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École des HauteśEtudes Commerciales
3000, chemin de la Ĉote-Ste-Catherine
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ABSTRACT

We illustrate by numerical examples how certain varian
reduction methods dramatically improve the efficiency o
Monte Carlo simulation for option pricing and other est
mation problems in finance, in the context of a geometr
Brownian motion model with stochastic volatitity. We con
sider lookback options and partial hedging strategies, w
different models for the volatility process. For varianc
reduction, we use control variates, antithetic variates, co
ditional Monte Carlo, and randomized lattice rules couple
with a Brownian bridge technique that reduces the effecti
dimension of the problem. In some of our examples, th
variance is reduced by a factor of more than 100 million
without increasing the work. The examples also illustra
how randomized quasi-Monte Carlo can be effective ev
if the problems considered involve a large number of d
mensions.

1 INTRODUCTION

Monte Carlo (MC) simulation is used on a daily basis b
banks and other financial institutions for pricing financia
derivatives products. These simulations must provide p
cise estimates in a very short period of time. Efficienc
improvement (e.g., via variance reduction) is therefore qu
important in this context. In this paper, we give example
of how efficiency can be improved for pricing options un
der extended versions of the Black-Scholes model, w
stochastic volatility. These models are believed to descri
in a more realistic way the behavior of financial marke
than the constant volatility model of Black and Schole
(1973).

We price two types of lookback options, for which
the payoff depends on the maximal value of the primitiv
asset over a given time interval. We also estimate t
initial gain made by hedging an European option on
partially. Analytic formulas are available for these problem

when the volatility is constant, but not when the volatility
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is stochastic. Simulation is an appropriate tool in thi
case. To reduce the variance, we use control variate
antithetic variates, conditional Monte Carlo, and randomize
lattice rules coupled with techniques that reduce the effecti
dimension of the problem. In our numerical examples
we obtain variance reduction factors of over 2000 for th
lookback options pricing, and of up to 100 millions (!)
for the partial-hedging example. These variance reductio
are obtained with no significant additional work; in fact
in some cases (such as for conditional Monte Carlo an
lattice rules) the total work (CPU time) is also reduced, s
the efficiency improvementfactors are even larger than the
variance reduction factors that we just mentioned.

The use of simulation for pricing financial derivatives
is surveyed by Boyle, Broadie, and Glasserman (1997
Among the recent papers where variance reduction metho
are studied in that context, we cite Glasserman, Heidelberg
and Shahabuddin (1999), Lemieux and L’Ecuyer (1998) an
Willard (1997). For general overviews of variance reduction
see, e.g., Bratley, Fox, and Schrage (1987), Fishman (199
and L’Ecuyer (1994).

Quasi-Monte Carlo(QMC) methods have also been
used successfully to evaluate financial products (e.g., Pask
and Traub 1995; Joy, Boyle, and Tan 1996; Caflish, Mo
rokoff, and Owen 1997; Acworth, Broadie, and Glasserma
1997; Boyle, Broadie, and Glasserman 1997; Willard 1997
Tezuka 1998; Lemieux and L’Ecuyer 1998; Lemieux an
L’Ecuyer 1999a). In particular, the empirical results ob
tained in Paskov and Traub (1995) for problems relate
to mortgage-backed securities have shown that QMC c
work even for large-dimensional problems (up to 360 in
their example), in contrast to what was commonly believe
previously (Morokoff and Caflisch 1994; Morokoff and
Caflish 1995). Their results led to the concept ofeffective
dimension, which is roughly the number of “important”
variables (or dimensions) of the problem. It is believed tha
many financial problems have a small associated effecti
dimension and this somehow explains the success of QM
methods for this type of application.
36
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The QMC methods used in the present paper arelattice
rules(see, e.g., Sloan and Joe 1994; Lemieux and L’Ecu
1999a; Lemieux and L’Ecuyer 1999b). In order to obta
unbiased mean and variance estimators, we randomize
rules via independent random shifts as in Cranley and Pa
son (1976), and the method can then be viewed as a varia
reduction technique (Lemieux and L’Ecuyer 1999b).

The paper is organized as follows. In Section 2, w
describe the financial models and their assumptions. In
third section, we recall briefly what are lattice rules and ho
they can be used for simulation problems. In Section 4,
review the basic idea of theBrownian bridgemethod, which
reduces the effective dimension of problems involving t
simulation of Brownian motion paths. Finally, in Sectio
5 we introduce the two examples, lookback options a
partial hedging, and we present numerical results giv
the estimated variance reduction factors obtained with
variance reduction techniques.

2 FINANCE MODELS

2.1 Dynamic of the Primitive Asset

We assume a frictionless and arbitrage-free market with t
traded assets in which trading takes place continuously o
the period[0, T ]. The first asset is abank accountB(·),
with initial value 1, and growing with a constant intere
rate r, i.e., B(t) = ert for 0 ≤ t ≤ T . The discount factor
process is defined asγ (t) = 1/B(t) for 0 ≤ t ≤ T . We also
assume the existence of arisk-neutral probability measure
Q (as usual) for which the second assetS(·) (called the
primitive asset) verifies the stochastic differential equatio
(SDE):

dS(t) = rS(t)dt + σ(t)S(t) ·[√
1 − ρ2dW1(t) + ρdW2(t)

]
, (1)

for S(0) > 0 and0 ≤ t ≤ T , where(W1(t), W2(t)) for 0 ≤
t ≤ T is a two-dimensional Brownian motion,ρ ∈ [0, 1] is a
constant, andσ(·) is thevolatility process, to be discussed in
a moment. All stochastic processes are assumed to ve
enough assumptions to ensure the existence of a un
solution to (1) and to be adapted to the (Q-augmented)
natural filtration of(W1(t), W2(t)) for 0 ≤ t ≤ T , denoted
by {F t , 0 ≤ t ≤ T }. The standard Black-Scholes (BS
model is obtained whenσ(t) = σ (a constant) andρ = 0.

Formally, an option is an FT -measurable random
variableY ≥ 0 with EQ(Y ) < ∞, whereEQ denotes the
expectation under the probability measureQ. It is a privi-
lege whose holder can exercise at the time horizonT when
Y > 0 (i.e., when the contract expires in the money). T
33
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rational price of this product is the expected value of its
(future) discounted payoff underQ:

v = EQ
[
γ (T )Y

]
. (2)

This expectation is denoted byE
[
γ (T )Y

]
in the follow-

ing. Details about arbitrage-free markets and risk-neutra
evaluation of options can be found in Duffie (1996).

2.2 Dynamics for the Volatility

We consider three different models for the volatility process
σ(·). For further details on stochastic volatility models in
general, we refer the reader to Detemple and Osakwe (1997

The first model is theGeometric Brownian Motion
Process(GBMP), for whichσ(·) follows the SDE

dσ(t) = ασ(t)dt + θσ (t)dW2(t), 0 ≤ t ≤ T ,

where theappreciation rateα and thevolatility of the
volatility θ are constants. Theρ defined in (1) is the
correlation between the innovations of the volatility and the
price of the primitive asset. For a GBMP,σ(T )/σ (0) is
lognormal with parameters(α − θ2/2)T andθ

√
T .

The second is theMean Reverting Proportional Process
(MRPP), for which

dσ(t) = κ [σ̄ − σ(t)] dt + θσ (t)dW2(t), 0 ≤ t ≤ T ,

whereκ is the reverting rate, σ̄ is the long-term volatility,
and θ is the volatility of the volatility. To the best of our
knowledge, the distribution ofσ(T ) is unknown when the
volatility process is a MRPP.

The third model we use is theSquare-Root Mean Re-
verting Process(SRMRP) (Cox, Ingersoll, and Ross 1985)
which evolves according to the SDE

dσ(t) = κ [σ̄ − σ(t)] dt + θ
√

σ(t)dW2(t), 0 ≤ t ≤ T

for 2κσ̄ ≥ θ2. For a SRMRP,σ(T ) follows a non-central
chi-square distribution with4κσ̄ /θ2 degrees of freedom and
parameter of non-centrality4κσ(0)e−κT /

[
θ2

(
1 − e−κT

)]
.

The unconditional mean and variance ofσ(T ) are

E [σ(T )] = σ(0)e−κT + σ̄
(

1 − e−κT
)

,

and

V [σ(T )] = σ(0)
θ2

κ

(
e−κT − e−2κT

)
+σ̄

θ2

2κ

(
1 − e−κT

)2
.
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3 LATTICE RULES IN SIMULATION

Stochastic simulations normally draw their randomness fr
a so-called random number generator (RNG), which provi
sequences of real numbers in the interval[0, 1). These
numbers are viewed as realizations of i.i.d.U(0, 1) random
variables, and transformed as needed to generate var
from other distributions and, ultimately, to compute th
desired estimator. Thus, a simulation that requiress such
uniforms can be viewed as computing a functionf defined
over thes-dimensional unit hypercube[0, 1)s , at some point
x determined by the RNG, to estimate the quantity

µ =
∫

[0,1)s

f (x)dx. (3)

This can be repeatedn times (by doingn independent
simulation runs) and the estimator ofµ becomes

µ̂n = 1

n

n∑
i=1

f (xi ),

wherexi is the vector ofs uniforms used for runi. This
is the MC method. Variance reduction techniques ess
tially amount to changing the functionf , replacing it by a
“smoother” one.

The idea of QMC is to use in (3) a point setPn =
{x1, . . . , xn} that is more evenly distributed over[0, 1)s than
typical random points.Lattice rulesdo this by takingPn as
the intersection of an integration lattice with the hypercu
[0, 1)s (Sloan and Joe 1994; Lemieux and L’Ecuyer 1999
A simple and convenient special case of this is to takePn as
the set of all successive overlappings-tuples obtained from
a given initial seed, for a multiplicative linear congruenti
generator (LCG) with modulusn and (maximal) period
length n − 1, and then add the zero vector. With th
approach,Pn is deterministic, and so are the estimatorµ̂n

and the integration error|µ̂n − µ|, which is usually hard to
estimate.

A practical way of assessing the error is to random
the lattice rule as suggested by Cranley and Patterson (19
Generate a random vectorU uniformly over [0, 1)s , and
shift Pn by addingU to each point, modulo 1. That is, eac
xi is replaced bỹxi = (xi + U) mod 1. The estimatorµ̃n

thus obtained by replacingxi by x̃i in (3) is unbiased forµ,
and its variance turns out to be equal to the sum of square
the Fourier coefficients off over the dual of the integration
lattice (Lemieux and L’Ecuyer 1999b). By repeating th
procedurem times, with m independent random shifts
one obtainsm i.i.d. copies ofµ̃n, whose sample variance
provides an unbiased estimator of the variance ofµ̃n. In our
numerical experiments in Section 5, we compare this sam
variance with the sample variance of the MC estimator w
33
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sample sizemn (i.e., the same total number of simulation
runs).

The variance expression, given as a sum over the dual
tice, motivates selection criteria for lattice rules (Hickerne
et al. 1999; Lemieux and L’Ecuyer 1999a; Lemieux an
L’Ecuyer 1999b). For our numerical experiments reported
Section 5, we use lattice rules that correspond to LCGs w
prime modulusn and multipliera. The multipliersa have
been selected via the general figure of meritMt,d defined
by Lemieux and L’Ecuyer (1999b). We use(t, d) = (32, 3)

in Section 5.1, and(t, d) = (8, 3) in Section 5.2. This
general figure of merit selects the lattice rule in terms
the quality of the projections ofPn over low-dimensional
subspaces of[0, 1)t , and over the subspaces determined b
successive dimensions. A different class of lattice rule
defined over polynomial spaces, is discussed by L’Ecuy
and Lemieux (1999).

4 BROWNIAN BRIDGE TECHNIQUE

As we said earlier, QMC typically works better when th
effective dimension of the problem is small, e.g., when th
first few components of the vectorsxi account for most
of the variability of the estimator. The rationale is tha
the QMC point setsPn are usually constructed so that th
projectionsPn(I) on subspaces indexed by the dimension
in I ⊆ {1, 2, . . . , s} are very well distributed when|I | is
small or contains indices that are close to each other (i
I = {i1, . . . , it } where1 ≤ i1 < . . . < it ≤ s and it − i1
is small). Thus, if the functionf in (3) can be rewritten
so that the corresponding subsets of variables{xi1, . . . , xit }
explain most of the variability off , then the error should be
reduced because these important subsets will be integra
by well-distributed point setsPn(I). This argument does not
hold for MC because no projectionPn(I) is more regularly
distributed than any other when the points ofPn are i.i.d.
uniformly distributed over[0, 1)s .

In certain situations, several ways of definingf are
available which all give the same distribution forf (U)

when U is uniform over[0, 1)s , but for which the impor-
tance of the first few variables differs significantly. One o
these situations is the generation of a (discretized) Bro
nian motionW(·) over a time interval[0, T ]. A standard
way of generatingW(·) is to discretize[0, T ] by defining
tj = jT /d for j = 0, . . . , d, for some constantd, and gen-
erateW(tj ) for j = 0, 1, . . . , d in succession by exploiting
the fact that theW(tj+1) − W(tj ) are i.i.d. normal. An
alternative is theBrownian bridgetechnique, also called
Ciesielski discretization, which exploits the fact that for a
Brownian motionW(·), the distribution ofW(t) conditional
on (W(u) = a, W(v) = b) is known for u < t < v. As-
suming thatd is a power of 2, one can then generate th
path {W(ti), 1 ≤ i ≤ d} in a non-sequential way as fol-
lows: First generateW(td), thenW(td/2), thenW(td/4) and
8
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W(t3d/4), and so on. In this way the effective dimension
can be reduced because the first fewU(0, 1) variates explain
most of the variability of the path. Using this technique to
reduce the effective dimension in the context of QMC has
first been suggested by Caflisch and Moskowitz (1995).

5 EXAMPLES AND NUMERICAL RESULTS

We now experiment with lattice rules combined with other
variance reduction techniques, for two classes of problems
In our implementation, the processes{σ(t), 0 ≤ t ≤ T }
and {S(t), 0 ≤ t ≤ T } have been discretized using the
Euler scheme withtj = jT /d, j = 0, . . . , d. For all the
experiments, we taker = 0.05 andT = 0.5.

In terms of computation times, using lattice rules (LR)
is faster than plain MC (because the pointsxi are faster
to generate). Using the Brownian bridge (BB) method
increases the work compared with the standard sequentia
scheme, but its combination with LR is approximately as
fast as the standard scheme with MC (depending on which
computer/compiler is used).

5.1 Lookback Option

The first type of lookback option that we consider gives the
right to sell the primitive asset at the high:

Yhigh = MS(T ) − S(T ),

where MS(T ) = max0≤t≤T {S(t)}. The second type is a
call option on the maximum:

Ymax =
(
MS(T ) − K

)+
, (4)

where K is a positive constant called thestrike price.
No analytic formula is available for these two types of
lookback options when the volatility is stochastic. Under
the BS model (with constant volatility) closed-form analytic
formulas for the exact pricesE(Yhigh) and E(Ymax) have
been established by Goldman, Sosin, and Gatto (1979) an
Conze and Viswanathan (1991), respectively.

Let µ1 and µ2 denote respectivelyE(γ (T )Yhigh) and
E(γ (T )Ymax). Since each of these two products require the
computation ofMS(T ), we need to generate a path for the 3-
dimensional process({S(ti)}, {σ(ti)}, {MS(i)}, 1 ≤ i ≤ d)

in each simulation, where

MS(i) = max
ti−1≤t≤ti

S(t)

is generated under the conditional distribution given(S(ti−1),
S(ti), σ (ti−1)), following the technique of Beaglehole, Dy-
bvig, and Zhou (1997). The dimensions is thus equal to
339
.

l
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3d, which is large since we need to taked large enough so
that the discretization error is small.

For this problem, we reduce the variance via control
variates and antithetic variates, in addition to the use o
lattice rules. Our first control variate,Y1, is taken as the
price of the option when the volatility is fixed atσ(0), i.e.,
under the BS model. ThisY1 should control the variability
of the paths{S(ti), 1 ≤ i ≤ d} and {MS(i), 1 ≤ i ≤ d},
given the trajectory of the volatility process. To control
the variability of the volatility process, we takeY2 = σ(T )

as a second control variate. We consider the GBMP an
SRMRP models forσ(·) (we can computeE(Y2) for these
models).

We also useantithetic variates(AV), but only for S(·)
and MS(·) (and not forσ(·), because the estimator is not
monotone as a function of the uniforms used to generateσ(·);
see Bratley, Fox, and Schrage 1987 for a discussion of wh
monotonicity is relevant). We must also be careful about
how we assign theU(0, 1) variates to the three different
paths. Since the BB technique is only used forS(·) and
σ(·), we decided to use the following assignment:MS(i)

usesUi , S(ti) usesUd+2i−1 and σ(ti) usesUd+2i . This
should put more importance on the firstd + w variables,
for some smallw > 0.

In Tables 1, 2 and 3, the parameters for the GBMP are
S(0) = 100, σ(0) = 0.15, α = 0.05, θ = 0.08. For the
SRMRP in Tables 4 and 5, we takeσ(0) = 0.15, σ̄ = 0.15,
θ = 0.08 and κ = 1.5. For the option onYmax, we use
K = 100. CV1 stands for the estimator that uses the contro
variateY1 only, while CV12 is for the one that uses both
control variables. The multipliera used for the lattice rules,
throughout Table 1 to 5 isa = 178.

The ratios (variance reduction factors) given in the
following tables for MC are precise at least to their first

Table 1:  Estimated variance reduction factors forYhigh,
GBMP andρ = 0. Estimated price = 7.60

MC LR LR + BB
(m, n, d) = (100, 1021, 64)

naive 1.0 8.9 19
AV 5.6 13 34

CV1 190 280 1100
CV1 + AV 560 320 2000

CV12 330 280 1200
CV12 + AV 560 320 2000
(m, n, d) = (100, 1021, 128)

naive 1.0 6.2 16
AV 5.6 8.9 27

CV1 190 540 1100
CV1 + AV 560 590 1800

CV12 330 530 1100
CV12 + AV 560 590 1800
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Table 2:  Estimated variance reduction factors forYhigh,
GBMP andρ = 0.2. Estimated price = 10.11

MC LR LR + BB
(m, n, d) = (100, 1021, 64)

naive 1.0 7.9 16
AV 5.5 13 30

CV1 18 39 70
CV1 + AV 49 73 120

CV12 23 39 71
CV12 + AV 49 73 120

Table 3:  Estimated variance reduction factors forYmax,
GBMP andρ = 0. Estimated price = 10.07

MC LR LR + BB
(m, n, d) = (100, 1021, 64)

naive 1.0 12 39
AV 6.7 15 65

CV1 290 590 2100
CV1 + AV 700 750 2400

CV12 450 590 2100
CV12 + AV 700 750 2400
(m, n, d) = (100, 1021, 128)

naive 1.0 7.1 25
AV 6.6 9.6 52

CV1 280 550 1400
CV1 + AV 700 660 2300

CV12 440 560 1400
CV12 + AV 700 660 2300

2 digits, since the estimators for MC are based onmn

replications. When LR is implied, the ratios are less accura
(say±10%) since the LR estimators are based onm = 100
replications only. However, these variations do not affec
the general conclusions we draw from the results shown
the tables.

From these results, we see that the first control variab
works very well in all cases, reducing the variance for MC
by factors of at least 180 for GBMP (whenρ = 0) and 46
for SRMRP. The control variableY2 helps with the MC
method (without AV, for GBMP) but is practically useless
with LR. Also, LR alone is sometimes worse than MC
with GBMP. This is not unexpected since the dimensio
of this problem is large (192 or 384). However, using BB
makes LR better than MC in every case, by a factor of a
least 3. The combination of CV1, AV, LR, and BB reduce
the variance by a factor of nearly 2000 in Table 1, ove
2000 in Table 3, and somewhat less in the other table
We computed the estimated correlations betweenY1 and
Yhigh (or Ymax) for the two models and it turned out to be
higher with GBMP than SRMRP. Also, the first control
variable works better withYmax than withYhigh: The payoff
for Yhigh depends on bothMS(T ) andS(T ) whereas forYmax,
34
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Table 4:  Estimated variance reduction factors forYhigh,
SRMRP andρ = 0. Estimated price = 7.49

MC LR LR + BB
(m, n, d) = (100, 1021, 64)

naive 1.0 8.8 18
AV 5.3 13 33

CV1 47 74 240
CV1 + AV 73 570 720

CV12 72 73 250
CV12 + AV 155 570 770
(m, n, d) = (100, 1021, 128)

naive 1.0 6.5 15
AV 5.3 8.4 29

CV1 47 110 230
CV1 + AV 73 422 630

CV12 72 108 240
CV12 + AV 156 430 630

Table 5:  Estimated variance reduction factors forYmax,
SRMRP andρ = 0. Estimated price = 9.96

MC LR LR + BB
(m, n, d) = (100, 1021, 64)

naive 1.0 11 36
AV 6.5 17 62

CV1 72 160 440
CV1 + AV 130 700 1100

CV12 100 160 440
CV12 + AV 240 690 1200
(m, n, d) = (100, 1021, 128)

naive 1.0 6.5 23
AV 6.5 10 53

CV1 71 140 270
CV1 + AV 130 540 970

CV12 99 140 280
CV12 + AV 240 540 970

it only depends onMS(T ). Thus, switching from constant
to stochastic volatility increases the variance ofYmax less
than that ofYhigh.

Table 2 reports the same experiment as Table 1, b
usingρ = 0.2. This means thatS(·) depends more on the
Brownian motionW2(·) that drives the volatility process,
so that the correlation between the option’s payoff andY1
decreases. This is confirmed by the smaller reduction facto
given by CV1.

To give an idea of the computation time, it took abou
three minutes, on a Pentium II computer, to compute th
LR+BB+CV12+AV estimator of Table 5, withd = 64, and
the precision is around 0.5 cent at the 95% confidence leve
0
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5.2 Partial Hedging

The basic idea used to evaluate an option in a frictionle
arbitrage-free and complete market is to find the initial co
of a replication portfoliothat hedges the option. (Of course
in the stochastic volatility models considered here, a sec
traded asset would have to be introduced to complete
market.) The value of this portfolio matches with certain
the option’s payoff at the exercise date. Alternatively, t
hedger of an option may opt forpartial replication (Ben
Ameur, Breton, and L’Ecuyer 1999) since it costs less tha
full replication, thus allowing an initial gain. However, thi
agent may fall in default, with a probability that depen
on the partial hedging event. Sellers of options who do
perfectly hedge their risk are commonplace in real life.

Here we consider the (simple) problem of finding th
initial gain when partially hedging an European option o
a hedging event that depends on the final primitive as
price. More specifically, we want to estimateE[X], where

X = γ (T )(S(T ) − K)+1{S(T )≤b}, (5)

b > K is the parameter defining the hedging event (i.
the hedger speculates thatS(T ) will be smaller thanb),
and K is the strike price of the option. The naive es
mator for E[X] can be computed by generating the pa
of ({S(ti)}, {σ(ti)}, 1 ≤ i ≤ d), so the dimension of this
problem is2d.

For this problem, we useconditional Monte Carlo
(CMC) to reduce the variance of the naive estimator.
explained by Hull and White (1987) and Willard (1997
the conditional expectation ofX given the trajectory of
the volatility process{σ(ti), 1 ≤ i ≤ d} can be computed
analytically:

E(X | σ(t1), . . . , σ (td))

= S(0)(8(d1) − 8(d ′
1)) − Ke−rT (8(d2) − 8(d ′

2),

where d1 = (ln(S(0)/K) + (r + σ̄ /2)T )/
√

σ̄ T , d ′
1 =

(ln(S(0)/b) + (r + σ̄ /2)T )/
√

σ̄ T , d2 = d1 − √
σ̄ T , d ′

2 =
d ′

1 − √
σ̄ T , σ̄ = (

∑d
i=1 σ 2(ti))/d and 8(·) is the cumu-

lative normal distribution. This follows from the fact tha
the distribution ofS(td) conditional onσ(t1), . . . , σ (td) is
known (see also Ben Ameur, Breton, and L’Ecuyer 19
for details and other cases).

This CMC estimator hasprovably less variance than
the naive MC one (this follows from standard varian
decomposition; see Bratley, Fox, and Schrage 1987).
also reduces the work, because the processS(·) needs not
be generated explicitly. Moreover, the dimension of t
problem is reduced from2d to d, which should help QMC
methods (when combined with CMC). The numberd of
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dimensions may still be too large though, and this is wher
the BB technique comes to the rescue.

In Table 6, we compare MC, LR, and LR + BB,
using either the naive estimator, CMC, or CMC + AV.
Different values ofn and d are used. With the naive
estimator, the BB technique is applied to the simulation o
both Brownian motionsW1(·) and W2(·), and theU(0, 1)

variates are interleaved:U1, U3, . . . , U2d−1 go to W1(·)
while U2, U4, . . . , U2d go to W2(·). The volatility model
is the MRPP. There is no analytical solution forE[X] in
this case. The parameters of the model areS(0) = 100,
σ(0) = 0.15, σ̄ = 0.15, θ = 0.08, κ = 1.5, K = 100 and
b = 120. The multipliera used for the lattice rules when
n = 251 is a = 46, anda = 325 for n = 1021.

Table 6:  Estimated variance reduction factors for a partial
hedged portfolio. Estimated initial value = 3.96.

MC LR LR + BB
(m, n, d) = (100, 251, 64)

naive 1.0 1.3 35
CMC 5.5e4 2.8e6 4.1e6
CMC + AV 5.4e6 1.4e7 7.4e7
(m, n, d) = (100, 1021, 64)

naive 1.0 1.6 39
CMC 5.6e5 6.1e6 1.0e7
CMC + AV 5.6e6 1.7e7 1.0e8
(m, n, d) = (100, 251, 128)
naive 1.0 1.6 36
CMC 5.6e4 2.3e6 3.5e6
CMC + AV 5.7e6 1.2e7 7.3e7
(m, n, d) = (100, 1021, 128)
naive 1.0 1.7 36
CMC 5.7e4 7.2e6 1.1e7
CMC + AV 5.8e6 1.5e7 1.1e8

In Table 6, we see that LR improves upon MC in all
cases, even without BB. This differs from what was ob
served by Willard (1997), who used different QMC method
for a slightly different problem, withd = 64. BB brings
a significant variance reduction compared with LR alone
CMC and its combination with AV bring spectacular im-
provements, by factors ranging from (roughly) 5 millions
to 100 millions. In terms of computation time, it means
that in only one second, an estimator with very high accu
racy (3e-5 at the 95% level) can be obtained when usin
LR+BB+CMC+AV. Note that the improvement of LR upon
MC is more important with the CMC estimators than with
the naive method, whose respective dimensions ared and
2d. For comparison, Willard (1997) observed a varianc
reduction by (roughly) a factor of 100 with CMC, and
an additional factor of 10 when CMC was combined with
QMC, for his problem.
1
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