Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

SELECTION PROCEDURES WITH STANDARDIZED TIME
SERIES VARIANCE ESTIMATORS

David Goldsman
William S. Marshall

School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332, U.S.A.

ABSTRACT procedures typically assume that the experimenter will have
at his disposal independent and identically distributed (i.i.d.)
This article studies a modification of Rinott's two-stage pro- normal observations from each competitor. Usually, these
cedure for selecting the normal population with the largest normal observations are simply the batch means from one
(or smallest) mean. The modification, which is appropriate long run of each competitor or the sample means from inde-
for use in the simulation environment, uses in the pro- pendent replications of the competing simulation processes
cedure’s first stage different variance estimators than the — so these observations are probably not quite normal,
usual batch means (BM) variance estimator. In particular, nor, in the case of batch means, quite independent. This
we will use variance estimators arising from the method of can be troublesome, since violations of the i.i.d. normal
standardized time series (STS). On the plus side, certain assumption can lead to improper conclusions on the part
STS estimators have more degrees of freedom than that of the experimenter, e.g., selecting the wrong alternative as
of the BM estimator. On the other hand, STS variance best, or asserting that the selected alternative is best with a
estimators tend to require larger sample sizes than the BM confidence level that is too high.
estimator in order to converge to their assumed distribu- For elementary tutorials on selection procedures, the
tions. These considerations result in trade-offs involving reader should see Goldsman and Nelson (1998ab); some
the procedure’s achieved probability of correct selection as implementation issues are discussed in Goldsman, et al.

well as the procedure’s expected sample size. (1999); and more-advanced treatments are given in Gib-
bons, Olkin, and Sobel (1977) and Bechhofer, Santner, and
1 INTRODUCTION Goldsman (BSG) (1995). Law and Kelton (1991) describe

a number of selection procedures that have proven useful
Statistical selection procedures are often used in computer in simulation applications.
simulations to compare alternative designs. These methods This paper concerns the use of Rinott’'s (1978) two-
are applicable when we are interested in making comparisons stage selection procedure in the simulation environment.
among a finite, but not necessarily small, number of systems Perhaps the key to Rinott’s procedure is that it uses its first
(say 2 to 1000). For example, such procedures could be stage to estimate the variance of the allegedly i.i.d. normal

appropriate in any of the following practical situations: observations, almost always using the sample variance of the
batch or replicate sample means; these variance estimates
e A manufacturer would like to know which then determine how many additional observations to take
of ten plant layouts under consideration will in the second stage, after which a decision on the best
maximize expected revenues. alternative is finally made.
e A network news division wants to determine Our aim in the current article is to incorporate into the
the most popular candidate before an election. Rinott procedure’s first stage different variance estimators
e A medical research team conducts a clinical than the usual sample variance (or so-called “batch means”
study comparing the success rates of three (BM) variance estimator). Namely, we will use variance
different drug regimens to combat a certain estimators arising from the method of standardized time
disease. series (STS). Certain STS estimators have more degrees of

freedom than that of the BM estimator, making it easier to pin

One class of selection procedures is designed to find yon the appropriate number of observations to take from
the alternative with the largest (or smallest) mean; these
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each alternative during the second stage. Unfortunately, as least a user-specified amouhbetter than the others, i.e.,
opposed to the BM variance estimator, these STS estimatorswe have the following:
sometimes require larger sample sizes within each batch Probability Requirement: For constants, o) with
or replication before the necessary asymptotic distribution 0 < § < oo and1/k < 1 — o < 1, specified prior to the
theory works itself out. We will examine the trade-offs start of experimentation, we require
between these good and bad characteristics.

The remainder of this paper consists of the following. Pr{CS} > 1—a wheneverupy) — upx-1 > 6,
§2 presents background material that describes pertinent
selection procedure notation and terminolog® gives a
description of Rinott’s procedure, using “generic” variance
estimators in the first stage. In order to develop an arsenal
of variance estimators for use in the first stage, we give in

34 & quick tutorial on BM and STS variance estimation in - \ve now describe a generalization of Rinott's (1978) proce-
the simulation environmentS gives a comparison of the  q;re | what follows, we le¥; denote a generic variance
new methods, with advantages and disadvantages, while  otimator fors2. In terms of the original procedur; is
offers some conclusions and recommendations for future simply the sample variance of the first-stage observations
research. from alternativei, i = 1,2, ..., k. Recall that an “obser-
vation” Y;; is taken here to denote thgh batch mean or
replicate sample mean from scenatio

where upyy < pp < --- < up are the ordered, but un-
known w;’s.

3 RINOTT'S PROCEDURE

2 BACKGROUND

Selection procedures are used to select outright the best of 1.
a number of competing scenarios, where “best” refers here
to the alternative having the largest (or smallest) expected
value.

To facilitate what follows, we define some notation:
Let Y;; represent theth simulation output from scenario

Specify the indifference-zone parametgethe
desired probability of correct selectidn- «,
and the common first-stage sample size> 2

to be taken from each alternative. Legj}
solve Rinott’s integral, that is, the constant
hy = h(k,1— «,v) is the solution to

i,fori =1,2,...,kscenariosang =1, 2,.... For fixed

. o . o oo

i, the usual assumption is that the outputs from_scenano / f q)k,1< h )fu(x)fv(y) dydx—1—a.
i, Yi1, Y2, ..., are i.i.d. normal. These assumptions are o Jo Vv(@/x +1/y)

roughly plausible if Y;1, Y2, ... are sample means across
independent replications, or if they are appropriately defined
batch means from a single replication after accounting for
initialization effects. We also assume that the (normal)
observations among scenarios are independent,j.eis
independent ofy;: ; for all i # i’ and all j. Finally, let

un; = E[Y;;] denote the expected value of a sample-mean

where®(.) is the standard normal cumulative
distribution function, £, (-) is the probability
density function of they?-distribution with

v degrees of freedom, and depends on the
variance estimator we use (see the appropriate
tables in Wilcox 1984 or BSG 1995).

output from theith alternative simulation scenario, and 2. ;—:Eﬁ 3? tlhlecjc 222;:2:615 );fizrﬁﬁ.lé}gélnlinf(;zmen-
let al.z = Var(Y;;) denote its variance. The Rinott (1978) dently P

method we describe herein makes comparisons based on
estimates ofu;.

Selection procedures allow the experimenter to specify
a “practical-significant” difference, often denoted &wnd
often referred to as the “indifference-zone” parameter. Any
scenario whose performance is withiirof the best can be

3. Calculate the first-stage sample meﬁﬂé =
Z’;lzl Y;;/n1, and marginal variance estimates
Vi,fori =1,2,... k.

4. Compute the final sample sizes

considered as a candidate for the best, perhaps “as good as” Ni = max{nl, P‘gvf/aﬂ}
the best, for all practical purposes; alternatives that are not ) )
within § of the best are to be considered as clearly inferior, fori =1,2,....k where[-] is the integer
and we would like to avoid selecting such poor candidates. ‘round-up” function. .

Our goal is to correctly select the true best scenario 5. TakeN;—nj additionali.i.d. observations from
(or at least a “good” one withid of the best). Of course, scenarig, independently of the first-stage sam-
in a stochastic simulation such a correct selection (CS) can ple and the other scenarios, fo= 1,2, . .., k.
never be guaranteed with certainty. But the Rinott selection 6. Conpute the overall sample meairs =
procedure guarantees to select the best alternative with user- > je1 Yij/Nifori=1,2 ...k
specified high probabilitit — « whenever the true best is at 7. Select the scenario with the larg&stas best.
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We make below a series of remarks concerning other A number of other estimators besides BM-based sample
aspects of the Rinott procedure. variances have been suggested for use in selection proce-
Remark: If we had been interested in selecting the dures. For example, Iglehart (1977) worked with a regen-
scenario with thesmallestexpected value, then the final  erative estimator on a selection procedure due to Dudewicz
step above obviously would instead be to select the scenario and Dalal (1975); Sullivan and Wilson (1984, 1989) tackled
with the smallest’; as best. a similar problem using spectral variance estimation tech-
Remark: Inthe “usual”’implementation ofthe procedure niques. As far back as Goldsman (1985), the STS class of
(with batch means or replicate sample means), we would estimators was informally implemented in selection proce-
have taken as our variance estimators the sample variancesdures.
of the batch or replicate means, each with= n3 — 1 We will discuss here only BM- and STS-based variance
degrees of freedom, estimators, where the goal is to estimate the variance of
the Y;;’s, i.e., the batch or replicate sample means, from a
1L _ articular simulation alternative.
$?2 = > (¥ = Y%/ - 1), P
j=1 4.1 Batch Means

fori=12,...,k.
Remark: Eventhough the current paper will concentrate
only on the pure select-the-best problem, we mention a few

alter_natlve methodologies one could consider. As pomted note the stochastic output process of the simulation obser-
out in Goldsman and Nelson (1998a), we could InVOKe | atigns from theith alternative. For exampleX;; could

a screeningprocedure to pare down a large number of - po etk individual waiting time in theth queueing sys-
alternatives into a palatable number; at that point, we might o, \inder consideration. These observations, arising from
use a selection procedure to make the more fine-tuned choiceg,me steady-state simulation, are rarely i.i.d. or normal, thus
of the _best. Provided _that certain assumptlon_s are met, a necessitating the need for a non-trivial variance estimator.
screening procedure will choose a subset containing the best In order to explicitly relate the lower-leval; 's with the

(or a good) scenario, and a selection procedure will then pigner jevely; ;s (the batch or replicate means) we can divide
pick the best, with a user-specified conflden_ce level. [n X1, Xio. ..., X;, into b contiguous batches, each of length
fact, Nelson, et al. (1998) s'how how to comblne a certain (where we assume for convenience that bm): the
subset proz_:edure with f[r_le Rinott procedur_e. TWIS—_pha_s_e observations(; j_1m+1. Xi.(j—m+2. - - - Xi_jm COMprise
procedure is of great utility when the experimenter is initially 1,4 jth batch,j = 1,2, ..., b. The quantity
faced with a large number of alternatives — the idea is for
the subset procedure to pare out poor scenarios, after which 12
Rinott selects the best from the survivors. Xijm = — Z Xi,(j—Dm+p

Remark: Multiple comparison procedures (MCPSs) ap- mo
proach the problem of determining the best scenario by
forming simultaneous confidence intervals on the means is called thejth batch mearirom scenaric — what we have

Instead of working with the batch means directly, we can
consider the lower-level observations that comprise the batch
means. For a generic alternative, ¥4, X;2, ..., X;, de-

wni —maxjx uj for i = 1,2,..., k. These confidence  been referring to ag;;, the jth high-level “observation”
intervals are known specifically as multiple comparisons when we speak of a generic scenatio
with the best (Hsu 1984), and they bound the difference The point estimator that we shall always use for the

between the expected performance of each alternative andmeany; of the ith system is the sample mean
the best of the others. See Hochberg and Tamhane (1987)

for a thorough review. MCPs are often used in conjunction _ 1" 10

with selection procedures (Matejcik and Nelson 1995 and Xin = 0 ZXip = Z Yij.
Nelson and Matejcik 1995) at no additional cost ifGS} p=1 j=1

or sampling or calculation. ) )
In order to estimate the variance of thg;'s, we

4 SOME VARIANCE ESTIMATORS could use their sample variance; this is what is com-
monly known as the batch means (BM) estimator for
The question now arises as to what other variance estimators Var(Yij), which we henceforth denote by. The

V; are eligible to be used in Rinott's procedure? And which dea behind BM is that, for a fixed number of batches,
estimators do well when implemented? a central limit theorem kicks in, so that the batch

means,Y;1, Yi2, ..., Yip, are approximately i.i.d. normal
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for large enough batch size. In fact, under mild conditions,
it is well known that

b
m _ _
mVp = mZ(Xi,j,m _Xi,n)2
j=1
2.2
; b—1
E X o= ( ), b>1,
b—1

whereu,.2 = Iimn%oonVar()?iyn) is thevariance parameter

of the stochastic process, and the symbe?» denotes

convergence in distribution a8 — oc.
4.2 STS Estimators

We now look at a completely different methodology for
estimating the variance of thE;'s — standardized time
series.

Fori = 1,2,...,k, j = 1,2,...,b, and ¢ =
1,2, ...,m, thetth cumulative meaifrom batch; of sce-
narioi is

¢
- 1
Xije = ZZXi,(j—l)erp-

p=1
Fori=12,...,k,j=12,...,b, and0 < ¢t < 1, the
standardized time seridsom batch; of scenaria is given
by

Lmt |(X; jm — Xij.imi)
U,'\/% ’
where| -] is the greatest integer function,. Schruben (1983)

shows that ifX;1, X;2, ..., X;, IS a stationary sequence
satisfying certain mild moment and mixing conditions, then

Ti,j,m(t) =

asm — oo, we haveT; ; (1) 3 B#),0=<t<1 a
standard Brownian bridge process. All finite-dimensional
joint distributions of B are normal andCov(5(s), B(t)) =
min(s, 1)(1—max(s, 1)), 0 < 5, t < 1. Schruben also shows
that7; ; ,,(¢) and )_(,-,j,m are asymptotically independent as
the batch sizen becomes large.

We denote the weighted area under the standardized

time series formed by thgth batch of observations from
scenarioi, i =1,2,...,k,andj=1,2,...,b, by

m
o
Aig = =3 w(E/m)Ty jm(/m),
=1
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where w(-) is a pre-specified weighting function that is
continuous on [0,1], not dependent en and normalized
so that

1
Var (/ w(®)B(t) a’t)
0

1 pru
= 2/ / ww)w@)t(l—u)dtdu = 1.
0 JO

(This expression can be simplified considerably; see Golds-
man, Meketon, and Schruben 1990 for details.) Finally,
define the location o10, 1] of the maximum of the stan-
dardized time series from thih batch of observations from
scenarioi,i =1,2,...,k,andj =1,2,...,b, by

Lij =

argma)ifffm {Ti,j,m (E/m)}
m .

In addition to the BM estimatoVg, we then have
a collection of estimators fowi2 (cf. Glynn and Iglehart
1990, and Goldsman and Schruben 1990):

(Weighted) Area estimator:

mVA

1 b
2
5 2_AL
j=1

v2x?(b)
b 9

D
—

b>1

Combined BM + Area estimator:

m((b—1DVp +bVy)

Vv =
myvp+A 2 —1
D vx%2b-1)
- 1.
2b—1
Maximum estimator:
mVy = v_lz 3 —7}*2j~m(ti‘j)
3b ] 1 j 1- L j)
242(3b
z UX ) ( ), b>1
3b

Combined BM + Maximum estimator:

m((b — 1)Vg + 3bVy)
4 — 1
D vix%(4b - 1)
_) —7
4p — 1

mVB+M =

b>1
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5 COMPARISONS

Notice that the variance estimators from the previous section
are all asymptoticallyy?, and that we have conveniently
arranged them in order of increasing degrees of freedom. It
turns out that more degrees of freedom is inherently a good
thing, but this boon is sometimes purchased at a price. In
particular, the increased degrees of freedorields

A smaller variance of the variance estimator

[}
Vi,i=1,2,... k.

e A smaller Rinotth-value for a given number
ny of first-stage batch or replicate means.

e Possible slower convergence of the variance

estimator to its limitingy?2 distribution.

The first two items are favorable; they (usually) result in a
smaller expected total number of observations taken by the
procedure. The third item is problematic, since the invalid
distributional assumption may cause trouble involving lower-
than-desired RCS}.

5.1 Expected Number of Required Samples

It is possible to calculate the expected number of obser-
vations, sayE[N;], that the Rinott procedure will need
from each scenario. This quantity is a function of the
experimenter’s specified parameter choices as well as the
underlying variances of the competing scenarios. Without
going into the details, we can consider a simple example.
Suppose that the experimenter specifies a requir€d3pr
of 1 —« = 0.95, an indifference parameter ¢éf = 0.5,
and various choices oi; for the first-stage sample size
(in terms of batches or replications). Further suppose that
we are conducting the comparison amang 2 scenarios,
both of which havenl.2 = 1. In this example, we will use
the BM estimator. Figure 1 display&[N;] (which will be
the same for both of theé = 2 scenarios) as a function of
ni.

For small n1, increasing the degrees of freedom,
v = n1 — 1, initially decreases the variance of the vari-
ance estimator, resulting in low&{N] for the procedure.
Eventually, however, we collect so many first-stage samples
that we do not need to take any in the second stage — a
wasteful situation resulting in the linear slopeifN] for
n1 > 30 or so.

5.2 Rinott A-value

Generally speaking, the value bfdecreases with increased
degrees of freedom — up to a point, where it begins to
level off. This is illustrated in Figure 2, where we plotas

a function of the BM method’s first-stage sample size
for 1 — o = 0.95 and a selection of-values; the number
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of scenarios ik = 2, ..., 10, with the largest value of
corresponding to largest values/gfand thus the top-most
curve.

5.3 Convergence of Variance Estimators

A high degrees of freedom does not necessarily guarantee
that one estimator is superior to another, especially if the

higher degrees of freedom is purchased at the cost of a
slower convergent rate to the limiting? distribution. In

fact, it was shown in Sargent, Kang, and Goldsman (1992),
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and it is well known, that some of the STS estimators lection, Screening and Multiple ComparisondNew
converge to their limiting distributions more slowly than York: John Wiley.
does the BM estimator; the maximum and combined BM Dudewicz, E. J., and S. R. Dalal. 1975. Allocation of obser-
+ maximum estimators converge especially slowly. A con- vations in ranking and selection with unequal variances.
sequence of this slow convergence is that the offending Sankhg B37:28-78.
variance estimators often underestimate the true variancesDudewicz, E. J., and N. A. Zaino, Jr. 1977. Allowance for
Ul.z of the batch means. This underestimation results in correlation in setting simulation run-length via ranking-
smaller-than-needed second-stage sample sizes, and then and-selection procedures[IMS Studies in the Man-
smaller-than-anticipated f2S}. agement Science&51-61.

Gibbons, J. D., I. Olkin and M. Sobel. 1973%electing and
6 CONCLUSIONS Ordering Populations: A New Statistical Methodology

New York: John Wiley.
On the plus side of things, we saw that certain STS es- Glynn, P. W., and D. L. Iglehart. 1990. Simulation output
timators have more degrees of freedom than that of the analysis using standardized time seriéathematics
BM estimator. On the other hand, STS variance estimators of Operations Research5:1-16.
tend to require larger sample sizes than the BM estimator Goldsman, D. 1985. Ranking and selection procedures

in order to converge to their assumed distributions. These using standardized time series. Pnoceedings of the

considerations result in trade-offs involving the Rinott pro- 1985 Winter Simulation Conferenced. D. T. Gantz,

cedure’s achieved probability of correct selection as well G. C. Blais, and S. L. Solomon, 120-124, Piscataway,

as the procedure’s expected sample size, and are subjects  New Jersey: |IEEE.

of ongoing research. Goldsman, D., K. Kang, and A. F. Seila. 1999. Canvon
The problem of dealing with the underlying “low-level” Mises variance estimators for simulatior@perations

process observations (as opposed to assuming that the batch  Research47:299-3009.
means are obligingly i.i.d. normal) has not been studied a Goldsman, D., M. S. Meketon, and L. W. Schruben. 1990.
great deal. Besides a couple of robustness papers in the Properties of standardized time series weighted area

literature, it seems that only Dudewicz and Zaino (1977) variance estimatordvlanagement Scien@6:602—612.
present a procedure to handle an explicit non-i.i.d. process Goldsman, D., and B. L. Nelson. 1998a. Statistical screen-
(namely, a first-order autoregressive model). This too, is ing, selection, and multiple comparison procedures in
the subject of ongoing research on our part. computer simulation. IfProceedings of the 1998 Win-
The reader may have noticed that all of the variance ter Simulation Conferen¢eed. D. J. Medeiros, E. F.
estimators studied in the current article were (asymptoti- Watson, M. Manivannan, and J. S. Carson, 159-166.
cally, at least)y2. Proving that the use of these estimators Piscataway, New Jersey: |IEEE.
satisfies the Rinott probability requirement is not a prob- Goldsman, D., and B. L. Nelson. 1998b. Comparing
lem since, as with BM, the STS estimators are not only systems via simulation. Itdandbook of Simulatign

x?, they are also (asymptotically) independent of the batch ed. J. Banks, Chapter 8. New York: John Wiley.
means. An interesting question to investigate is that of using Goldsman, D., B. L. Nelson, T. Opicka, and A. A. B.

other, nonx? variance estimators in the Rinott procedure. Pritsker. 1999. A ranking and selection project: Ex-
For example, the low variance and reasonable convergence periences from a university-industry collaboration. In
properties of the overlapping batch means estimator (Meke- Proceedings of the 1999 Winter Simulation Conference
ton and Schmeiser 1984) or the STS Ceanvon Mises ed. P. A. Farrington, H. B. Nembhard, D. Sturrock, and
estimator (Goldsman, Kang, and Seila 1999) might make J. Evans. Piscataway, New Jersey: IEEE.
them attractive candidates for inclusion in Rinott. Goldsman, D., and L. W. Schruben. 1990. New confidence

interval estimators using standardized time seri¢an-
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