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ABSTRACT

We develop and study general-purpose techniques for i
proving the efficiency of the stochastic mesh method th
was recently developed for pricing American options v
Monte Carlo simulation. First, we develop a mesh-base
biased-low estimator. By recursively averaging the low an
high estimators at each stage, we obtain a significantly mo
accurate point estimator at each of the mesh points. Seco
we adapt the importance sampling ideas for simulation
European path-dependent options in Glasserman, Heid
berger, and Shahabuddin (1998a) to pricing of America
options with a stochastic mesh. Third, we sketch gene
alizations of the mesh method and we discuss links w
other techniques for valuing American options. Our emp
ical results show that the bias-reduced point estimates
much more accurate than the standard mesh-method p
estimates. Importance sampling is found to increase ac
racy for a smooth option-payoff functions, while varianc
increases are possible for non-smooth payoffs.

1 INTRODUCTION

In the financial markets, sophisticated, complex produc
are continuously offered and traded. With the increasin
complexity of these products, Monte Carlo simulation
steadily becoming an important tool used in valuing an
hedging the products. In this paper, the term America
option refers to a discretely, as opposed to coninuous
exercisable option–that is, the option holder can exerc
the option at a fixed set of time points (also called exerci
opportunities, or stages) up to expiration. When valuin
such options through simulation, one is jointly estimatin
the value of the option and the optimal exercise policy.

An important method developed recently for valuin
American options through simulation is the stochastic me
method (Broadie and Glasserman 1997a), henceforth
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ferred to as BG1997a. We postpone the description an
discussion of the mesh method until Section 2.

In this paper, we are concerned with improving the
efficiency of the stochastic mesh method by resorting t
general-purpose techniques that can be customized to
given problem instance rather easily. For example, althoug
control- variate-based methods were found to be very e
fective in BG1997a, we view them as special-purpose, a
they must be carefully tailored to the specific option in
hand. Without resorting to variance reduction technique
it is likely that a plain-vanilla mesh-based estimation of the
option value will suffer from bias much more than from
variance.

Our primary contribution is to develop general-purpose
bias-reduced versions of the mesh estimators. A within
mesh biased-low estimator is developed by splitting the s
of states in disjoint sets and using one of the two sets fo
estimation of the optimal exercise policy and the other se
for the estimation (if necessary) of the option’s continuation
value. By recursively averaging the low and high estimator
at each stage, we obtain a significantly more accurate po
estimator at each of the mesh points.

As a further contribution, we adapt the importance
sampling ideas for simulation of European path-depende
options proposed and studied in Glasserman, Heidelberg
and Shahabuddin (1998a) in the pricing of American option
hrough a stochastic mesh. We also propose generalizatio
of the mesh method including variable shapes, and mec
anisms for sampling paths conditional on the state of a
paths at a given stage; and we discuss links with othe
techniques for valuing American options.

This paper is organized as follows. In Section 2 we
review American-option pricing and the stochastic mes
method. In Section 3 we detail new estimation method
and results, and discuss generalizations of the mesh meth
In Section 4 we present Monte Carlo results quantifying
the performance of the new estimators.
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2 AMERICAN OPTION PRICING: BACKGROUND

Let St = (S1
t , . . . , Sn

t ) denote the vector of securities un
derlying the option, modeled as a Markov process onRn

with discrete time-parametert = 0, 1, . . . , T . The argu-
ment t = 0, 1, . . . , T indexes the set of times when th
option is exerciseble, also calledexercise opportunitiesor
simply stages.

Let h(t, x) be the payoff from exercise at timet in
statex, discounted to time 0 with the possibly stochast
discount factor recorded inSt . The option value starting at
time t in statex is

q(t, x) = max(h(t, x), c(t, x)) for t < T

where

c(t, x) = E
[
q(t + 1, St+1)|St = x

]
(1)

is the value of the option when not exercised at timet

in state x, discounted to time 0, and called thecontin-
uation valueat (t, x); and q(T , x) = h(x) for all states
x. Arbitrage-pricing theory suggests that the arbitrage-fr
price of the option is obtained when the conditional e
pectation in (1) is with respect to therisk-neutral measure,
defined as the measure that makes the value of any trade
security, discounted to time 0, a martingale. The proble
is to compute the option value at time 0,qo ≡ q(0, so),
where so is the known state of underlyings at time 0
Examples.In a simple application,St is a vector ofn stock
prices. Amax optionhas payoff function

h(t, St ) =
(

max
(
S1

t , . . . , Sn
t

)
− K

)+
,

whereK is the strike priceand x+ stands formax(x, 0).
A geometric average optionhas

h(t, St ) =
( n∏

k=1

Sk
t

)(1/n)

− K

+
.

2.1 Mesh Method Description

In reviewing the method, we follow BG1997a. The metho
generates astochastic meshof sample states (also called
points)St,i , i = 1, . . . , b for eacht = 1, . . . , T . Let S0,i =
so, i = 1, . . . , b. For t = 1, . . . , T , let gt (·) denote the
probability density from which the pointsSt,i , i = 1, . . . , b

are sampled (to be specified later), and letft (x, ·) denote
the conditional risk-neutral density ofSt+1 given St = x.
(In accordance with the authors, we assume through
the paper the existence of such densities.) Finally,
B = {1, . . . , b} be the set of indices of mesh points at ea
34
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stage. The mesh estimator of the option value is define
recursively:

q̂H(T , ST,i) = h(T , ST,i)

for i = 1, . . . , b; and for t = T − 1, . . . , 0 and for i =
1, . . . , b, the high mesh estimatoris

q̂H(t, St,i ) = max
(
h(t, St,i ), ĉ(t, St,i , B)

)
(2)

where the continuation value of each point sampled at stag
t depends on the previously calculated continuation value
of all points sampled at staget + 1:

ĉ(t, St,i , B)

= 1

b

∑
j∈B

q̂H(t + 1, St+1,j )w(t, St,i , St+1,j )

where

w(t, St,i , St+1,j ) = ft (St,i , St+1,j )

gt+1(St+1,j )
. (3)

The weighing of the combination of points(St,i , St+1,j )

above is necessary in light of the fact that the points a
staget + 1 were sampled from the densitygt+1(·) instead
of the densityft (St,i , ·) appropriate for pointSt,i . We
make the dependence of̂c on B explicit for subsequent
convenience. Finally, note that̂c(t, St,i , B) would be an
unbiased estimator of the corresponding continuation value
if the estimated valueŝqH(t + 1, St+1,j ) were unbiased for
the corresponding option values (which, generally, is no
the case). We refer tôqH as the high mesh estimator, in
view of the fact that it is biased high as an estimate of the
option value at the corresponding time and state.

The choice of densitiesgt is crucial. BG1997a make
a strong case for using theaverage density function

gt (u) = 1

b

b∑
j=1

ft−1(St−1,j , u) (4)

which corresponds to generatingb independent paths of
St and then “forgetting” the path to which each sampled
point belongs at each staget = 1, . . . , T . In agreement
with the authors, we call this particular case thestratified
implementationof the mesh method.

For actually pricing options, BG1997a suggest obtain
ing a second estimator by simulating paths of the proces
St independent of the mesh pointsSt,i until the exercise
region implied by the mesh is reached. Specifically, the
approximate optimal policy implied by the mesh exercises
at τ̂ ≡ min{t : h(t, St ) ≥ q̂H(t, St )}, with q̂H(t, St ) as in
(2). Thepath estimatoris thenq̂P = h(̂τ , Sτ̂ ).
5
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Efficiency Improvements for Pricing

See BG1997a for other properties of the estimato
considerable computational enhancements (mainly throu
control variates), and an extensive numerical study of t
method’s performance.

The main alternative for pricing high-dimensiona
American options using provably consistent estimators is
tree-based simulation where simulated paths branch ou
each sampled point for each exercise opportunity (Broad
and Glasserman 1997b). Compared to this alternative,
mesh method has two important advantages: (a) it allevi-
ates the exponential growth of the number of points to
sampled with the number of exercise opportunities; and (b)
sampled paths help each other in the estimation: all sta
sampled at stagej + 1 are used in the estimation of option
values at stagej . On the downside, the applicability and
ease of use of the mesh method in application might
restricted by the requirement to calculate the condition
risk-neutral densitiesft (St,i , ·).

3 ENHANCING MESH EFFICIENCY

3.1 Bias Reduction for Mesh Estimation

The idea behind the construction of a biased-low estima
is to use disjoint sets of points for estimation of the optim
exercise policy and the estimation of continuation valu
(in case the estimated optimal policy is to continue).

Assume the mesh points are sampled from the avera
density function (4). LetI ⊆ B denote an arbitrary subse
of all indices, andI ′ = B−I its complement with respect to
B. To simplify notation, we occasionally drop the explici
dependence of estimators ont , writing, for example,̂c(St,i)

for ĉ(t, St,i ).
To calculate the low estimator at each staget = T −

1, . . . , 0, assume the low estimator of the values at a
sampled points at staget + 1 has been calculated. Define
the estimate of the continuation values att usingonly the
points in I from staget + 1:

ĉ(t, St,i , I )

= 1

|I |
∑
j∈I

q̂L(t + 1, St+1,j )w(t, St,i , St+1,j ),

wherew(t, St,i , St+1,j ) are as in (3) and|I | is the number
of elements inI . Define the estimate of the option value
at pointSt,i

q̂L(t, St,i , I ) =
{

h(t, St,i ), if h(t, St,i ) ≥ ĉ(t, St,i , I )

ĉ(t, St,i , I ′), otherwise.

Note that the dependence ofq̂L on I , the set of points used
to estimate the optimal exercise policy, was made explic
and note the implicit dependence onI ′. To maximize usage
34
merican Options with a Stochastic Mesh
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of known information at staget + 1 on the estimation at
staget , we form the overall low estimator by averagingb

copies ofq̂L where thej -th copy usesB−j ≡ B − {j} in
place ofI . The low mesh estimatorof the option value is
defined recursively:

q̂L(T , ST,i) = h(T , ST,i)

for i = 1, . . . , b; and for t = T − 1, . . . , 0 and for i =
1, . . . , b, the low mesh estimator is

q̂L(t, St,i ) = 1

b

b∑
j=1

q̂L(t, St,i , B−j )

Theorem 1. The estimator̂qL is biased low, i.e.,

E[̂qL(t, x)] ≤ q(t, x)

for all t, x.

For a proof, see Avramidis and Hyden (1999).
A key component in the development and proofs o

properies of̂qH and q̂L is that the points at staget + 1
are sampled from the average density function (4).
particular, this implies that, conditional onSt,i , the points
{St+1,j : j ∈ B} are independent and identically distribute
(i.i.d.). We claim that in most applications, better estimatio
can be achieved by “remembering” the path to which ea
point belongs. This changes the densitiesgt (·) and thus the
weights of all point combinations, and the i.i.d. propert
of points stated above is lost. For more details and resu
on this new view of the mesh, see Avramidis and Hyde
(1999).

Both q̂H and q̂L suffer from recursive bias: assuming
that q̂H(t +1, x) andq̂L(t +1, x) are unbiased for allx, one
can show that the estimateŝqH(t, x) andq̂L(t, x) are biased
high and low as estimates ofq(t, x), respectively. A simple
glance at the derivation of these properties shows that b
is accumulating from stageT − 1 down to stage 0 for both
estimators; see BG1997a for the high mesh estimator a
Avramidis and Hyden (1999) for the low mesh estimator. A
an intuitive bias reduction scheme, we propose theaverage
mesh estimatorwhich is defined recursively:

q̂A(T , ST,i) = h(T , ST,i)

for i = 1, . . . , b; and for t = T − 1, . . . , 0 and for i =
1, . . . , b, the average mesh estimator is

q̂A(t, St,i ) = 1

2

(
q̂H(t, St,i ) + q̂L(t, St,i )

)
,

6
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where the valueŝqA(t + 1, ·) are used as substitutes for the
values q̂H(t + 1, ·) and q̂L(t + 1, ·) in the calculation of
q̂H(t, ·) and q̂L(t, ·), respectively.

3.2 Importance Sampling

Our discussion in this section is restricted to option-pricin
problems that can be cast in a way such that all input ra
dom variates are normally distributed. To our knowledge
the majority of option-pricing models fit this framework.
Our approach is an adaption of the importance samplin
techniques proposed and studied in Glasserman, Heid
berger, and Shahabuddin (1998) in the context of pricin
path-dependent European-style options via simulation.

Let Z be the vector ofk independent standard normal
random variables necessary for sampling an entire path
the underlying securities,{S1, S2, . . . , ST }. We denote this
asZ ∼ N(0, Ik), whereIk is thek×k identity matrix. Note
that any multivariate Normal distribution can be generate
as a deterministic function ofZ. We obtain a new sampling
density for paths ofSt as follows. Treating the option as
if it were European, we form the product of option payof
at expiration and likelihood under the risk-neutral measu
as a function ofZ. The value ofZ that maximizes the
function above, sayµo suggests a new sampling density
for Z, namely N(µo, Ik). Noting that the latter normal
density has its maximum atµo, we have effectively chosen
the new sampling density so that its maximum is attaine
at the point where the product of payoff at expiration an
likelihood under the risk-neutral measure is maximized. Fo
further motivation on this choice of change of measure, s
Glasserman, Heidelberger, and Shahabuddin (1998a).

In view of the results and suggestions in BG1997a, w
maintain a pathwise sampling of mesh points, followed b
“forgetting” the path to which each point belongs. For eac
t = 0, . . . , T − 1, let ft,µo(x, ·) denote the new conditional
density of St+1 given St = x, in view of the fact that
transitions were simulated by samplingZ from N(µo, Ik)

instead of the original (risk-neutral) measureN(0, Ik). The
new average density function becomes

gt,µo(u) = 1

b

b∑
j=1

ft−1,µo(St−1,j , u)

for t = 1, . . . , T . This in turn implies new weights with
gt,µo replacinggt in (3). Except for the weight adjustment,
all other estimators remain as in Sections 2.1 for the standa
mesh method and as in Section 3 for the enhanced estimat
For a specific example of the choice of new mesaure, s
Section 4.

Since the optimal exercise policy for many options is t
hold until expiration, our treatment of an American option a
if it were European for the purposes of determining a chang
34
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of measure is likely to be a good approximation. In light o
the successful results with this change of measure repor
in Glasserman, Heidelberger, and Shahabuddin (1998a),
expect similar to slightly less successful results in improvin
estimation efficiency for American options.

3.3 Mesh Generalizations and Links to Other Methods

We propose generalizations of the mesh method and ske
ideas for dynamically growing the mesh, aiming at mor
efficient sampling of the entire mesh points. We introduc
the concept ofparent and child. When a mesh point B is
generated by extending the path of mesh point A, mesh po
A is called the parent relative to the child mesh point B. I
this terminology, the stratified implementation in BG1997
generates exactly one child per parent. Also, define t
budgetat any staget as the number of points to sample.

First note that the current choice of a fixed budget p
stage is arbitrary. Intuitively, we can say that the density
the sampled mesh points is spread more thinly in later stag
More concretely, our experience with realistic sample size
sayb ≤ 1000, suggests that the importance of non-childre
to any parent is orders of magnitude lower than the impo
tance of its child. This effect is progressively stronger i
higher dimensions and, more important to our discussio
later stages. In other words, the effective sample size
the estimation at each parent is generally small, certain
much less thanb, and decreasing with dimensionality and
stage. Although there appears to be no cure for the effect
dimensionality, this suggests that an increasing budget o
stages should enhance efficiency. Preliminary experime
tation (not reported here) has confirmed this conjecture.

Thus, our first generalization is to allow the budget t
vary with stage, so we havebt points at staget . At staget ,
and assuming no preference to giving more children to a
parent, we can afford on averagebt+1/bt children per parent,
called thegrowth rateat staget . One choice is to allocate to
each parent a number of children equal at least to the integ
part of this ratio, and then choose randomly the parents
receive the additional children up to the stage’s budg
bt+1. Interestingly, this method leaves the computation
the actual sampling densitiesgt (·) unchanged with respect
to the stratified implementation.

In tree-based simulations for american options as
Broadie and Glasserman (1997b), the minimum growth ra
for meaningful estimation is two (every parent gets at lea
two children), requiring2T points to be sampled at stage
T . Instead, the generalized mesh allows any non-integ
growth rate, with rates greater than one but less than two, th
allowing a less explosive growth than the tree-based ca
But for now, we have no formal procedure for optimally
allocating thebt ’s.

A second important generalization is to allocate a var
ing number of children to the points at a given stage. Defin
7



Efficiency Improvements for Pricing American Options with a Stochastic Mesh

f

h

o
t
y

r
u

r

e

i

n

e

ult
in

s
re
in

e

to
)
d
th
to

e
,
r-
r,

-

3,
the cum-weight(short for cumulative weight) of a point at
staget as

wC(St,i ) =
bt−1∑
j=1

wC(St−1,j )w(t − 1, St−1,j , St,i ),

wherewC(so) = 1. It is easy to see thatwC(St,i ) is also
equal to the sum of thepath weightsof all paths from
so to St,i , where a path weight is equal to the product o
weights of all 1-step transitions of the path. The cumweigh
wC(St,i ) measures the importance of pointSt,i on the es-
timation of the option value atso. Asumming no a priori
importance sampling of the paths, the higher the cumweig
of a point at stageT , the higher its importance in the overall
estimation. In early experiments, we have observed stron
1-step cumweight correlation, defined as the correlation
the cumweight of parents to their children. This sugges
that more efficient growth of the mesh can be dynamicall
achieved by allocating more children to higher-cumweigh
points. More complex rules that also take into account su
rogates to the option value (as the immediate-exercise val
of a point) might prove even more effective in growing the
mesh efficiently. For example, if a path on a call option is
way out of the money, it is highly likely that the optimal
decision is to delay exercise of the option. Increasing th
number of children for that kind of parent is unlikely to be
an efficient choice.

What about allocating zero children to a point? Fo
such a pointi at staget , the estimation of the option
value will depend on only non-children at staget + 1. Of
these, the ones that “look” more thani’s children will get
the greatest weight in the estimation ofi’s value. In this
way, the estimation ati is “tied” to random neighbors of
i, namely the parents of the stage-(t + 1) points with the
highest weight in the estimation ofi. This is reminiscent
of the bundling methods of Tilley (1993), where paths ar
bundled at each stage according to apredefinedsimilarity
(the resulting estimators are not consistent, in general). Ye
the mesh method and its generalizations do not preconce
a path similarity criterion, likely preserving most desirable
theoretical properties.

4 NUMERICAL RESULTS AND
RECOMMENDATIONS

We report limited results to demonstrate the degree o
efficiency improvement achieved over a standard imple
mentation of the mesh method with no variance reductio
techniques. As test cases, we use a subset of the test ca
in BG1997a. Under the risk-neutral measure, then assets
34
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are independent, and each follows a geometric Brownia
motion process:

dSk
t = Sk

t [(r − δ)dt + σdW k
t ], k = 1, . . . , n,

whereW k
t is standard Brownian motion,r is the riskless

interest rate,δ is the divident rate, andσ is the stock
volatility parameter. Exercise opportunities occur at th
set of calendar timesti = iT /d, i = 0, . . . , d, where T

is the calendar option expiration time (note thatt and T

denoted indices of the calendar timesti andT in the earlier
sections). Under the risk-neutral measure, ln(Sti /Sti−1) is
normally distributed with mean(r − δ − σ 2/2)(ti − ti−1)

and varianceσ 2(ti − ti−1).
Case 1 is a max option withn = 5, r = 0.05, δ = 0.1,

σ = 0.2, T = 3, d = 9, so = 90, andK = 100. Case 2 is a
geometric average option withn = 7, r = 0.03, δ = 0.05,
σ = 0.4, T = 1, d = 10, so = 90 and K = 100. We
remark that these cases were selected as the most diffic
cases (based on our own computations) from the set
BG1997a.

No variance reduction techniques are applied in Case
1 and 2. Case 3 is the same option as Case 2, whe
the mesh is sampled through importance sampling as
Section 3.2. Specifically, we letZT denote a1 × n row
vector ofn independent standard normal variates that driv
the sampling ofST . Let α be a 1 × n row vector with
(r − δ − σ 2/2)T at each entry. The new mean ofZT , µo,
is found as the solution to

max
z

h(T , so exp(α + σ
√

T z) exp(−1

2
zz′)

where z is a 1 × n row vector andz′ is the transpose of
z. In view of the new mean forST , the paths ofSt are
sampled with a new drift implied byµo.

We report point-estimator performance (as opposed
confidence-interval performance) for two estimators: (a
q̂BG is the point estimator suggested in BG1997a, define
as the average of the high mesh estimator and the pa
estimator based on a number of simulated paths equal
the parameterb of the mesh; and (b)̂qA is the average mesh
estimator defined in Section 3.1.

The performance measures are all relative to the tru
option value. We measure RBIAS, RSTDE, and RRMSE
which are acronyms for relative bias, relative standard e
ror, and relative root mean square error of an estimato
respectively. Figures 1 and 2 show performance forq̂BG
andq̂A , respectively, as a function of estimator work, mea
sured in CPU time in a SUN Ultra 1 workstation. Figures
3-4 and 5-6 are analogs of Figures 1-2 for Cases 2 and
respectively.
8
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Figure 1:  Estimated RBIAS(*), RSTDE(o), and RRMSE(+
of q̂BG for Case 1
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Figure 2:  Estimated RBIAS(*), RSTDE(o), and RRMSE(+
of q̂A for Case 1
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Figure 3:  Estimated RBIAS(*), RSTDE(o), and RRMSE(+
of q̂BG for Case 2
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Figure 4:  Estimated RBIAS(*), RSTDE(o), and RRMSE(+
of q̂A for Case 2

0 100 200 300 400 500 600 700 800 900
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

CPU TIME (secs)

Figure 5:  Estimated RBIAS(*), RSTDE(o), and RRMSE(+
of q̂BG for Case 3
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Figure 6:  Estimated RBIAS(*), RSTDE(o), and RRMSE(+
of q̂A for Case 3
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Overall, these results and additional experience
reported here suggest the following:

• The estimator̂qBG in a standard implementa-
tion of the stochastic mesh method with no
variance reduction techniques as in BG1997a
suffers seriously from bias. This bias is mainly
due to the very strong bias of̂qH, the mesh
high estimator.

• The recursively averaged mesh estimatorq̂A
has small to moderate bias without resorting
to variance reduction techniques and appears
to be the best point estimator for a general-
purpose mesh implementation.

• Even the better̂qA estimator will generally
yield only moderate accuracy with realistic
sample sizes. Although the cases we studied
here are the hardest from the set of cases in
BG1997a, they underline that general-purpose
mesh estimation needs deeper study and that
there is substantial room for accuracy improve-
ment.

• Importance sampling for the mesh method
is fairly straightfowrward to implement. For
smooth payoff functions such as the geometric
average option, it yields substantial efficiency
improvements. For non-smooth payoffs such
as the max option, results not reported here
show that importance sampling may backfire.
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