunction with the distribution selection, so that no questions need be asked.
same prior distributions that were used above. The Bayesian

formulation identified the true distribution as the ‘favorite’ REFERENCES
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