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ABSTRACT system ,where is the average queue length over the period
of the run, andx is the traffic intensity.

This paper further develops some of the ideas set out by Suppose we conduet simulation runs of the model

Cheng (1998) for output analysis using Bayesian Markov with each run conducted at a differentvalue. Lety; and

Chain Monte Carlo (MCMC) techniques, when a regression x; be the response and design variable values. We now fit

metamodel is to be fitted to simulation output. The particular a regression metamodel to examine the dependenc@of

situation addressed by Cheng was where there is uncertainty x :

about the number of parameters needed to specify a model. )

This arises because there may be uncertainty about the yi=n0 04z, j=12 (1)

number of terms to be included in the regression model

to be fitted. The statistically non-standard nature of the ity of the simulation output, ang(x, ) is the regression

problem means that it requires special handling. In this fnction of actual interest. We consider the case where we
paper we shall use theerived chain methoduggested 516 ncertain about the precise formyok, 8) and to allow

by Cheng (1998). However, whereas in that paper the ¢,. this we assume that it has the form

distribution of the response output of interest was assumed

wherez is a 'noise’ variable modelling the chance variabil-

to be simply normal, it is typically the case, especially in k
the study of systems working near their capacity limit, that n(x, 0) = Zﬁifl-(x, ;). (2)
this distribution is skewed, and moreover the distribution i=1

has a support that is effectively bounded below - that is o _

the distribution has a threshold. We describe how the Wherethes; are unknown coefficients that are to be estimated
derived MCMC method might be applied in this situationand ~ from the (x;, y;), and thefi(x, ¢;) are suitably selected
illustrate with a numerical example involving the simulation ~ basis functions. If for example they are polynomials, not

of a computer PAD network. dependent on unknown parametess, then we have a
standard polynomial regression problem.
1 INTRODUCTION However, we explicitly wish to allow the case whéris

unknown. This situation is non-standard for the following
We consider the situation where we are attempting to fit a '€ason. Suppose that a particular component, or term,
regression metamodel to simulation output, in which there Bifi(x, ¢;), has been included in the model, but is actually
is uncertainty about the number of parameters that there notneeded. Then the estimatepwill be zero or near zero,
should be in the model. The situation is basically that given rendering estimation of the correspondipgmeaningless.
by Cheng(1998). For convenience we reintroduce briefly There is numerical instability if we do try to estimage in

the terminology and notation here. this situation. A review of this problem is given by Cheng
We suppose that a run of the simulation model of the and Traylor (1995). _ _

system of interest yields an outpytand that this response Cheng (1998) considered a Bayesian Markov Chain

depends on an independent, or design, variak{léis may Monte Carlo (MCMC) approach to the problem (a good

be vector valued, though in our example we only consider introduction to MCMC is given by Gilket al. 1996; for

the scalar case). A typical situation might be a queueing its application to regression estimation see Young 1977)
and proposed alerived chain methodhat is related to
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the approach of George and McCulloch (1993), but which This derived distribution is very simple to calculate using

is arguably much simpler to apply. However the method the MCMC method.

was only described for the case wherm (1) is normally

distributed. In this paper we consider a more general for- 2.2 Markov Chain Monte Carlo

mulation wherez follows a distribution that is skew and

which has a support that has bounded left limit. MCMC is a sampling method for calculating the posterior
Section 2 recalls the derived distribution method and distribution (3) where the denominator is otherwise difficult

sets out how it can be applied in the more general con- to obtain. We regard as the state of a certain Markov

text of skewed, thresholded, errors. In Section 3 we apply chain, defined in such a way that the equilibrium distri-

the method to an example described by Cheng and Kleij- bution is precisely the required posterior distribution with

nen (1999) where the problem is to select an appropriate densityz (8 | z). We then simulate the Markov chain making

regression metamodel that attempts to quantify how the the simulation run sufficiently long so that equilibrium is

delay experienced by packets of characters in a computer reached. At this stage the sample distribution of the ob-

PAD network depends on the traffic intensity. Some brief servedd’s will have converged to have the required density

conclusions are drawn in the final section regarding the = (6 | z).

effectiveness of the method. We follow Cheng (1998) and use thdetropolis -
Hastings(MH) algorithm to generate the successive states

2 DERIVED MCMC of the chain: 6°, 9%, ..., 6', ... Here the stateg’*!, at
time pointz + 1 is obtained from the previous stat, by

2.1 Derived posterior distribution generating a candidate valpdrom a candidate distribution

with densityg (¢|8"). The notation indicates the possibility

This section follows closely the terminology given in Cheng that this distribution may depend @h, however we use the
(1998) but is set out here for convenience. kelenote the independence sampletich is the case where the candidate
observations obtained from simulation runs. The distribution density does not depend on the current state, so that
of zdepends on a vector of paramet@rmshich are unknown
and which we wish to estimate. q(pl0) = q(@). (4)

In the Bayesian formulation, let(#) denote the density
of the prior distribution of, and letr (#|z) denote the density The candidate value is only accepted with probability
of the posterior conditional distribution given the data
This latter density can be calculated from Bayes’ formula,

et
2(8', @) = min <1, M) )
w(0'|2)g(9)
2(@lz) = - PEHOTO) 3)
Jo p(210)7(8)d0 when 81 = ¢. Otherwise the state remains unchanged
_ _ . with "1 = ¢".
This formula Usua”y assumes that the dimensio of The formula (5) for the acceptance probab|||ty depends

is known. We deal with the situation where the precise on the conditional posterior distribution that we are at-
number of parameters; say, is not known by initially  tempting to evaluate. If we useraference priorfor 7 (9)

not explicitly assuming that has a prior, but instead that  (that is a prior that remains essentially constant over the
there is a maximal model containing parameters thatis  region where the likelihoog(6|z) is appreciable), then the

definitely adequate. Thus, whatever the 'true’ valuesof  posterior density is proportional to this likelihood,
this value is less thaw. The priorsz () and the likelihood

p(z|0) is well - defined for this maximal model so that the 7 (0|2) x p(8|2),
posterior distributiorp(#|z) can be calculated from (3).We

now calculate the followinglerived posterior distribution and the acceptance probability, using the independence sam-

for s as pler, reduces to:
mu:ﬂa=/ p@12ds, j=1.2, .50, Mg)zmmG ﬂﬂ%ﬁ% 6
S50)=j i " p@1Dg(9))’ ©)
where
Ss(0) = number of components

for which |0;] > 8 at 6.
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which depends purely on known quantities. The MH algo-
rithm then has the form:
Initialise §°, ¢ :=0
Repeat
{
Generatep “ ¢(.), U U(0, 1)
If U<a(d, @) Setd't1:=¢
Else Set’ ™! .= ¢'
Sett :=r+1
}
wherea (', ¢) is calculated using (6).

2.3 Regression Metamodelling

We now describe how the MCMC method can be used for
regression metamodelling, in the case

k
yj=Zﬂiﬁ(XJ)+Zj, j=12 .., r 7)

i=0

wherez has distribution with supporfz | z > 0} and has

cdf G(z, u, o), whereu is the mean of5, ando is some

measure of the dispersion. We write
g(2) =dG(z, pn, 0)/dz (8)

for the density of the distribution aof.

We also assume thgg(x) = fpis a known constant, so
thaty = Bo o is an offset or threshold, and = y + z has
distribution with cdfG(w — v, u, o), depending on three
parameters, one of which is a threshold. This formulation is
different from that of Cheng (1998); however the standard
normal model is still included as a special case with- 0.

We assume that is unknown. The ’correct’ trué is
defined in one of two ways.

In the first definition we assume that the non-zero
coefficients comprise the s¢g; | i € I} with g; = O for
Jj I, and define the trué¢ to be the largest amongst
all i € 1. The alternative definition is the subset selection
version, where one wishes to identify the set of non-zero
coefficients precisely; that is, to find the 4@ | i € I}.

The derived MCMC method allows either definition
of this 'correct’ k. The method is described in the next
sub-section.

2.4 Derived Chain MCMC Method
The derived chain MCMC method is as follows.
1. We use a locally uniform reference prior and

an independence sampler of the form (4), so
that o takes the simple form (6).
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2. We now assume thalty is a known upper
bound on unknown trug. (The precise value
for ko is relatively unimportant. In practice
it can be arbitrarily large, the main limitation
being that there should be sufficient degrees
of freedom left to estimate. and o.) The
unknown parameters are therefore

0= (IBOv :Bl’ ELEE) ﬁko’ H“, 0)~

We then run the MCMC simulation using
the MH algorithm given previously, using an
appropriately selected candidate distribution,
q(0) (to be discussed in the next sub-section).

The MCMC simulation does not identify the correct
value ofk explicitly. However if the true value of is less
than ko, then we can expect that for most of thg the
component®’. will be near zero forj =k+1, k+2, ...,
ko. Thus if we select > 0 and considep; to be zero for
practical purposes, #; < 8§, then we construct derived
chain{k’, t = 0, 1, 2, ...} corresponding tdé’, r = 0, 1,

2, ...} simply by settingk’ equal to the largest for which
0| > 6. 9)

The distribution of the values df in the sequencé’ can

thus be used to estimate the posterior distributiot.of

2.5 Candidate Distribution

The selection of the candidate distribution in the above model
turns out to be quite critical. The only satisfactory way we
have found to date is to use of an accurate estimate of the
asymptotic normal distribution of the maximum likelihood
(ML) estimates of the parameters (Kendall and Stuart, 1979).
Let

0 = (Bo, B Bry» Mo o).

Then, Writingé for the maximum likelihood estimator of
0*, the true parameter value, we have that

0~ N@O*, V),
where, for standard situations, the asymptotic variakGe,
can be approximated by the inverse of the information

matrix:

V=-— (aZL/aoZ)fl (10)



Cheng

where

ko
=Y Bifitxp). w0 | ¢

r
L= Zln gy
j=1 i=0

with g(.), the density given in (8).

Clearly, under the assumptions made, the posterior dis-

tribution will tend to this asymptotic distribution. However

densityg(z—y | A, n) (so thaty = Bqfo). Now for fixed
B’ = (B1. B2, ... Br,) WE can treat the

k
B =lyj—Y_ Bificpl/w(x)), j=12,..r (13)

i=1

as a sample fromiG (z —y, A, n). Cheng and Amin (1981)
give a method of ML estimation from this distribution using

in finite samples, there is sufficient discrepancy between this Newton-Raphson iterations based on the updating formula:

and the true finite sample distribution to make application
of the Bayesian technique of potential value. In fact, with
certain parameters, we found the difference is sufficiently
marked for it to be worthwhile to use a skewed candi-
date distribution, with mean and variance matched to the
values of the estimates of those of the asymptotic normal
distribution. We shall discuss this more fully in due course.

We illustrate application of the above to computer net-
work queueing model.

3 APPLICATION
3.1 Inverse Gaussian Model

In the application we used the following explicit model

where the errors are assumed to have an inverse Gaussian

distribution. A big advantage of assuming this form of

error model, is that the threshold estimator is normally
distributed like any other standard parameter, unlike many
other distributions with a threshold, like the gamma or

Weibull. We assume that

k
y; ZZIBlfl(xj)—{—w(x])Zj, J =1,...,l’l, (11)

i=0
wherez; ~ IG(x, n) has density

A\ Y2 Mz — ,u)z
gzl h p)= <Fz3> EXP<—TM2>7 (12)

and that the basis functiong are orthonormal. In our
numerical example, eacfi(.) was a polynomial of degree

To allow for heteroscedasticity we introduced weights ;).

As the example is for illustration only, these were actually

vo =24 — 2°Inr) 1@ - z)°

i
Mm =2 = Vm>

-1

Am

(14)

P @ =y T =
j

Ym+1=7Vm + :0[32(71 - ym)_l/r +
J

Dt = (25 = vu) T2/ By At + 1201,
J

form =0, 1, 2, ..., where we have corrected the typing error
in that paper, and replaced the incorredby a solidus. The
Newton-Raphson iterations can be unstable at times. We
have therefore included a relaxation factorA value less
than unity, sayp = 0.5,ensures more certain convergence.
The complete ML estimation method then uses Nelder-Mead
simplex search to minimize the loglikelihood

L{B".Z(B)} = (15)

> in[glZ;,(8) = v (B | 1B, 18]

j=1

with respect tg8’, with g as given in (12), and with’ B,
AB), n(B) andy(B) calculated at each step from (13)
and (14).

Once the parameter estimates have been obtained,

estimated directly from the data in a separate preprocessingcan we use the MCMC method to obtain estimates of

stage, and were then subsequently regarded as fixed.
ML estimates were obtained using a mongrel optimiza-
tion method. The observations were taken in the ferm=

Zf‘:l Bifi(xj)+ w(xj)z} Wherez} has the three parameter
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their distribution. The candidate densities can be taken
to be approximately normal with meath and variance

-1
V=-— <82L/802) ly_s» WhereL is calculated from (15).
We found that a simple numerical finite difference formula
for evaluating this directly from (15) was sulfficiently accu-
rate. This saves on significant algebra to explicitly evaluate

second derivatives. What did prove worthwhile however
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was to transfom 1 to ¢ where o = A1 is a more direct
measue of varian@ and then replae the normd candidate
distribution for » by a gamma candida¢ distribution for

o, with the mear and variane of this gamna distribu-

tion equate to the correspondig values of the asymptotic
normd distribution of &.

3.2 PAD Queue Example

ChergandKleijnen (1999 descrilethefitting of aregression
metamodkin an experimert investigatig how the delay in

processig charactes in a PAD quele depend on arrival

rate of characters Obsevatiors (scalel as describé in

Cherg ard Kleijnen) from 353 simulatiors sprea over
seven selectd arrival rate setting are plotted in Figure 1.
The behaviour is non-monotort and requires fitting ahigh
orde polynomid before asatisfactoy fit is obtained.

07
Arival Rate

06

Figure 1:MRegressim Metamodé Fit for PAD Quete Ex-
ample

Figure 1 also plots resuls of fitting the modd (11)
using the ML estimatia procedue of the previous section.

We then usal the deiived chan MCMC methal to
estimae the distributions of thes parameteestimates Let
K = k+1bethetotd numbe of g codficients Settingused
for the MCMC runwere T = 50,000, , kg =6, Ko =7.
In Figure 2, the first nine plots give the candida¢ densities
for the parametes Bg, B1, ..., Be, 0, n (SMooh curves)
togethe with the histogran of their posteria distributions
estimatel from the MCMC run. Figure 2 also gives the
posteria distribution of K, the defived K, using § = 3¢
in (9), wher t is the estimae of the averag standard
deviation of the 8 estimates Thevalues p(K = 1) = 0.040,
p(K =4) =0878 p(K =5) = 0.05 ard p(K = 6) =
0.027, indicae tha a degree three polynomid at leag is
neededwith some evidene tha to be on the sak side a
polynomid of degree four, possiby even five shoutl be
used.

Finally Figure 3, gives aplot of the first 2000 chain
states obtainel for a selectim of the parametersThe plots
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of the trace for the remainder of the run for these parameters
and for the remaining parameters were very similar and have
not been included. A noticeable feature is how transitions
between states only take place irregularly. This accounts for
why the histograms in Figure 2 are still somewhat irregular
even after50, 000 iterations. (Part of the difficulty arises
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4 SUMMARY

We have given a fairly direct way of handling the difficult
problem of estimating the unknown number of terms in a
regression model, using a simple adaptation of the Bayesian
MCMC approach. The method shows some promise, but
does require quite careful handling. In particular a careful
choice of candidate density seems important. The issue of
robustness is therefore of some concern. Itwould be of some
interest to compare the proposed derived MCMC method
with the parametric bootstrap methodhis latter being the
other generally used numerically intensive procedure.
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