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ABSTRACT

This paper further develops some of the ideas set out
Cheng (1998) for output analysis using Bayesian Marko
Chain Monte Carlo (MCMC) techniques, when a regressio
metamodel is to be fitted to simulation output. The particula
situation addressed by Cheng was where there is uncerta
about the number of parameters needed to specify a mod
This arises because there may be uncertainty about
number of terms to be included in the regression mod
to be fitted. The statistically non-standard nature of th
problem means that it requires special handling. In th
paper we shall use thederived chain methodsuggested
by Cheng (1998). However, whereas in that paper th
distribution of the response output of interest was assum
to be simply normal, it is typically the case, especially i
the study of systems working near their capacity limit, tha
this distribution is skewed, and moreover the distributio
has a support that is effectively bounded below - that
the distribution has a threshold. We describe how th
derived MCMC method might be applied in this situation an
illustrate with a numerical example involving the simulation
of a computer PAD network.

1 INTRODUCTION

We consider the situation where we are attempting to fit
regression metamodel to simulation output, in which the
is uncertainty about the number of parameters that the
should be in the model. The situation is basically that give
by Cheng(1998). For convenience we reintroduce briefl
the terminology and notation here.

We suppose that a run of the simulation model of th
system of interest yields an output,y and that this response
depends on an independent, or design, variablex (this may
be vector valued, though in our example we only consid
the scalar case). A typical situation might be a queuein
3

by
v
n
r

inty
el.

the
el
e
is

e
ed
n
t
n
is
e
d

a
re
re
n
y

e

er
g

system ,wherey is the average queue length over the peri
of the run, andx is the traffic intensity.

Suppose we conductr simulation runs of the model
with each run conducted at a differentx value. Letyj and
xj be the response and design variable values. We now
a regression metamodel to examine the dependence ofy on
x :

yj = η(xj , θ) + zj , j = 1, 2, ..., r (1)

wherez is a ’noise’ variable modelling the chance variabi
ity of the simulation output, andη(x, θ) is the regression
function of actual interest. We consider the case where
are uncertain about the precise form ofη(x, θ) and to allow
for this we assume that it has the form

η(x, θ) =
k∑

i=1

βifi(x, ϕi ). (2)

where theβi are unknown coefficients that are to be estimat
from the (xj , yj ), and thefi(x, ϕi ) are suitably selected
basis functions. If for example they are polynomials, n
dependent on unknown parametersϕi , then we have a
standard polynomial regression problem.

However, we explicitly wish to allow the case wherek is
unknown. This situation is non-standard for the followin
reason. Suppose that a particular component, or te
βifi(x, ϕi ), has been included in the model, but is actua
not needed. Then the estimate ofβi will be zero or near zero,
rendering estimation of the correspondingϕi meaningless.
There is numerical instability if we do try to estimateϕi in
this situation. A review of this problem is given by Chen
and Traylor (1995).

Cheng (1998) considered a Bayesian Markov Cha
Monte Carlo (MCMC) approach to the problem (a goo
introduction to MCMC is given by Gilkset al. 1996; for
its application to regression estimation see Young 197
and proposed aderived chain methodthat is related to
30
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the approach of George and McCulloch (1993), but wh
is arguably much simpler to apply. However the meth
was only described for the case wherez in (1) is normally
distributed. In this paper we consider a more general f
mulation wherez follows a distribution that is skew and
which has a support that has bounded left limit.

Section 2 recalls the derived distribution method a
sets out how it can be applied in the more general c
text of skewed, thresholded, errors. In Section 3 we ap
the method to an example described by Cheng and Kl
nen (1999) where the problem is to select an appropr
regression metamodel that attempts to quantify how
delay experienced by packets of characters in a comp
PAD network depends on the traffic intensity. Some br
conclusions are drawn in the final section regarding
effectiveness of the method.

2 DERIVED MCMC

2.1 Derived posterior distribution

This section follows closely the terminology given in Chen
(1998) but is set out here for convenience. Letz denote the
observations obtained from simulation runs. The distribut
of z depends on a vector of parametersθ which are unknown
and which we wish to estimate.

In the Bayesian formulation, letπ(θ) denote the density
of the prior distribution ofθ , and letπ(θ |z) denote the density
of the posterior conditional distribution given the dataz.

This latter density can be calculated from Bayes’ formu

π(θ |z) = p(z|θ)π(θ)∫
θ p(z|θ)π(θ)dθ

. (3)

This formula usually assumes that the dimension oθ

is known. We deal with the situation where the preci
number of parameters,s say, is not known by initially
not explicitly assuming thats has a prior, but instead tha
there is a maximal model containings0 parameters that is
definitely adequate. Thus, whatever the ’true’ value ofs,

this value is less thans0. The priorπ(θ) and the likelihood
p(z|θ) is well - defined for this maximal model so that th
posterior distributionp(θ |z) can be calculated from (3).We
now calculate the followingderived posterior distribution
for s as

pδ(s = j |z) =
∫

Sδ(θ)=j

p(θ |z)dθ , j = 1, 2, ..., s0,

where

Sδ(θ) = number of components

f or which |θi | > δ at θ .
3
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This derived distribution is very simple to calculate using
the MCMC method.

2.2 Markov Chain Monte Carlo

MCMC is a sampling method for calculating the posterior
distribution (3) where the denominator is otherwise difficult
to obtain. We regardθ as the state of a certain Markov
chain, defined in such a way that the equilibrium distri-
bution is precisely the required posterior distribution with
densityπ(θ | z). We then simulate the Markov chain making
the simulation run sufficiently long so that equilibrium is
reached. At this stage the sample distribution of the ob
servedθ ′s will have converged to have the required density
π(θ | z).

We follow Cheng (1998) and use theMetropolis -
Hastings(MH) algorithm to generate the successive states
of the chain: θ0, θ1, ..., θ t , ... Here the state,θ t+1, at
time point t + 1 is obtained from the previous state,θ t , by
generating a candidate valueϕ from a candidate distribution
with densityq(ϕ|θ t ). The notation indicates the possibility
that this distribution may depend onθ t , however we use the
independence samplerwhich is the case where the candidate
density does not depend on the current state, so that

q(ϕ|θ) = q(ϕ). (4)

The candidate value is only accepted with probability

α(θ t , ϕ) = min

(
1,

π(ϕ|z)q(θ t )

π(θ t |z)q(ϕ)

)
(5)

when θ t+1 = ϕ. Otherwise the state remains unchanged
with θ t+1 = θ t .

The formula (5) for the acceptance probability depends
on the conditional posterior distribution that we are at-
tempting to evaluate. If we use areference priorfor π(θ)

(that is a prior that remains essentially constant over th
region where the likelihoodp(θ |z) is appreciable), then the
posterior density is proportional to this likelihood,

π(θ |z) ∝ p(θ |z),

and the acceptance probability, using the independence sa
pler, reduces to:

α(θ , ϕ) = min

(
1,

p(ϕ|z)q(θ)

p(θ |z)q(ϕ)

)
, (6)
31
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which depends purely on known quantities. The MH algo-
rithm then has the form:

Initialise θ0, t := 0
Repeat
{

Generateϕ ˜ q(.), U ˜ U(0, 1)

If U ≤ α(θ t , ϕ) Setθ t+1 := ϕ

Else Setθ t+1 := θ t

Set t := t + 1
}

whereα(θ t , ϕ) is calculated using (6).

2.3 Regression Metamodelling

We now describe how the MCMC method can be used for
regression metamodelling, in the case

yj =
k∑

i=0

βifi(xj ) + zj , j = 1, 2, ..., r (7)

wherez has distribution with support{z | z ≥ 0} and has
cdf G(z, µ, σ ), whereµ is the mean ofG, andσ is some
measure of the dispersion. We write

g(z) = dG(z, µ, σ )/dz (8)

for the density of the distribution ofz.
We also assume thatf0(x) = f0 is a known constant, so

thatγ = β0f0 is an offset or threshold, andw = γ + z has
distribution with cdfG(w − γ , µ, σ ), depending on three
parameters, one of which is a threshold. This formulation is
different from that of Cheng (1998); however the standard
normal model is still included as a special case withµ = 0.

We assume thatk is unknown. The ’correct’ truek is
defined in one of two ways.

In the first definition we assume that the non-zero
coefficients comprise the set{βi | i ∈ I } with βj = 0 for
j 6 ∈I, and define the truek to be the largesti amongst
all i ∈ I. The alternative definition is the subset selection
version, where one wishes to identify the set of non-zero
coefficients precisely; that is, to find the set{βi | i ∈ I }.

The derived MCMC method allows either definition
of this ’correct’ k. The method is described in the next
sub-section.

2.4 Derived Chain MCMC Method

The derived chain MCMC method is as follows.

1. We use a locally uniform reference prior and
an independence sampler of the form (4), so
that α takes the simple form (6).
332
2. We now assume thatk0 is a known upper
bound on unknown truek. (The precise value
for k0 is relatively unimportant. In practice
it can be arbitrarily large, the main limitation
being that there should be sufficient degrees
of freedom left to estimateµ and σ .) The
unknown parameters are therefore

θ = (β0, β1, ..., βk0
, µ, σ ).

We then run the MCMC simulation using
the MH algorithm given previously, using an
appropriately selected candidate distribution,
q(θ) (to be discussed in the next sub-section).

The MCMC simulation does not identify the correct
value ofk explicitly. However if the true value ofk is less
than k0, then we can expect that for most of theθ t , the
componentsθ t

j will be near zero forj = k + 1, k + 2, ...,

k0. Thus if we selectδ > 0 and considerθi to be zero for
practical purposes, ifθi < δ, then we construct aderived
chain {k̃t , t = 0, 1, 2, ...} corresponding to{θ t , t = 0, 1,

2, ...} simply by settingk̃t equal to the largesti for which

∣∣θ t
i

∣∣ > δ. (9)

The distribution of the values ofk in the sequencẽkt can
thus be used to estimate the posterior distribution ofk.

2.5 Candidate Distribution

The selection of the candidate distribution in the above mod
turns out to be quite critical. The only satisfactory way we
have found to date is to use of an accurate estimate of t
asymptotic normal distribution of the maximum likelihood
(ML) estimates of the parameters (Kendall and Stuart, 1979
Let

θ = (β0, β1, ..., βk0
, µ, σ )T .

Then, writing θ̂ for the maximum likelihood estimator of
θ∗, the true parameter value, we have that

θ̂ ∼ N(θ∗, V),

where, for standard situations, the asymptotic variance,V,

can be approximated by the inverse of the informatio
matrix:

V = −
(
∂2L/∂θ2

)−1
(10)
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where

L =
r∑

j=1

ln


g


yj −

k0∑
i=0

βifi(xj ), µ, σ





 ,

with g(.), the density given in (8).
Clearly, under the assumptions made, the posterior

tribution will tend to this asymptotic distribution. Howeve
in finite samples, there is sufficient discrepancy between
and the true finite sample distribution to make applicati
of the Bayesian technique of potential value. In fact, w
certain parameters, we found the difference is sufficien
marked for it to be worthwhile to use a skewed cand
date distribution, with mean and variance matched to
values of the estimates of those of the asymptotic norm
distribution. We shall discuss this more fully in due cours

We illustrate application of the above to computer ne
work queueing model.

3 APPLICATION

3.1 Inverse Gaussian Model

In the application we used the following explicit mode
where the errors are assumed to have an inverse Gaus
distribution. A big advantage of assuming this form
error model, is that the threshold estimator is norma
distributed like any other standard parameter, unlike ma
other distributions with a threshold, like the gamma
Weibull. We assume that

yj =
k∑

i=0

βifi(xj ) + w(xj )zj , j = 1, ..., n, (11)

wherezj ∼ IG(λ, µ) has density

g(z | λ, µ) =
(

λ

2πz3

)1/2

exp

(
−λ(z − µ)2

2zµ2

)
, (12)

and that the basis functionsfi are orthonormal. In our
numerical example, eachfi(.) was a polynomial of degreei.
To allow for heteroscedasticity we introduced weightsw(xj ).

As the example is for illustration only, these were actua
estimated directly from the data in a separate preproces
stage, and were then subsequently regarded as fixed.

ML estimates were obtained using a mongrel optimiz
tion method. The observations were taken in the formyj =∑k

i=1 βifi(xj )+ w(xj )z′
j wherez′

j has the three paramete
e
r
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densityg(z − γ | λ, µ) (so thatγ = β0f0). Now for fixed
β ′ = (β1, β2, ..., βk0

) we can treat the

z′
j (β ′) = [yj −

k∑
i=1

βifi(xj )]/w(xj ), j = 1, 2, ..., r (13)

as a sample fromIG(z−γ , λ, µ). Cheng and Amin (1981)
give a method of ML estimation from this distribution using
Newton-Raphson iterations based on the updating formul

γ 0 = z′
(1) − (2s3 ln r)−1(z̄′ − z′

(1))
3

µm = z̄′ − γ m,

λm =

r−1

∑
j

(zj − γ m)−1/r − µ−1
m




−1

(14)

γ m+1 = γ m + ρ[3
∑

j

(zj − γ m)−1/r +

λm{µ−2
m −

∑
j

(zj − γ m)−2/r}]/{3µ−1
m λ−1

m + 12λ−1
m },

for m = 0, 1, 2, ..., where we have corrected the typing error
in that paper, and replaced the incorrect× by a solidus. The
Newton-Raphson iterations can be unstable at times. W
have therefore included a relaxation factorρ. A value less
than unity, sayρ = 0.5,ensures more certain convergence
The complete ML estimation method then uses Nelder-Mea
simplex search to minimize the loglikelihood

L{β ′, z′(β ′)} = (15)

r∑
j=1

ln
[
g{z′

j (β ′) − γ (β ′) | λ(β ′), µ(β ′)}
]

with respect toβ ′, with g as given in (12), and withz′
j (β ′),

λ(β ′), µ(β ′) and γ (β ′) calculated at each step from (13)
and (14).

Once the parameter estimates have been obtaine
can we use the MCMC method to obtain estimates o
their distribution. The candidate densities can be take
to be approximately normal with mean̂θ and variance

V = −
(
∂2L/∂θ2

)−1 |
θ=θ̂

, whereL is calculated from (15).

We found that a simple numerical finite difference formula
for evaluating this directly from (15) was sufficiently accu-
rate. This saves on significant algebra to explicitly evaluat
second derivatives. What did prove worthwhile howeve
33
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was to transform λ to σ where σ = λ−1 is a more direct
measure of variance and then replace the normal candidate
distribution for λ by a gamma candidate distribution for
σ , with the mean and variance of this gamma distribu-
tion equated to the corresponding values of the asymptotic
normal distribution of σ̂ .

3.2 PAD Queue Example

ChengandKleijnen(1999) describethefittingof aregression
metamodel in an experiment investigating how the delay in
processing characters in a PAD queue depends on arrival
rate of characters. Observations (scaled as described in
Cheng and Kleijnen) from 353 simulations spread over
seven selected arrival rate settings are plotted in Figure 1.
The behaviour is non-monotonic and requires fitting ahigh
order polynomial before asatisfactory fit is obtained.
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Figure 1:  Regression Metamodel Fit for PAD Queue Ex-
ample

Figure 1 also plots results of fitting the model (11)
using the ML estimation procedure of the previous section.

We then used the derived chain MCMC method to
estimate the distributions of these parameter estimates. Let
K = k+1bethetotal number of β coefficients. Settingsused
for the MCMC run were: T = 50, 000. , k0 = 6, K0 = 7.

In Figure 2, the first nine plots give the candidate densities
for the parameters β0, β1, ..., β6, σ , µ (smooth curves)
together with the histogram of their posterior distributions
estimated from the MCMC run. Figure 2 also gives the
posterior distribution of K̃, the derived K, using δ = 3τ

in (9), where τ is the estimate of the average standard
deviationof theβ estimates. Thevaluesp(K̃ = 1) = 0.040,
p(K̃ = 4) = 0.878, p(K̃ = 5) = 0.055 and p(K̃ = 6) =
0.027, indicate that a degree three polynomial at least is
needed, with some evidence that to be on the safe side a
polynomial of degree four, possibly even five should be
used.

Finally Figure 3, gives a plot of the first 2000 chain
states obtained for a selection of the parameters. The plots
33
Figure 2: Candidate and Estimated Posterior Distributions
of Parameters

Figure 3: Trace of MCMC States for Selected Parameters
4
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of the trace for the remainder of the run for these paramet
and for the remaining parameters were very similar and h
not been included. A noticeable feature is how transitio
between states only take place irregularly. This accounts
why the histograms in Figure 2 are still somewhat irregu
even after50, 000 iterations. (Part of the difficulty arises
because the presence of a threshold means that the valu
zj generated in the runs must be positive if a change of st
is to take place.) Even so the histograms are sufficien
stable to give a good indication of the final form of th
posterior distributions of the parameters.

4 SUMMARY

We have given a fairly direct way of handling the difficu
problem of estimating the unknown number of terms in
regression model, using a simple adaptation of the Bayes
MCMC approach. The method shows some promise,
does require quite careful handling. In particular a care
choice of candidate density seems important. The issue
robustness is therefore of some concern. It would be of so
interest to compare the proposed derived MCMC meth
with the parametric bootstrap method; this latter being the
other generally used numerically intensive procedure.
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