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ABSTRACT

A technique for the fast simulation of broadban
communications systems is proposed, which is based
regenerative Importance Sampling techniques. O
algorithm is applicable to estimate the probability of ra
events when modeling the offered traffic using Fraction
Stable Noise (FSN) processes (including Fraction
Brownian Noise as a particular case), which have be
recently proved to be able to capture both the long-ran
dependence and the burstiness of today’s aggreg
network traffic. An exact description of FSN processes
given, as well as an approximation that allows for t
application of Importance Sampling techniques. The resu
obtained for a simple example are also included.

1 INTRODUCTION

Simulation is used quite extensively these days in 
planning process of telecommunications network
Simulation allows the network designer to draw importa
conclusions and make the right decisions before ma
capital investments are made. Theoretical a
mathematical analysis serves the same purpose 
simulation, but when the object of study is too comple
analysis tends to be unmanageable.

The validity of the conclusions obtained, either fro
simulation or theoretical analysis, depends greatly on h
accurately the model captures the actual operation of 
system under study. For this reason, especially during 
last few years, a great amount of research has been foc
on obtaining realistic models for the traffic generated 
the users of telecommunications networks. Self-similar
and long-range dependence have been proved to
important features of aggregated traffic, and seve
models of this type have been proposed with the objec
of reflecting the real statistical behaviour of the traff
inside networks. One of the most relevant mode
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presented in the past is described in (Norros 1995) and
(Willinger et al. 1997). They propose a model based on 
use of Fractional Brownian Noise.

More recently, the models proposed independently 
(Gallardo, Makrakis, and Orozco-Barbosa 1998) a
(Karasaridis and Hatzinakos 1998) are a generalization to
one presented in (Norros 1995) and (Willinger et al. 1997),
the sense that, rather than limiting the marginal distribution
the process to be Gaussian, an alpha-stable distribution is 
used, which allows us to achieve a better agreement betw
the burstiness of the artificial process and that of the r
traffic by selecting the proper stability coefficient α. The
model is stationary and long-range dependent and corresp
to the aggregation of a relatively large number of traf
streams mixed together into a single flow.

Due to their representation by means of a stochas
integral, it is not time-efficient to generate long traces 
artificial alpha-stable long-range dependent stochas
processes in a direct manner. In (Gallardo, Makrakis, a
Orozco-Barbosa 1999) an algorithm for the fast generat
of artificial traces of these processes is presented. S
approach uses an auto regressive (AR) model as 
approximation to the actual process, based on the minim
dispersion (MD) principle. Because of the AR expressi
used to represent the process, in addition to being hig
efficient for the generation of artificial traces, thi
algorithm allows for the application of Importanc
Sampling techniques to speed up simulations of syste
involving this type of traffic.

Fast simulation is desirable when trying to estimate t
probability of occurrence of rare events in communicatio
systems, such as buffer overflows, excessive delays
transmission errors. The authors in (Huang, Devetsikio
and Lambadaris 1995) and (Li, Wolisz, and Popescu-Zele
1998) have dealt with the application of Importanc
Sampling techniques to fast simulation of systems involvi
Gaussian processes in general. Unfortunately, those res
are not directly applicable to alpha-stable processes.
4
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2 FRACTIONAL STABLE NOISE
STOCHASTIC PROCESSES

Fractional Stable Motion (FSM) processes are self-sim
stochastic processes with stationary increme
(Samorodnitsky and Taqqu 1994). Their margin
distributions are the so-called alpha-stable distributio
which are referred to in the Generalized Central Limit
Theorem (Feller 1966) as describing the limit behaviour o
normalized sums of a relatively large number of independ
identically distributed (iid) random variables; hence thei
appropriateness for modeling aggregate traffic. Fractio
Brownian Motion (FBM) is a particular case of FSM, sinc
the Gaussian distribution belongs to the alpha-stable fam
Fractional Stable Noise (FSN) processes are the station
long-range dependent increments of FSM processes duri
time interval of unit length. In this work, we are considerin
three members of the FSN family: i) Balanced Linear FSN;
ii)  Anti-balanced Linear FSN; and iii)  Log-FSN. The exact
expression of a FSN process Yj is the following

(Samorodnitsky and Taqqu 1994):

( ) ( )∫
∞
∞− ⋅= dxMxjgYj , (1)

where ( )dxM  is an alpha-stable random measure, and:
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In the previous equation, we use the notation:

( )zsignzz
aa ⋅=

∆
    (3)

for any real number z and for any a ≥ 0. As described in
(Gallardo, Makrakis, and Orozco-Barbosa 1999), a FS
process can be very accurately approximated by an a
regressive (AR) process given by:

( ) j

N

i
ijij uYaY ⋅+⋅≈ ∑

=
−

α
εγ 1

1
(4)

In equation (4), N denotes the order of the AR proces
and is a positive integer. The uj’s, called the innovations,

are iid Sα(1,0,0) random variables, according to th
notation used in (Samorodnitsky and Taqqu 1994). Fina
the coefficients ai ’s and the innovation dispersion

parameter εγ  are calculated using the minimum dispersio
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criterion. Equation (4) is equivalent to saying that for a
FSN process Y, the conditional mean and dispersion
parameter of Yj given the past values

{ }Njjj yyy −−− ,...,, 21  are given by ∑
=

−⋅=
∆ N

i
ijij yaY

1
    ˆ

and εγ , respectively. In other words, the conditional

distribution of Yj is given by:

( )( )jj YSY
d

ˆ ,0 ,    1 α
εα γ= (5)

3 REALISTIC TRAFFIC MODEL FOR
AGGREGATE TRAFFIC

The traffic model proposed and verified independently in
(Gallardo, Makrakis, and Orozco-Barbosa 1998) and
(Karasaridis and Hatzinakos 1998) for aggregate streams
defined as follows. Let Wj represent the number of arrivals

or offered workload during the j-th time interval of unit
length, then:

       jj YmW += (6)

where m is the mean value of the number of arrivals pe
unit time and Yj is a zero-mean FSN process.

4 ASYMPTOTIC BEHAVIOUR OF A QUEUE
WITH FSN INPUT TRAFFIC

It was shown in (Gallardo, Makrakis, and Orozco-Barbos
1998) and in (Norros 1995) that V(t), the buffer occupancy
in a stationary storage system, is given by:

( ) ( ) ( ) ( )[ ]stmCstYtV
ts

−⋅−−−=
≤≤     0

sup

( ) ( )[ ]ττ
τ

⋅−−=
≤≤

mCY
t    0

sup (7)

where m is the mean input rate, C is the service (or leak)
rate, with m < C, and Y(τ) is a zero-mean stationary alpha-
stable random process representing the new arrivals duri
a period of length τ. Assuming that the buffer size is

1>>x , and using the principle of the largest term or
Laplace’s method (which is a heuristic rule that basically
translates to saying that rare events occur in the most likely
way, as described in Duffield and O’Connell (1995)), the
probability of buffer overflow can be approximated by:

( )[ ] ( ) ( )[ ]xmCYxtV +⋅−>≈> 00PrPr ττ (8)
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max   where τ

Therefore, analyzing the asymptotic behaviour of th
queue is equivalent to analyzing the behaviour of th
alpha-stable random variable Y(τ0) and its probability to
exceed the threshold described in equation (8).

5 IMPORTANCE SAMPLING

Importance sampling is one of the classical techniques 
increasing the efficiency of Monte Carlo simulation
(Bucklew, 1990; Glynn and Iglehart 1989). The basic ide
is to modify the system under study by replacing one of t
stochastic processes involved with a new one in order 
reduce the variance of the estimator. That is usua
achieved by increasing in an intelligent way the probabili
of occurrence of the events of interest. The estimat
statistics that result from the simulation are the
transformed (unbiased) to make them correspond to t
original system.

To be more specific, assume that we have a syste
whose behaviour depends on the stochastic process W and
we want to estimate the expected value of a certain rand
variable X(W). The process W can represent the random
input traffic to an ATM switch and X(W) can be the cell
loss ratio or the proportion of cells with excessive dela
Then:

( )[ ] ( ) ( ) wwwW
WU

WW dfXXE ⋅⋅= ∫ (9)

In the previous equation, UW is the sample space of W
and the notation [ ]  ⋅WE  denotes sampling using the

process W as the random input to the system. Suppose no
that W' is a modified stochastic process such tha

( ) 0=wWf  whenever ( ) 0=w' Wf  (absolute continuity

condition). The new probability density function (pdf)
( )w' Wf  is usually referred to as the twisted density. Then

we can see that:

( )[ ] ( ) ( )
( ) ( ) ww
w

w
wW

WU
W

W

W
W df

f

f
XXE ⋅⋅⋅= ∫ '

'
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W
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W
W LXE

f

f
XE ⋅=












⋅=

∆

'  
'

'  
 

 (10)

where the quotient ( ) ( ) ( )WWW WW '   ffL
∆
=  is known as

the likelihood ratio or weight function of the
transformation. Equation (10) suggests that estimating th
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expected value of X(W) via Monte Carlo simulations using
W as the random process is equivalent to estimating 
using W' and unbiasing each sample by applying the
likelihood ratio.

5.1 Estimator Variance

The expected value of X(W) and the sample mean obtained
using the standard Monte Carlo method are give

respectively by X  and X̂  in equation (11) below:

( )[ ]WW XEX = ;   ( )∑
=

=
N

i
X

N
X

1

1ˆ
iw (11)

where N is the number of samples taken and
{ }Nii ,...,2,1 =w  is a set of independent and identically

distributed (iid) sample paths of the process W. The

estimator is said to be unbiased because [ ] XXE =ˆ
W . The

variance of the estimator is given by:

[ ] ( )[ ]{ }  
1ˆ 22 XXE
N

XVar −= WWW
(12)

When Importance Sampling (IS) is used, the unbiase
sample mean is now given by:

( ) ( )∑
=

⋅=′
N

i
LX

N
X

1

1ˆ
ii ww (13)

where { }Nii ,...,2,1 =w  is now a set of iid sample paths of

the modified process W'. The variance of the IS estimator
is now given by:

[ ] ( ) ( )[ ]{ }222 
1ˆ XLXE
N

XVar −⋅=′ ′′ WWWW
(14)

The major difficulty in applying the IS technique is to
find a twisted density that minimizes (or at least reduce
considerably, as compared to the standard Monte Car
method) the variance of the IS estimator for a given
number of samples N.

5.2 Uniformly Bounded Likelihood Ratios

Let X(w) be a function that assigns nonzero values to thos
sample paths within a rare event B ⊂ UW , and assigns a
zero value to the sample paths that do not belong to B. The
indicator function ( )wBI , which is 1 for all w ∈ B and 0

for all w ∉ B, is an example of that kind of functions.
Another example could be a function that assigns th
6
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proportion of cells with excessive delay within an ATM
switch to the corresponding cell arrival sequence w. Let us
note that if:

( ) constant   ,   ;   1 =∈∀<≤ kkL Bww (15)

then:

[ ]
[ ]

( ) ( )[ ]
( )[ ] 22

222

ˆ

ˆ

XXE

XLXE

XVar

XVar

−

−⋅
=

′ ′′

W

WW

W

W

W

W

( ) ( )[ ]
( )[ ] k

XXE

XLXE
<

−

−⋅
=

22

22

W

WW

W

W (16)

This equation clearly shows that when inequality (15
is satisfied, the IS variance is reduced by a factor k, as
compared to traditional Monte Carlo simulations. The
condition that X(w) be zero outside a proper subset B of
UW  is necessary, because the last inequality in equatio
(16) would not be satisfied otherwise, since L(w) cannot be
less than 1 for all sample paths in UW.

When inequality (15) is satisfied, it is said that the
likelihood ratio is uniformly bounded within B (Juneja
1994). This result offers an alternative to trying to
minimize the IS variance itself, which tends to be rathe
complicated most of the time. We can try instead to
minimize the maximum value that L(w) can take within B
or, at least, guarantee that this maximum value is less th
1. In other words, if we are using a parametric approach 
the sense that the twisted density function depends on
certain parameter ξ (which could be one of the parameters
α, σ, or µ of an alpha-stable random variable, for instance
then our best choice when applying this technique is to u
ξ0 that satisfies:

( ) ( ) ξξξ ∀≤
∈∈

   ;       
0

ww
BwBw

LMaxLMax (17)

and it will provide variance reduction as long as:

     ( ) 1  
0

<
∈

w
Bw

ξLMax (18)

Because of the lack of closed-form expressions for th
pdf of alpha-stable random variables, this approach is mo
attractive in our case than trying to minimize the IS sampl
variance given in equation (14).
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6 REGENERATIVE SIMULATIONS

The regenerative approach to simulations is motivated 
the fact that many stochastic systems have the property
starting afresh probabilistically from time to time; that is
whenever the regenerative condition is reached, t
evolution of the system is independent of its past an
governed by the same probability law. This enables us 
separate the course of the simulation into iid blocks, called
regenerative cycles (Crane and Lemoine 1977). Wh
regenerative methods are not used, Importance Sampl
“breaks down” for long simulations (Glynn and Iglehar
1989), in the sense that the typical likelihood ratio goes 
zero (due to the fact that the sample space of the rand
process W increases exponentially with the simulation
length), making it necessary to collect an increasing
larger number of samples in order to obtain a significa
enough estimate. The effect of this breakdown is that, even
though IS estimators are unbiased, the estimate can 
several orders of magnitude smaller that the actual val
when the number of samples is small (Devetsikiotis an
Townsend 1993). When using the regenerative approa
on the other hand, since the likelihood ratio is applie
within each cycle, it is maintained within reasonabl
bounds regardless of the overall simulation time.

Let { }Mβββ ,,, 21 ê  be the regeneration epochs, suc

that Mβββ <<<=
∆

ê10    1 . Consider the input process

instance ( ) ( )MKwww wwww ~,,~,~    ,,, 2121 êê
∆

== , where

( )11 ,,,    ~
11 −+−−

∆

=
iii

wwwi βββ êw , for i ∈ {1, 2, …, M}. The

portion of the simulation having iw~  as input is an iid

replica of the portion having jw~  as input, for i, j ∈ {1, 2,

…, M}, i ≠ j. Following with our telecommunications
emphasis, if our goal is to estimate the proportion of ce
with a certain property (lost due to buffer overflow o
having excessive delay), then:

     ( ) ( )
( )w
w

w
D

N
X = (19)

where N(w) is the number of cells with the specified
property and D(w) is the total number of observed cells.
From here:

( )
( )

( )
( )
( )w

w

w

w

w
~

~
      

~1

~1

1

1

1

D

N

D
M

N
M

X
MM

i
i

M

i
i

 →
⋅

⋅
=

>>

=

=

∑

∑
(20)
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For the queueing system that we want to analyze, 
regenerative condition would be met when the queue
found empty.

7 TWISTED DENSITY FUNCTION

We will consider three different ways of transforming th
input process: i) by modifying the mean arrival rate m
described in equation (6); ii) by modifying the stability
coefficient α of the FSN process Yj , mentioned in equation

(4); and iii) by modifying the innovation dispersion
parameter εγ , also mentioned in equation (4). Since w

want to observe buffer overflows and/or excessive dela
option (i) above is intended to increase the average traf
load, while options (ii)  and (iii)  intend to intensify the
burstiness of the source by increasing the probability th
Yj has bigger values. In what follows, we will evaluate th

potential performance of each one of these options us
the uniformly bounded likelihood ratios criterion, described
in section 5.2. According to the discussion in section 
regarding the asymptotic behavior of a queueing syste
with FSN input traffic, we will select a twisted density as 
we were dealing with an individual alpha-stable rando
variable.

7.2 Modifying the Mean Arrival Rate

Suppose we have two alpha-stable random variables Y1 and

Y2, such that Y1 = Y2 + µ, where µ is a constant. The
likelihood ratio relating these two variables for a value y
beyond the threshold is given by:

( ) ( )
( ) 1    

1

1
2

1 ≈





−

 →=
−−

>>

α

µy

y

yf

yf
yL

y
Y

Y
(21)

This approach is asymptotically inefficient in the sens
that L(y) is uniformly bounded, but the bound is very clos
to 1 when the threshold is very large. An additiona
disadvantage of this approach is that, if a mean arrival r
is chosen that is very close to the service rate or greater,
regeneration period mentioned in section 6 will increas
reducing the effectiveness of the regenerative approach.

7.3 Modifying the Stability Coefficient

Now, suppose that the two random variables Y1 and Y2

have a different stability coefficient. The likelihood ratio i
now given by:

( ) ( )
( )

( )21

2

1

2

1

2

1

1
   

αα

α

α

σα
α −−

>> 





⋅

⋅

⋅
 →=

Y
y

Y

Y y

K

K

yf

yf
yL (22)
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( ) ( )2/ Cos22

1
       where

απα
α

α ⋅−Γ⋅
−=

∆

K

In the previous equation, σY is the scale parameter of

both Y1 and Y2. It can be seen from equation (22) that a
great variance reduction can be achieved when using this
approach, as long as α2 is smaller than α1.

7.4 Modifying the Innovation Dispersion Parameter

The effect of changing the innovation dispersion
parameter of the process is equivalent to multiplying each

sample Yj by a constant factor ( ) α
εε γγ 1′ , where εγ ′  is

the new dispersion parameter. Assume that the two
random variables Y1 and Y2 are now related by

( ) 1122 YY ⋅= σσ . This time, the likelihood ratio is given

by:

     ( ) ( )
( )

α

σ
σ







 →=

>>
2

1
1

   
2

1
y

Y

Y

yf

yf
yL (23)

This method can give some variance reduction, but it
is not as efficient as the one described in section 7.2.

8 LIKELIHOOD RATIO OF THE
TRANSFORMATION

According to the discussion in the previous section and
based on the asymptotic behavior of the queueing system
we selected the method of changing the stability parameter
of our traffic in order to intensify the burstiness of the input
stream. We will not try to maximize the variance reduction
achieved because, as mentioned before, we do not hav
closed form expressions for the pdf of alpha-stable random
variables. Thus, the modified process that we propose to
use is:

 jj YmW ′+=′ (24)

where, jY′  has now the conditional distribution

( )( )jYS ˆ ,0 ,1α
εα γ′ , where jŶ , εγ , and α are as given in

section 2 and α' is the new stability coefficient. Now,
assume that a sample path w of observed traffic consists of
K samples { }Kwwww ,,...,,, 321 , then:

( ) ( ) ( ) ( )121121 ,...,,|...|
21 −⋅⋅⋅= KKWWW wwwwfwwfwff

K
wW

(25)
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A similar expression applies to ( )w' Wf . From here

we can conclude that:

  ( ) ( )∏
=

=
K

j
jLL

1
ww (26)

where, using equations (4) and (25) we have:

( )

( )
( )

( )
( )

( )
( )

   

for   ;
,...,,|

,...,,|

2for   ;
,...,,|

,...,,|

1for   ;

21

21

121

121

1

1
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=
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−−
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j
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Njjjj W

NjjjjW

jjj W
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W
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'

'

'

j

j

j

j

1

1

 

w

(27)

From equation (6) we obtain:

( )NjjjjW wwwwf
j −−− ,...,,| 21

( )NjjjjY yyymwf
j −−−−= ,...,, 21| (28)

Now, from equation (5) and the properties of alpha
stable random variables:

    ( )












 −−












 −−

=

′
ε

α

ε
α

σ

σ

jj

jj

j
Ymw

f

Ymw
f

L
ˆ

ˆ

w (29)

In equation (29), ( ) α
εε γσ 1  

∆

=  represents the

innovation scale parameter of both the original and th
modified processes, and ( )  ⋅αf  is the pdf corresponding to

a normalized Sα(1,0,0) random variable.

9 RESULTS

As a specific example, we are including in this section th
results obtained using both direct and fast simulation for
simple system consisting of a traffic source and a serv
with a constant service rate, as shown in Figure 1. The g
was to estimate the blocking probability (or probability o
packet loss) of the queue.
379
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Figure 1: Configuration Used in our Simulations

The traffic source is modeled as a modified balance
Linear FSN process with α = 1.95 and H = 0.903. The
average arrival rate is assumed to be 1965 cells/s, or 8
Kbps. These parameters are compatible with those found
(Gallardo, Makrakis, and Orozco-Barbosa 1998) for 
traffic source generating an aggregate VBR video strea
which could correspond to a video-on-demand servic
provider. The service rate of the FIFO server in Figure 1 
2358.5 cells per second or 1 Mbps, approximately 20
greater than the mean arrival rate. The modified stabili
coefficient α' used for the twisted density function was 1.6
A set of 100 iid simulation was run for both the direct and
the fast algorithms. The simulations were run for 200
seconds.

Figure 2 compares the results obtained from direct a
fast simulation regarding the blocking probability vs
buffer size in the server. It can be observed from that figu
that the results are satisfactorily similar for buffer sizes o
333, 1000, and 3000 cells. The direct simulation gives
relatively deviated output for a buffer size of 9000 cells
Direct simulation proved incapable of estimating th
blocking probability when the buffer size is greater tha
9000 cells (it gave zero probability), since the even
becomes too rare to be observed even after 100 simulat
runs.
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Direct simulation

Figure 2: Comparison of Results Obtained from
Direct and Fast Simulation

In addition to the results shown in Figure 2, Figure 
shows the results obtained using the fast simulatio
algorithm for buffer sizes of 27000, 54000 and 10800
cells.
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Figure 3: Results Obtained from Fast Simulation

Table 1 shows the estimated as well as the observ
variance reduction for each case. The estimated varian
reduction (referred to as k in equation (16)) is calculated
according to the asymptotic behaviour and equation (22).

Table 1: Estimated and observed variance reduction

Buffer size (cells)
Estimated
variance
reduction

Observed
variance
reduction

333 0.0693 0.2400

1000 0.0668 1.2000

3000 0.0644 1.4000

9000 0.0620 0.0395

> 9000 <~    0.06 Undefined

10 CONCLUSIONS

A technique for the fast simulation of broadband
communications systems has been proposed. Th
technique is applicable when modeling the offered traffi
using Fractional Stable Noise processes, which have be
recently proved to be very accurate in capturing the long
range dependence and burstiness of today’s aggreg
network traffic. The fast simulation algorithm proposed in
this paper is based on regenerative Importance Sampli
techniques. It has been shown that there is a satisfacto
agreement between the results obtained with both fast a
direct simulations when the event analyzed is not too ra
and that the fast algorithm provides a noticeable varianc
reduction when the relevant event is rare.
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