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ABSTRACT

We illustrate by numerical examples how certain variance
reduction methods dramatically improve the efficiency of
Monte Carlo simulation for option pricing and other esti-
mation problems in finance, in the context of a geometric
Brownian motion model with stochastic volatitity. We con-
sider lookback options and partial hedging strategies, with
different models for the volatility process. For variance
reduction, we use control variates, antithetic variates, con-
ditional Monte Carlo, and randomized lattice rules coupled
with a Brownian bridge technique that reduces the effective
dimension of the problem. In some of our examples, the
variance is reduced by a factor of more than 100 millions
without increasing the work. The examples also illustrate
how randomized quasi-Monte Carlo can be effective even
if the problems considered involve a large number of di-
mensions.

1 INTRODUCTION

Monte Carlo (MC) simulation is used on a daily basis by
banks and other financial institutions for pricing financial
derivatives products. These simulations must provide pre-
cise estimates in a very short period of time. Efficiency
improvement (e.g., via variance reduction) is therefore quite
important in this context. In this paper, we give examples
of how efficiency can be improved for pricing options un-
der extended versions of the Black-Scholes model, with
stochastic volatility. These models are believed to describe
in a more realistic way the behavior of financial markets
than the constant volatility model of Black and Scholes
(1973).

We price two types of lookback options, for which
the payoff depends on the maximal value of the primitive
asset over a given time interval. We also estimate the
initial gain made by hedging an European option only
partially. Analytic formulas are available for these problems
when the volatility is constant, but not when the volatility
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is stochastic. Simulation is an appropriate tool in this
case. To reduce the variance, we use control variates,
antithetic variates, conditional Monte Carlo, and randomized
lattice rules coupled with techniques that reduce the effective
dimension of the problem. In our numerical examples,
we obtain variance reduction factors of over 2000 for the
lookback options pricing, and of up to 100 millions (!)
for the partial-hedging example. These variance reductions
are obtained with no significant additional work; in fact
in some cases (such as for conditional Monte Carlo and
lattice rules) the total work (CPU time) is also reduced, so
the efficiency improvemerfactors are even larger than the
variance reduction factors that we just mentioned.

The use of simulation for pricing financial derivatives
is surveyed by Boyle, Broadie, and Glasserman (1997).
Among the recent papers where variance reduction methods
are studied in that context, we cite Glasserman, Heidelberger,
and Shahabuddin (1999), Lemieux and L'Ecuyer (1998) and
Willard (1997). For general overviews of variance reduction,
see, e.g., Bratley, Fox, and Schrage (1987), Fishman (1996)
and L'Ecuyer (1994).

Quasi-Monte Carlo(QMC) methods have also been
used successfully to evaluate financial products (e.g., Paskov
and Traub 1995; Joy, Boyle, and Tan 1996; Caflish, Mo-
rokoff, and Owen 1997; Acworth, Broadie, and Glasserman
1997; Boyle, Broadie, and Glasserman 1997; Willard 1997;
Tezuka 1998; Lemieux and L'Ecuyer 1998; Lemieux and
L'Ecuyer 1999a). In particular, the empirical results ob-
tained in Paskov and Traub (1995) for problems related
to mortgage-backed securities have shown that QMC can
work even for large-dimensional problems (up to 360 in
their example), in contrast to what was commonly believed
previously (Morokoff and Caflisch 1994; Morokoff and
Caflish 1995). Their results led to the concepteffective
dimension which is roughly the number of “important”
variables (or dimensions) of the problem. It is believed that
many financial problems have a small associated effective
dimension and this somehow explains the success of QMC
methods for this type of application.
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The QMC methods used in the present papetatiee
rules(see, e.g., Sloan and Joe 1994; Lemieux and L'Ecuyer
1999a; Lemieux and L'Ecuyer 1999b). In order to obtain

unbiased mean and variance estimators, we randomize the
rules via independent random shifts as in Cranley and Patter-

and Lemieux

rational price of this product is the expected value of its
(future) discounted payoff undep:

v=E?[y(D)Y]. 2)

son (1976), and the method can then be viewed as a varianceThis expectation is denoted bgi[y(T)Y] in the follow-

reduction technique (Lemieux and L'Ecuyer 1999b).

The paper is organized as follows. In Section 2, we
describe the financial models and their assumptions. In the
third section, we recall briefly what are lattice rules and how
they can be used for simulation problems. In Section 4, we
review the basic idea of tH&rownian bridgemethod, which
reduces the effective dimension of problems involving the
simulation of Brownian motion paths. Finally, in Section
5 we introduce the two examples, lookback options and
partial hedging, and we present numerical results giving
the estimated variance reduction factors obtained with the
variance reduction techniques.

2 FINANCE MODELS

2.1 Dynamic of the Primitive Asset

We assume a frictionless and arbitrage-free market with two
traded assets in which trading takes place continuously over
the period[0, T]. The first asset is &dank accountB(-),

with initial value 1, and growing with a constant interest
rater, i.e., B(t) = ¢’ for 0 <t < T. The discount factor
process is defined agt) = 1/B(¢t) for0 <t < T. We also
assume the existence ofrigk-neutral probability measure

Q (as usual) for which the second ass&t) (called the
primitive asset verifies the stochastic differential equation
(SDE):

ds(t) rS@)dt +o()S() -

[\/1—7,02ch1(t) + dez(t)] @

for S(0) > 0and0 < ¢ < T, where(Wy(t), Wa(t)) for 0 <
t < T is atwo-dimensional Brownian motiop,< [0, 1]isa
constant, and (-) is thevolatility processto be discussed in

ing. Details about arbitrage-free markets and risk-neutral
evaluation of options can be found in Duffie (1996).

2.2 Dynamics for the Volatility

We consider three different models for the volatility process
o (+). For further details on stochastic volatility models in
general, we refer the reader to Detemple and Osakwe (1997).

The first model is theGeometric Brownian Motion
Process(GBMP), for whicho (-) follows the SDE

do(t) = ao(t)dt + 00 (t)dWa(t), 0<r<T,
where theappreciation rateoe and thevolatility of the
volatility 6 are constants. The defined in (1) is the
correlation between the innovations of the volatility and the
price of the primitive asset. For a GBMPB(T) /o (0) is
lognormal with parameter&x — #2/2)T and6+/T.

The second is thBlean Reverting Proportional Process
(MRPP), for which
do(t) =«k[6 —o@)]dt + 0o ()dWa(t), 0<r<T,
wherek is thereverting rate o is thelong-term volatility
and @ is the volatility of the volatility To the best of our
knowledge, the distribution of (T") is unknown when the
volatility process is a MRPP.

The third model we use is thequare-Root Mean Re-
verting Proces§SRMRP) (Cox, Ingersoll, and Ross 1985)
which evolves according to the SDE
do(t) =«k[6 —o@®)]dt + 0/ o@)dWa(t), O0<t<T
for 2«6 > 2. For a SRMRPg (T) follows a non-central
chi-square distribution with« 5 /62 degrees of freedom and

a moment. All stochastic processes are assumed to verify parameter of non-centraligo (0)e =7/ [62 (1 — e=*T)].
enough assumptions to ensure the existence of a uniqueThe unconditional mean and varianceoofT') are

solution to (1) and to be adapted to th@-Gugmented)
natural filtration of(W1(z), Wa(¢)) for 0 <t < T, denoted
by {¥;,0 <t < T}. The standard Black-Scholes (BS)
model is obtained when(¢) = ¢ (a constant) ang = 0.
Formally, an option is an Fr-measurable random
variableY > 0 with E€(Y) < oo, where E€ denotes the
expectation under the probability meas@e It is a privi-
lege whose holder can exercise at the time horiZomhen
Y > 0 (i.e., when the contract expires in the money). The
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92
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3 LATTICE RULES IN SIMULATION sample sizenn (i.e., the same total number of simulation
runs).

Stochastic simulations normally draw their randomness from The variance expression, given as a sum over the dual lat-
a so-called random number generator (RNG), which provides tice, motivates selection criteria for lattice rules (Hickernell
sequences of real numbers in the interf@l1l). These et al. 1999; Lemieux and L'Ecuyer 1999a; Lemieux and
numbers are viewed as realizations of i.LH0, 1) random L'Ecuyer 1999b). For our numerical experiments reported in
variables, and transformed as needed to generate variatesSection 5, we use lattice rules that correspond to LCGs with
from other distributions and, ultimately, to compute the prime modulus: and multipliera. The multipliersa have

desired estimator. Thus, a simulation that requiresich been selected via the general figure of maéfjt; defined
uniforms can be viewed as computing a functiprlefined by Lemieux and L'Ecuyer (1999b). We uge d) = (32, 3)
over thes-dimensional unit hyperculdé, 1)*, at some point in Section 5.1, andt, d) = (8,3) in Section 5.2. This
x determined by the RNG, to estimate the quantity general figure of merit selects the lattice rule in terms of
the quality of the projections of,, over low-dimensional
W= / FO0dx. ®) subspac_es qio 1, _and over t_he subspaces determined by
[0,1)s successive dimensions. A different class of lattice rules,

defined over polynomial spaces, is discussed by L'Ecuyer
This can be repeated times (by doingn independent and Lemieux (1999).
simulation runs) and the estimator pfbecomes

4 BROWNIAN BRIDGE TECHNIQUE

. 1lg

Hn = n Z S i), As we said earlier, QMC typically works better when the
i=1 effective dimension of the problem is small, e.g., when the

first few components of the vectoss account for most

of the variability of the estimator. The rationale is that

the QMC point setsP,, are usually constructed so that the

projectionsP, (1) on subspaces indexed by the dimensions

wherex; is the vector ofs uniforms used for run. This

is the MC method. Variance reduction techniques essen-
tially amount to changing the functiofi, replacing it by a
“smoother” one.

The idea of QMC is to use in (3) a point s&, = in I C{1,2,...,s} are very well distributed whef/| is
i1 x,} that is more evenly distributed ove@, 1)° than small or contains indices that are close to each other (i.e.,
o y I ={i1,....i;ywherel <i; < ... <i, <s andi; — i

typical random pointsLattice rulesdo this by takingP, as X ) . ) )
the intersection of an integration lattice with the hypercube is small). Thus, if the functiory’ in (3) can be rewritten

[0, 1)* (Sloan and Joe 1994; Lemieux and L'Ecuyer 1999b). SO that the corresponding subsets of variakles . .. . x;, }
A simple and convenient special case of this is to tBkes explain most of the variability of’, then the error should be

the set of all successive overlappinguples obtained from reduced because these important subsets will be integrated
a given initial seed, for a multiplicative linear congruential by well-distributed point Setg’f([),' This ergument does not
generator (LCG) with modulug and (maximal) period h_old_for MC because o projectio, (7) IS more regu_lerly
length n — 1, and then add the zero vector. With this distributed than any other when the points ®f are i.i.d.

approach,P, is deterministic, and so are the estimafor uniformly dietrib.uted. ovef0, 1)°. | defini

and the integration errdfi,, — 1|, which is usually hard to _In certa|r_1 S|tuat|qns, Several ways (.Jf efmmfgare

estimate. available which all give the same distribution fgi(U)
. . p . ;

A practical way of assessing the error is to randomize whenU is un!form over[Q, b, b,Ut for V,Vh'f:h the impor-
the lattice rule as suggested by Cranley and Patterson (1976):tance Of the_ first _few variables (_Jln‘fers 5|gn|_f|cant_ly. One of
Generate a random vecttt uniformly over [0, 1)*, and these S|tl_Jat|ons is the ge_neretlon of a (discretized) Brow-
shift P, by addingU to each point, modulo 1. Thatis, each Man motionW(,) over a time interval0, T]. A standard
x; is replaced byk; = (x; + U) mod 1 The estimatof, way of generating¥ (-) is to discretize[0, T'] by defining
thus obtained by replacing by %; in (3) is unbiased fop, tj=jT/dior =0.....d, for some constant, and gen-
and its variance turns out to be equal to the sum of squares of erateW(s;) for j=0,1,....d1in succession by exploiting
the Fourier coefficients of over the dual of the integration the fact that theW (1j+1) — W(;) are i.id. normal. An

lattice (Lemieux and L'Ecuyer 1999b). By repeating this alternative is theBrownian bridgetechnique, also called
procedurem times, with m independent random shifts Ciesielski discretizationwhich exploits the fact that for a

one obtainsn i.i.d. copies offi,, whose sample variance ~ Brownian motionw(,), the @s'iilbutlonfoW(t) conditional
provides an unbiased estimator of the variancg,ofIn our on ('W(u)h: a, W) =b) IfSZ nown foru h< t<v. As- .
numerical experiments in Section 5, we compare this sample suming thatd Is a power of 2, one can then generate the

variance with the sample variance of the MC estimator with Path {W (). 1 < i = d} in a non-sequential way as fol-
lows: First generat& (z;), thenW (z;,2), thenW (z;,4) and
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W(t34/4), and so on. In this way the effective dimension
can be reduced because the first 1€y, 1) variates explain
most of the variability of the path. Using this technique to
reduce the effective dimension in the context of QMC has
first been suggested by Caflisch and Moskowitz (1995).
5 EXAMPLES AND NUMERICAL RESULTS
We now experiment with lattice rules combined with other
variance reduction techniques, for two classes of problems.
In our implementation, the processés(r),0 <t < T}
and {S(z),0 < r < T} have been discretized using the
Euler scheme with; = jT/d, j =0,...,d. For all the
experiments, we take = 0.05and 7T = 0.5.

In terms of computation times, using lattice rules (LR)
is faster than plain MC (because the poirtsare faster
to generate). Using the Brownian bridge (BB) method
increases the work compared with the standard sequential
scheme, but its combination with LR is approximately as
fast as the standard scheme with MC (depending on which
computer/compiler is used).

5.1 Lookback Option

The first type of lookback option that we consider gives the
right to sell the primitive asset at the high:

Yhigh = M3(T) — S(T),

where M5(T) = max<,<r {S(t)}. The second type is a
call option on the maximum

+
Ymax = (M3(T) = ), )
where K is a positive constant called thstrike price
No analytic formula is available for these two types of
lookback options when the volatility is stochastic. Under
the BS model (with constant volatility) closed-form analytic
formulas for the exact prices (Yhigh) and E(Ymax) have
been established by Goldman, Sosin, and Gatto (1979) and
Conze and Viswanathan (1991), respectively.

Let 1 and o denote respectively (y (T) Yhigh) and
E(y(T)Ymax. Since each of these two products require the
computation of\/S (T'), we need to generate a path for the 3-
dimensional procesgS()}, {o ()}, (M5(i)}, 1 <i < d)
in each simulation, where

MS5(i) = max S(t)

L —1=I=t;

is generated under the conditional distribution giv&e; _1),
S(t;), o (t;i—1)), following the technique of Beaglehole, Dy-
bvig, and Zhou (1997). The dimensianis thus equal to
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3d, which is large since we need to ta#tdarge enough so
that the discretization error is small.

For this problem, we reduce the variance via control
variates and antithetic variates, in addition to the use of
lattice rules. Our first control variatd};, is taken as the
price of the option when the volatility is fixed at(0), i.e.,
under the BS model. Thig; should control the variability
of the paths{S(t;),1 < i < d} and {M5(i),1 < i < d},
given the trajectory of the volatility process. To control
the variability of the volatility process, we také = o (T)
as a second control variate. We consider the GBMP and
SRMRP models for () (we can compute® (Y») for these
models).

We also useantithetic variategAV), but only for S(-)
and M5(-) (and not foro (-), because the estimator is not
monotone as a function of the uniforms used to generaie
see Bratley, Fox, and Schrage 1987 for a discussion of why
monotonicity is relevant). We must also be careful about
how we assign thd/(0, 1) variates to the three different
paths. Since the BB technique is only used fgr) and
o(-), we decided to use the following assignmem: (i)
usesU;, S(t;) usesUgi2;—1 and o (f;) usesUyyp;. This
should put more importance on the figdt4 w variables,
for some smalw > 0.

In Tables 1, 2 and 3, the parameters for the GBMP are
S(0) = 100, 0(0) = 0.15, « = 0.05, & = 0.08. For the
SRMRP in Tables 4 and 5, we tak€0) = 0.15, ¢ = 0.15,

0 = 0.08 andx = 1.5. For the option onYpayx, We use

K =100 CV1 stands for the estimator that uses the control
variate Yy only, while CV12 is for the one that uses both
control variables. The multiplier used for the lattice rules,
throughout Table 1 to 5i8 =178

The ratios (variance reduction factors) given in the
following tables for MC are precise at least to their first

Table 1: Estimated variance reduction factors #ign,
GBMP andp = 0. Estimated price = 7.60

|MC LR LR+BB
(m,n,d) = (100, 1021, 64)
naive| 1.0 8.9 19
AV | 5.6 13 34
CVv1l | 190 280 1100
CV1l+ AV | 560 320 2000
CVv12 | 330 280 1200
CV12 + AV | 560 320 2000
(m,n,d) = (100, 1021, 128
naive| 1.0 6.2 16
AV | 56 89 27
CVv1l | 190 540 1100
CVl+ AV | 560 590 1800
Cv12 | 330 530 1100
CV12 + AV | 560 590 1800
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Table 2: Estimated variance reduction factors #gn, Table 4: Estimated variance reduction factors #fgn,
GBMP andp = 0.2. Estimated price = 10.11 SRMRP andp = 0. Estimated price = 7.49
|MC LR LR+BB |MC LR LR+BB
(m,n,d) = (100, 1021, 64) (m,n,d) = (100, 1021, 64)
naive| 1.0 7.9 16 naive| 1.0 8.8 18
AV | 55 13 30 AV | 53 13 33
Cvl| 18 39 70 Cvl| 47 74 240
CVi+A/ | 49 73 120 CVl+AV | 73 570 720
Cvi2| 23 39 71 cviz| 72 73 250
CVi2+ AV | 49 73 120 CV12 + AV | 155 570 770
(m,n,d) = (100, 1021, 128
Table 3: Estimated variance reduction factors #ax, naive| 1.0 6.5 15
GBMP andp = 0. Estimated price = 10.07 Cﬁ/vl 543 181-3 23?)
MC LR LR + BB
o d) = (‘10(1 1021 64) CV1+AV | 73 422 630
navel 10 12 39 Cviz2| 72 108 240
AN | 67 15 65 CV12 + AV | 156 430 630
CV1l | 290 590 2100
CVl+AV | 700 750 2400 Table 5: Estimated variance reduction factors #65ay,
CV12 | 450 590 2100 SRMRP andp = 0. Estimated price = 9.96
CVi12 + AV | 700 750 2400 \ MC LR LR +BB
(m,n,d) = (100, 1021, 128 (m,n,d) = (100, 1021, 64)
naive| 1.0 7.1 25 naive | 1.0 11 36
AV | 6.6 9.6 52 AV | 65 17 62
CVv1l | 280 550 1400 Cvl| 72 160 440
CV1l+ AV | 700 660 2300 CV1l+ AV | 130 700 1100
CV12 | 440 560 1400 Cv12 | 100 160 440
CV12 + AV | 700 660 2300 CV12 + AV | 240 690 1200
(m,n,d) = (100, 1021, 128
2 digits, since the estimators for MC are based rom nave| 1.0 6.5 23
replications. When LR is implied, the ratios are less accurate AV | 65 10 53
(say+10%) since the LR estimators are basedmn= 100 Cvl 71 140 270
replications only. However, these variations do not affect CVl+Av 1130 540 970
Cvi2 | 99 140 280

the general conclusions we draw from the results shown in
the ?ables. CVi12 + AV | 240 540 970

From these results, we see that the first control variable S o
works very well in all cases, reducing the variance for MC it only depends orM°(T). Thus, switching from constant

by factors of at least 180 for GBMP (when= 0) and 46 to stochastic volatility increases the varianceYafax less
for SRMRP. The control variablé, helps with the MC than that ofYhigh. .
method (without AV, for GBMP) but is practically useless Table 2 reports the same experiment as Table 1, but

with LR. Also, LR alone is sometimes worse than MC USingp = 0.2. This means thas(-) depends more on the
with GBMP. This is not unexpected since the dimension Brownian motionWa(-) that drives the volatility process,
of this problem is large (192 or 384). However, using BB SO that the correlation between the option’s payoff &nd
makes LR better than MC in every case, by a factor of at decreases. Thisis confirmed by the smaller reduction factors
least 3. The combination of CV1, AV, LR, and BB reduces 9iven by CV1. o

the variance by a factor of nearly 2000 in Table 1, over To give an idea of the computation time, it took about
2000 in Table 3, and somewhat less in the other tables. thréé minutes, on a Pentium Il computer, to compute the
We computed the estimated correlations betw#erand LR+BB+CV12+AV estimator of Table 5, witd = 64, and
Yhigh (OF Ymay) for the two models and it turned out to be the precision is around 0.5 cent at the 95% confidence level.
higher with GBMP than SRMRP. Also, the first control

variable works better witlfmax than withYhigh: The payoff

for Yhigh depends on both S (T) andS(T') whereas folmax,
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5.2 Partial Hedging

The basic idea used to evaluate an option in a frictionless,
arbitrage-free and complete market is to find the initial cost
of areplication portfoliothat hedges the option. (Of course,

dimensions may still be too large though, and this is where
the BB technique comes to the rescue.

In Table 6, we compare MC, LR, and LR + BB,
using either the naive estimator, CMC, or CMC + AV.
Different values ofn and d are used. With the naive

in the stochastic volatility models considered here, a second estimator, the BB technique is applied to the simulation of
traded asset would have to be introduced to complete the both Brownian motiong¥;(-) and Wa(-), and theU (0, 1)

market.) The value of this portfolio matches with certainty
the option’s payoff at the exercise date. Alternatively, the
hedger of an option may opt fqrartial replication (Ben
Ameur, Breton, and L'Ecuyer 1999) since it costs less than a
full replication, thus allowing an initial gain. However, this
agent may fall in default, with a probability that depends
on the partial hedging event. Sellers of options who do not
perfectly hedge their risk are commonplace in real life.
Here we consider the (simple) problem of finding the
initial gain when partially hedging an European option on

a hedging event that depends on the final primitive asset

price. More specifically, we want to estimakd X ], where

X = y(T)(S(T) — K) " Lsry=py, )

b > K is the parameter defining the hedging event (i.e.,
the hedger speculates th&{7) will be smaller thanb),
and K is the strike price of the option. The naive esti-
mator for E[X] can be computed by generating the path
of {S(#)}, {o(t)}, 1 <i < d), so the dimension of this
problem is2d.

For this problem, we us&onditional Monte Carlo
(CMC) to reduce the variance of the naive estimator. As
explained by Hull and White (1987) and Willard (1997),
the conditional expectation ok given the trajectory of
the volatility procesqo (1;), 1 <i < d} can be computed
analytically:

EX |o(t1),...,0(tg))
S(0)((d1) — D(dy) — Ke ™ T (D (d2) — D(dy),

where dy = (IN(S(0)/K) + (r + 6/2)T)//5T, dj
(N(S(0)/b) + (r + 5 /2T) /N6 T, do = d1 — o T, dy =

d; —VGT, 6 = (X% ,102(1))/d and ®(-) is the cumu-
lative normal distribution. This follows from the fact that
the distribution ofS(z;) conditional ono (t1), ..., 0(ty) is
known (see also Ben Ameur, Breton, and L'Ecuyer 1999
for details and other cases).

This CMC estimator hagrovably less variance than
the naive MC one (this follows from standard variance
decomposition; see Bratley, Fox, and Schrage 1987). It
also reduces the work, because the procEssneeds not
be generated explicitly. Moreover, the dimension of the
problem is reduced fror@d to d, which should help QMC
methods (when combined with CMC). The numbgiof
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variates are interleavedUs, Us, ..., Usgs—1 g0 to W1(-)
while U, Uy, ..., Uzg go to Wa(-). The volatility model
is the MRPP. There is no analytical solution fBfX] in
this case. The parameters of the model &) = 100,
0(0) =0.15 6 =0.15 6 = 0.08, « = 1.5, K = 100 and
b = 120 The multipliera used for the lattice rules when
n =25lisa =46, anda = 325for n = 1021

Table 6: Estimated variance reduction factors for a partially
hedged portfolio. Estimated initial value = 3.96.

[MC LR LR+BB
(m,n,d) = (100, 251, 64)
naive 1.0 1.3 35
CMC 5.5e4 2.8e6 4.1e6
CMC + AV | 5.4e6 1.4e7 7.4e7
(m,n,d) = (100, 1021, 64)
naive 1.0 1.6 39
CMC 5.6e5 6.1e6 1.0e7
CMC + AV | 5.6e6 1.7e7 1.0e8
(m,n,d) = (100, 251, 128
naive 1.0 1.6 36
CMC 5.6e4 2.3e6 3.5e6
CMC + AV | 5.7e6 1.2e7 7.3e7
(m,n,d) = (100, 1021, 128
naive 1.0 1.7 36
CMC 5.7e4 7.2e6 1.1le7
CMC + AV | 5.8e6 1.5e7 1.1e8

In Table 6, we see that LR improves upon MC in all
cases, even without BB. This differs from what was ob-
served by Willard (1997), who used different QMC methods
for a slightly different problem, withi = 64. BB brings
a significant variance reduction compared with LR alone.
CMC and its combination with AV bring spectacular im-
provements, by factors ranging from (roughly) 5 millions
to 100 millions. In terms of computation time, it means
that in only one second, an estimator with very high accu-
racy (3e-5 at the 95% level) can be obtained when using
LR+BB+CMC+AV. Note that the improvement of LR upon
MC is more important with the CMC estimators than with
the naive method, whose respective dimensionsdaaad
2d. For comparison, Willard (1997) observed a variance
reduction by (roughly) a factor of 100 with CMC, and
an additional factor of 10 when CMC was combined with
QMC, for his problem.
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