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ABSTRACT ferred to as BG1997a. We postpone the description and
discussion of the mesh method until Section 2.

We develop and study general-purpose techniques for im- In this paper, we are concerned with improving the
proving the efficiency of the stochastic mesh method that efficiency of the stochastic mesh method by resorting to
was recently developed for pricing American options via general-purpose techniques that can be customized to a
Monte Carlo simulation. First, we develop a mesh-based, given problem instance rather easily. For example, although
biased-low estimator. By recursively averaging the low and control- variate-based methods were found to be very ef-
high estimators at each stage, we obtain a significantly more fective in BG1997a, we view them as special-purpose, as
accurate point estimator at each of the mesh points. Second,they must be carefully tailored to the specific option in
we adapt the importance sampling ideas for simulation of hand. Without resorting to variance reduction techniques,
European path-dependent options in Glasserman, Heidel- it is likely that a plain-vanilla mesh-based estimation of the
berger, and Shahabuddin (1998a) to pricing of American option value will suffer from bias much more than from
options with a stochastic mesh. Third, we sketch gener- variance.

alizations of the mesh method and we discuss links with Our primary contribution is to develop general-purpose
other techniques for valuing American options. Our empir- bias-reduced versions of the mesh estimators. A within-
ical results show that the bias-reduced point estimates are mesh biased-low estimator is developed by splitting the set
much more accurate than the standard mesh-method pointof states in disjoint sets and using one of the two sets for
estimates. Importance sampling is found to increase accu- estimation of the optimal exercise policy and the other set
racy for a smooth option-payoff functions, while variance for the estimation (if necessary) of the option’s continuation
increases are possible for non-smooth payoffs. value. By recursively averaging the low and high estimators
at each stage, we obtain a significantly more accurate point
estimator at each of the mesh points.

As a further contribution, we adapt the importance
sampling ideas for simulation of European path-dependent
options proposed and studied in Glasserman, Heidelberger,
and Shahabuddin (1998a) in the pricing of American options
hrough a stochastic mesh. We also propose generalizations
of the mesh method including variable shapes, and mech-

1 INTRODUCTION

In the financial markets, sophisticated, complex products
are continuously offered and traded. With the increasing
complexity of these products, Monte Carlo simulation is
steadily becoming an important tool used in valuing and
hedging the products. In this paper, the term American

option refers to a discretely, as opposed to coninuously,
exercisable option—that is, the option holder can exercise
the option at a fixed set of time points (also called exercise
opportunities, or stages) up to expiration. When valuing
such options through simulation, one is jointly estimating
the value of the option and the optimal exercise policy.

An important method developed recently for valuing
American options through simulation is the stochastic mesh

method (Broadie and Glasserman 1997a), henceforth re-
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anisms for sampling paths conditional on the state of all
paths at a given stage; and we discuss links with other
techniques for valuing American options.

This paper is organized as follows. In Section 2 we
review American-option pricing and the stochastic mesh
method. In Section 3 we detail new estimation methods
and results, and discuss generalizations of the mesh method.
In Section 4 we present Monte Carlo results quantifying
the performance of the new estimators.
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2 AMERICAN OPTION PRICING: BACKGROUND

Let S; = (S,l, ..., S} denote the vector of securities un-
derlying the option, modeled as a Markov processRin
with discrete time-parameter= 0,1,...,7. The argu-
mentt = 0,1,..., T indexes the set of times when the
option is exerciseble, also callexkercise opportunitiesr
simply stages

Let i(z, x) be the payoff from exercise at timein
statex, discounted to time O with the possibly stochastic
discount factor recorded if,. The option value starting at
time ¢ in statex is

q(t, x) = max(h(t, x),ct,x)) fort <T
where

c(t,x) =E[q(t + 1, S48 = x] D)

is the value of the option when not exercised at time
in statex, discounted to time 0, and called th@ntin-
uation valueat (7, x); and ¢(T, x) = h(x) for all states

x. Arbitrage-pricing theory suggests that the arbitrage-free
price of the option is obtained when the conditional ex-
pectation in (1) is with respect to thisk-neutral measure

defined as the measure that makes the value of any tradeableof the density f,(S;;,-) appropriate for pointS; ;.

security, discounted to time 0, a martingale. The problem
is to compute the option value at time §, = ¢(0, s,),
where s, is the known state of underlyings at time O.
Examples.In a simple applications; is a vector ofn stock
prices. Amax optionhas payoff function

h, S) = (max(S,l, o S,") - K)+,

where K is the strike priceandx™ stands formax(x, 0).
A geometric average optiohas

n /m *
h(t,S;) = (]_[ S,") -K
k=1
2.1 Mesh Method Description

In reviewing the method, we follow BG1997a. The method
generates a&tochastic meslof sample states (also called

points)S;;,i =1,...,bforeacht =1,...,T. LetSp; =
So,i = 1,...,b. Fort =1,...,T, let g,(-) denote the
probability density from which the points ;,i =1,...,b

are sampled (to be specified later), and fgtx, -) denote
the conditional risk-neutral density &1 given S; = x.

stage. The mesh estimator of the option value is defined
recursively:

gH(T, St,;) = h(T, St;)

fori =1,...,b; and forr =T —1,...,0 and fori
1, ..., b, the high mesh estimataos

qu(t, i) = max(h(t, S;.i), ¢, Si.i, B)) (2
where the continuation value of each point sampled at stage
¢t depends on the previously calculated continuation values
of all points sampled at staget 1:

/C\(l’ St,i» B)
I
= 2D+ L S wt, Spis S )
JjEB
where

ft(St,i, Sz+1,j)
gr+1(S41,)

w(t, Sti, Sr+1,5) = 3)
The weighing of the combination of poinis; ;, Si11 ;)
above is necessary in light of the fact that the points at
stager + 1 were sampled from the densigy,;1(-) instead
We
make the dependence @fon B explicit for subsequent
convenience. Finally, note thats, S;;, B) would be an
unbiased estimator of the corresponding continuation values
if the estimated valueg (r + 1, S;41, ;) were unbiased for
the corresponding option values (which, generally, is not
the case). We refer tgy as the high mesh estimator, in
view of the fact that it is biased high as an estimate of the
option value at the corresponding time and state.

The choice of densitieg,; is crucial. BG1997a make
a strong case for using theserage density function

1 b
&) =2 fia(Sju) 4

j=1

which corresponds to generatirkgindependent paths of
S; and then “forgetting” the path to which each sampled
point belongs at each stage=1,...,T. In agreement
with the authors, we call this particular case stetified
implementatiorof the mesh method.

For actually pricing options, BG1997a suggest obtain-
ing a second estimator by simulating paths of the process
S; independent of the mesh poinss; until the exercise
region implied by the mesh is reached. Specifically, the
approximate optimal policy implied by the mesh exercises

(In accordance with the authors, we assume throughout at 7 = min{z : h(z, S;) > gu(t, S;)}, with gn(z, S;) as in

the paper the existence of such densities.) Finally, let
B ={1, ..., b} be the set of indices of mesh points at each
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(2). Thepath estimatoiis thengp = (7, S3).
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See BG1997a for other properties of the estimators,
considerable computational enhancements (mainly through
control variates), and an extensive numerical study of the
method’s performance.

The main alternative for pricing high-dimensional
American options using provably consistent estimators is a
tree-based simulation where simulated paths branch out at
each sampled point for each exercise opportunity (Broadie
and Glasserman 1997b). Compared to this alternative, the
mesh method has two important advantages:it(allevi-
ates the exponential growth of the number of points to be
sampled with the number of exercise opportunities; @nd (
sampled paths help each other in the estimation: all states
sampled at stagg+ 1 are used in the estimation of option
values at stagg. On the downside, the applicability and
ease of use of the mesh method in application might be
restricted by the requirement to calculate the conditional
risk-neutral densities;(S;;, -).

3 ENHANCING MESH EFFICIENCY

3.1 Bias Reduction for Mesh Estimation

The idea behind the construction of a biased-low estimate
is to use disjoint sets of points for estimation of the optimal
exercise policy and the estimation of continuation values
(in case the estimated optimal policy is to continue).

Assume the mesh points are sampled from the average
density function (4). Let € B denote an arbitrary subset
of allindices, and’ = B — I its complement with respect to
B. To simplify notation, we occasionally drop the explicit
dependence of estimators grwriting, for example¢(S; ;)
for ¢, S;.i).

To calculate the low estimator at each stage T —
1,...,0, assume the low estimator of the values at all
sampled points at staget+ 1 has been calculated. Define
the estimate of the continuation valuest aising only the
points in/ from stager + 1:

?(t’ Sl,iv I)
1 -
= T D G+ 1 Sy pw(t, Seis Siva ),
jel

wherew(t, S;.;, Si+1,j) are as in (3) and!| is the number
of elements in/. Define the estimate of the option value
at point S; ;

h(t’ St,i)a
ot Sein 1),

o~ o if h(t, i) =<, S, 1)
Lt Sei ) = { otherwise.

Note that the dependence®f on 7, the set of points used
to estimate the optimal exercise policy, was made explicit;
and note the implicit dependence b To maximize usage
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of known information at stage + 1 on the estimation at
staget, we form the overall low estimator by averagihg
copies ofg. where thej-th copy usesB_; = B — {,} in
place of /. Thelow mesh estimatoof the option value is
defined recursively:

qL(T, St,;) = h(T, St,;)

fori =1,...,b; and forr =T —1,...,0 and fori
1,..., b, the low mesh estimator is

b
_ lenn
GL(t, Si) =7 ) 4L, Seis B-))
j=1

Theorem 1. The estimatog is biased low, i.e.,

ElgL (7, x)] < q(t,x)

for all 7, x.

For a proof, see Avramidis and Hyden (1999).

A key component in the development and proofs of
properies ofgy andgqy is that the points at stage+ 1
are sampled from the average density function (4).
particular, this implies that, conditional of) ;, the points
{S:+1,j : j € B} are independent and identically distributed
(i.i.d.). We claim that in most applications, better estimation
can be achieved by “remembering” the path to which each
point belongs. This changes the densiggs) and thus the
weights of all point combinations, and the i.i.d. property
of points stated above is lost. For more details and results
on this new view of the mesh, see Avramidis and Hyden
(1999).

Both g4 andg_ suffer from recursive bias: assuming
thatgy(r +1, x) andgy (t +1, x) are unbiased for alt, one
can show that the estimatgg(z, x) andg (¢, x) are biased
high and low as estimates gf¢, x), respectively. A simple
glance at the derivation of these properties shows that bias
is accumulating from staggé — 1 down to stage O for both
estimators; see BG1997a for the high mesh estimator and
Avramidis and Hyden (1999) for the low mesh estimator. As
an intuitive bias reduction scheme, we proposeaberage
mesh estimatowhich is defined recursively:

In

qa(T, St,i) = h(T, St,)

fori=1,...,b; and forr =T —1,...,0 and fori

1, ..., b, the average mesh estimator is
~ 1 . ~
QA(I’ Sl,i) = E (QH(t, Sl,i) + C]L(t’ Sl,i)) )
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where the valuega (r + 1, -) are used as substitutes for the
valuesgn(r + 1,-) andg. (r + 1, -) in the calculation of
qn(t, ) andgy(t, -), respectively.

3.2 Importance Sampling

Our discussion in this section is restricted to option-pricing
problems that can be cast in a way such that all input ran-
dom variates are normally distributed. To our knowledge,
the majority of option-pricing models fit this framework.

Our approach is an adaption of the importance sampling

techniques proposed and studied in Glasserman, Heidel-

berger, and Shahabuddin (1998) in the context of pricing
path-dependent European-style options via simulation.
Let Z be the vector ok independent standard normal

of measure is likely to be a good approximation. In light of
the successful results with this change of measure reported
in Glasserman, Heidelberger, and Shahabuddin (1998a), we
expect similar to slightly less successful results in improving
estimation efficiency for American options.

3.3 Mesh Generalizations and Links to Other Methods

We propose generalizations of the mesh method and sketch
ideas for dynamically growing the mesh, aiming at more
efficient sampling of the entire mesh points. We introduce
the concept oparentand child. When a mesh point B is
generated by extending the path of mesh point A, mesh point
A is called the parent relative to the child mesh point B. In
this terminology, the stratified implementation in BG1997a

random variables necessary for sampling an entire path of generates exactly one child per parent. Also, define the

the underlying securitie§S1, S2, ..., S7}. We denote this
asZ ~ N(O, It), wherely is thek x k identity matrix. Note
that any multivariate Normal distribution can be generated
as a deterministic function &f. We obtain a new sampling
density for paths ofS, as follows. Treating the option as

if it were European, we form the product of option payoff
at expiration and likelihood under the risk-neutral measure
as a function ofZ. The value ofZ that maximizes the
function above, say, suggests a new sampling density
for Z, namely N (u,, I). Noting that the latter normal
density has its maximum at,, we have effectively chosen
the new sampling density so that its maximum is attained
at the point where the product of payoff at expiration and
likelihood under the risk-neutral measure is maximized. For
further motivation on this choice of change of measure, see
Glasserman, Heidelberger, and Shahabuddin (1998a).

In view of the results and suggestions in BG1997a, we
maintain a pathwise sampling of mesh points, followed by
“forgetting” the path to which each point belongs. For each
t=0,...,T—1,let f; ,, (x,-) denote the new conditional
density of S;11 given S; = x, in view of the fact that
transitions were simulated by sampli@gfrom N (w,, Ix)
instead of the original (risk-neutral) measweo, I;). The
new average density function becomes

b
1
8.1, (U) = b 21 Jr=1.p10(St—1.j, u)
/:

forr =1,...,T. This in turn implies new weights with
&1, feplacingg; in (3). Except for the weight adjustment,

budgetat any stage as the number of points to sample.

First note that the current choice of a fixed budget per
stage is arbitrary. Intuitively, we can say that the density of
the sampled mesh points is spread more thinly in later stages.
More concretely, our experience with realistic sample sizes,
sayb < 100Q suggests that the importance of non-children
to any parent is orders of magnitude lower than the impor-
tance of its child. This effect is progressively stronger in
higher dimensions and, more important to our discussion,
later stages. In other words, the effective sample size for
the estimation at each parent is generally small, certainly
much less tham, and decreasing with dimensionality and
stage. Although there appears to be no cure for the effect of
dimensionality, this suggests that an increasing budget over
stages should enhance efficiency. Preliminary experimen-
tation (not reported here) has confirmed this conjecture.

Thus, our first generalization is to allow the budget to
vary with stage, so we havg points at stage. At stager,
and assuming no preference to giving more children to any
parent, we can afford on averalye 1 /b, children per parent,
called thegrowth rateat stage. One choice is to allocate to
each parent a number of children equal at least to the integral
part of this ratio, and then choose randomly the parents to
receive the additional children up to the stage’s budget
bi+1. Interestingly, this method leaves the computation of
the actual sampling densitigg(-) unchanged with respect
to the stratified implementation.

In tree-based simulations for american options as in
Broadie and Glasserman (1997b), the minimum growth rate
for meaningful estimation is two (every parent gets at least
two children), requiring2” points to be sampled at stage

all other estimators remain as in Sections 2.1 for the standard 7 |nstead, the generalized mesh allows any non-integer
mesh method and as in Section 3 for the enhanced estimators growth rate, with rates greater than one but less than two, thus
For a specific example of the choice of new mesaure, see zjjowing a less explosive growth than the tree-based case.

Section 4. . _ . o But for now, we have no formal procedure for optimally
Since the optimal exercise policy for many optionsisto  gjiocating theb, s.

hold until expiration, our treatment of an American Option as A second important genera"zation is to allocate a vary-
if it were European for the purposes of determining a change jng number of children to the points at a given stage. Define
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the cum-weight(short for cumulative weight) of a point at
stager as

b1

we(Se) = Y we(Si—n Dw(t — L, Si—1.j, Sp.).
j=1

wherewc(s,) = 1. It is easy to see thabc(S;;) is also
equal to the sum of th@ath weightsof all paths from

so to S;;, where a path weight is equal to the product of
weights of all 1-step transitions of the path. The cumweight
wc(S:,;) measures the importance of poifit; on the es-
timation of the option value af,. Asumming no a priori
importance sampling of the paths, the higher the cumweight
of a point at stagd, the higher its importance in the overall
estimation. In early experiments, we have observed strong
1-step cumweight correlation, defined as the correlation of
the cumweight of parents to their children. This suggests
that more efficient growth of the mesh can be dynamically
achieved by allocating more children to higher-cumweight
points. More complex rules that also take into account sur-
rogates to the option value (as the immediate-exercise value
of a point) might prove even more effective in growing the
mesh efficiently. For example, if a path on a call option is
way out of the money, it is highly likely that the optimal
decision is to delay exercise of the option. Increasing the
number of children for that kind of parent is unlikely to be
an efficient choice.

What about allocating zero children to a point? For
such a pointi at stagetr, the estimation of the option
value will depend on only non-children at stage 1. Of
these, the ones that “look” more thas children will get
the greatest weight in the estimation id value. In this
way, the estimation at is “tied” to random neighbors of
i, namely the parents of the stage+ 1) points with the
highest weight in the estimation &f This is reminiscent
of the bundling methods of Tilley (1993), where paths are
bundled at each stage according tpradefinedsimilarity

are independent, and each follows a geometric Brownian
motion process:

dsk = SK(r — §)dt + 0dWH, k=1,...,n,
where W¥ is standard Brownian motion, is the riskless
interest rate,§ is the divident rate, and is the stock
volatility parameter. Exercise opportunities occur at the
set of calendar timeg = iT/d,i = 0,...,d, whereT
is the calendar option expiration time (note thaand T
denoted indices of the calendar timesndT in the earlier
sections). Under the risk-neutral measur&Sin's;,_,) is
normally distributed with meatir — § — 02/2)(t; — ti—1)
and variancer2(t; — t;_1).

Case 1 is a max option with =5, r = 0.05, § = 0.1,
0=02T=3,d=95,=90 andK =100 Case2isa
geometric average option with= 7, r = 0.03, § = 0.05,
0=04,T=1d =105, =90and K = 1000 We
remark that these cases were selected as the most difficult
cases (based on our own computations) from the set in
BG1997a.

No variance reduction techniques are applied in Cases
1 and 2. Case 3 is the same option as Case 2, where
the mesh is sampled through importance sampling as in
Section 3.2. Specifically, we lef7 denote al x n row
vector ofn independent standard normal variates that drive
the sampling ofS7. Let o be al x n row vector with
(r —8 —02/2)T at each entry. The new mean Bf, 1,
is found as the solution to

1
maxh(T, s, expla + o~/Tz) exp(—ézz’)
V4

wherez is al x n row vector and? is the transpose of
z. In view of the new mean foSy, the paths ofS, are
sampled with a new drift implied by,.

We report point-estimator performance (as opposed to
confidence-interval performance) for two estimators: (a)

(the resulting estimators are not consistent, in general). Yet, gsc iS the point estimator suggested in BG1997a, defined
the mesh method and its generalizations do not preconceive as the average of the high mesh estimator and the path
a path similarity criterion, likely preserving most desirable estimator based on a number of simulated paths equal to
theoretical properties. the parameteb of the mesh; and (I is the average mesh
estimator defined in Section 3.1.

The performance measures are all relative to the true
option value. We measure RBIAS, RSTDE, and RRMSE,
which are acronyms for relative bias, relative standard er-
We report limited results to demonstrate the degree of ror, and relative root mean square error of an estimator,
efficiency improvement achieved over a standard imple- respectively. Figures 1 and 2 show performance gigs
mentation of the mesh method with no variance reduction andga, respectively, as a function of estimator work, mea-
techniques. As test cases, we use a subset of the test casesured in CPU time in a SUN Ultra 1 workstation. Figures
in BG1997a. Under the risk-neutral measure, thassets 3-4 and 5-6 are analogs of Figures 1-2 for Cases 2 and 3,

respectively.

4 NUMERICAL RESULTS AND
RECOMMENDATIONS
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Figure 6: Estimated RBIAS(*), RSTDE(0), and RRMSE(+)
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Overall, these results and additional experience not
reported here suggest the following:

e The estimatogpg in a standard implementa-
tion of the stochastic mesh method with no
variance reduction techniques as in BG1997a
suffers seriously from bias. This bias is mainly
due to the very strong bias @y, the mesh
high estimator.

The recursively averaged mesh estimajar
has small to moderate bias without resorting
to variance reduction techniques and appears
to be the best point estimator for a general-
purpose mesh implementation.

Even the bettega estimator will generally
yield only moderate accuracy with realistic
sample sizes. Although the cases we studied
here are the hardest from the set of cases in
BG1997a, they underline that general-purpose
mesh estimation needs deeper study and that
there is substantial room for accuracy improve-
ment.

Importance sampling for the mesh method
is fairly straightfowrward to implement. For
smooth payoff functions such as the geometric
average option, it yields substantial efficiency
improvements. For non-smooth payoffs such
as the max option, results not reported here
show that importance sampling may backfire.
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