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ABSTRACT

This article studies a modification of Rinott’s two-stage pr
cedure for selecting the normal population with the large
(or smallest) mean. The modification, which is appropria
for use in the simulation environment, uses in the pr
cedure’s first stage different variance estimators than
usual batch means (BM) variance estimator. In particul
we will use variance estimators arising from the method
standardized time series (STS). On the plus side, cer
STS estimators have more degrees of freedom than
of the BM estimator. On the other hand, STS varian
estimators tend to require larger sample sizes than the
estimator in order to converge to their assumed distrib
tions. These considerations result in trade-offs involvi
the procedure’s achieved probability of correct selection
well as the procedure’s expected sample size.

1 INTRODUCTION

Statistical selection procedures are often used in compu
simulations to compare alternative designs. These meth
are applicable when we are interested in making comparis
among a finite, but not necessarily small, number of syste
(say 2 to 1000). For example, such procedures could
appropriate in any of the following practical situations:

• A manufacturer would like to know which
of ten plant layouts under consideration will
maximize expected revenues.

• A network news division wants to determine
the most popular candidate before an election.

• A medical research team conducts a clinical
study comparing the success rates of three
different drug regimens to combat a certain
disease.

One class of selection procedures is designed to fi
the alternative with the largest (or smallest) mean; the
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procedures typically assume that the experimenter will hav
at his disposal independent and identically distributed (i.i.d
normal observations from each competitor. Usually, thes
normal observations are simply the batch means from o
long run of each competitor or the sample means from ind
pendent replications of the competing simulation process
— so these observations are probably not quite norma
nor, in the case of batch means, quite independent. Th
can be troublesome, since violations of the i.i.d. norma
assumption can lead to improper conclusions on the pa
of the experimenter, e.g., selecting the wrong alternative
best, or asserting that the selected alternative is best with
confidence level that is too high.

For elementary tutorials on selection procedures, th
reader should see Goldsman and Nelson (1998ab); so
implementation issues are discussed in Goldsman, et
(1999); and more-advanced treatments are given in Gi
bons, Olkin, and Sobel (1977) and Bechhofer, Santner, a
Goldsman (BSG) (1995). Law and Kelton (1991) describ
a number of selection procedures that have proven use
in simulation applications.

This paper concerns the use of Rinott’s (1978) two
stage selection procedure in the simulation environmen
Perhaps the key to Rinott’s procedure is that it uses its fir
stage to estimate the variance of the allegedly i.i.d. norm
observations, almost always using the sample variance of t
batch or replicate sample means; these variance estima
then determine how many additional observations to tak
in the second stage, after which a decision on the be
alternative is finally made.

Our aim in the current article is to incorporate into the
Rinott procedure’s first stage different variance estimato
than the usual sample variance (or so-called “batch mean
(BM) variance estimator). Namely, we will use variance
estimators arising from the method of standardized tim
series (STS). Certain STS estimators have more degrees
freedom than that of the BM estimator, making it easier to pi
down the appropriate number of observations to take fro
2
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each alternative during the second stage. Unfortunately, a
opposed to the BM variance estimator, these STS estimato
sometimes require larger sample sizes within each batc
or replication before the necessary asymptotic distribution
theory works itself out. We will examine the trade-offs
between these good and bad characteristics.

The remainder of this paper consists of the following.
§2 presents background material that describes pertinen
selection procedure notation and terminology.§3 gives a
description of Rinott’s procedure, using “generic” variance
estimators in the first stage. In order to develop an arsena
of variance estimators for use in the first stage, we give in
§4 a quick tutorial on BM and STS variance estimation in
the simulation environment.§5 gives a comparison of the
new methods, with advantages and disadvantages, while§6
offers some conclusions and recommendations for futur
research.

2 BACKGROUND

Selection procedures are used to select outright the best
a number of competing scenarios, where “best” refers her
to the alternative having the largest (or smallest) expecte
value.

To facilitate what follows, we define some notation:
Let Yij represent thej th simulation output from scenario
i, for i = 1, 2, . . . , k scenarios andj = 1, 2, . . . . For fixed
i, the usual assumption is that the outputs from scenari
i, Yi1, Yi2, . . ., are i.i.d. normal. These assumptions are
roughly plausible if Yi1, Yi2, . . . are sample means across
independent replications, or if they are appropriately defined
batch means from a single replication after accounting fo
initialization effects. We also assume that the (normal)
observations among scenarios are independent, i.e.,Yij is
independent ofYi′,j for all i 6= i′ and all j . Finally, let
µi = E[Yij ] denote the expected value of a sample-mean
output from theith alternative simulation scenario, and
let σ 2

i = Var(Yij ) denote its variance. The Rinott (1978)
method we describe herein makes comparisons based o
estimates ofµi .

Selection procedures allow the experimenter to specify
a “practical-significant” difference, often denoted byδ and
often referred to as the “indifference-zone” parameter. Any
scenario whose performance is withinδ of the best can be
considered as a candidate for the best, perhaps “as good a
the best, for all practical purposes; alternatives that are no
within δ of the best are to be considered as clearly inferior
and we would like to avoid selecting such poor candidates

Our goal is to correctly select the true best scenario
(or at least a “good” one withinδ of the best). Of course,
in a stochastic simulation such a correct selection (CS) ca
never be guaranteed with certainty. But the Rinott selection
procedure guarantees to select the best alternative with use
specified high probability1−α whenever the true best is at
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least a user-specified amountδ better than the others, i.e.,
we have the following:

Probability Requirement: For constants(δ, α) with
0 < δ < ∞ and 1/k < 1 − α < 1, specified prior to the
start of experimentation, we require

Pr{CS} ≥ 1 − α whenever µ[k] − µ[k−1] ≥ δ,

where µ[1] ≤ µ[2] ≤ · · · ≤ µ[k] are the ordered, but un-
known µi ’s.

3 RINOTT’S PROCEDURE

We now describe a generalization of Rinott’s (1978) proce
dure. In what follows, we letVi denote a generic variance
estimator forσ 2

i . In terms of the original procedure,Vi is
simply the sample variance of the first-stage observation
from alternativei, i = 1, 2, . . . , k. Recall that an “obser-
vation” Yij is taken here to denote thej th batch mean or
replicate sample mean from scenarioi.

1. Specify the indifference-zone parameterδ, the
desired probability of correct selection1− α,
and the common first-stage sample sizen1 ≥ 2
to be taken from each alternative. Lethα

solve Rinott’s integral, that is, the constant
hα = h(k, 1 − α, ν) is the solution to

∫ ∞
0

∫ ∞
0

8k−1
(

h√
ν(1/x + 1/y)

)
fν(x)fν(y) dy dx = 1 − α,

where8(·) is the standard normal cumulative
distribution function,fν(·) is the probability
density function of theχ2-distribution with
ν degrees of freedom, andν depends on the
variance estimator we use (see the appropriate
tables in Wilcox 1984 or BSG 1995).

2. Take an i.i.d. sampleYi1, Yi2, . . . , Yin1 from
each of thek scenarios simulated indepen-
dently.

3. Calculate the first-stage sample meansȲ
(1)
i =∑n1

j=1 Yij /n1, and marginal variance estimates
Vi , for i = 1, 2, . . . , k.

4. Compute the final sample sizes

Ni = max
{
n1,

⌈
h2

αVi/δ2
⌉}

for i = 1, 2, . . . , k, whered·e is the integer
“round-up” function.

5. TakeNi−n1 additional i.i.d. observations from
scenarioi, independently of the first-stage sam-
ple and the other scenarios, fori = 1, 2, . . . , k.

6. Compute the overall sample meansȲi =∑Ni

j=1 Yij /Ni for i = 1, 2, . . . , k.

7. Select the scenario with the largestȲi as best.
3
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We make below a series of remarks concerning oth
aspects of the Rinott procedure.

Remark: If we had been interested in selecting th
scenario with thesmallestexpected value, then the fina
step above obviously would instead be to select the scena
with the smallestȲi as best.

Remark: In the “usual” implementation of the procedur
(with batch means or replicate sample means), we wou
have taken as our variance estimators the sample varian
of the batch or replicate means, each withν = n1 − 1
degrees of freedom,

S2
i =

n1∑
j=1

(Yij − Ȳ
(1)
i )2/(n1 − 1),

for i = 1, 2, . . . , k.
Remark: Even though the current paper will concentra

only on the pure select-the-best problem, we mention a f
alternative methodologies one could consider. As point
out in Goldsman and Nelson (1998a), we could invok
a screeningprocedure to pare down a large number o
alternatives into a palatable number; at that point, we mig
use a selection procedure to make the more fine-tuned cho
of the best. Provided that certain assumptions are met
screening procedure will choose a subset containing the b
(or a good) scenario, and a selection procedure will th
pick the best, with a user-specified confidence level.
fact, Nelson, et al. (1998) show how to combine a certa
subset procedure with the Rinott procedure. Thistwo-phase
procedure is of great utility when the experimenter is initiall
faced with a large number of alternatives — the idea is f
the subset procedure to pare out poor scenarios, after wh
Rinott selects the best from the survivors.

Remark: Multiple comparison procedures (MCPs) a
proach the problem of determining the best scenario
forming simultaneous confidence intervals on the mea
µi − maxj 6=i µj for i = 1, 2, . . . , k. These confidence
intervals are known specifically as multiple comparison
with the best (Hsu 1984), and they bound the differen
between the expected performance of each alternative
the best of the others. See Hochberg and Tamhane (19
for a thorough review. MCPs are often used in conjunctio
with selection procedures (Matejcik and Nelson 1995 a
Nelson and Matejcik 1995) at no additional cost in Pr{CS}
or sampling or calculation.

4 SOME VARIANCE ESTIMATORS

The question now arises as to what other variance estima
Vi are eligible to be used in Rinott’s procedure? And whic
estimators do well when implemented?
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A number of other estimators besides BM-based sam
variances have been suggested for use in selection pro
dures. For example, Iglehart (1977) worked with a rege
erative estimator on a selection procedure due to Dudew
and Dalal (1975); Sullivan and Wilson (1984, 1989) tackle
a similar problem using spectral variance estimation tec
niques. As far back as Goldsman (1985), the STS class
estimators was informally implemented in selection proc
dures.

We will discuss here only BM- and STS-based varian
estimators, where the goal is to estimate the variance
the Yij ’s, i.e., the batch or replicate sample means, from
particular simulation alternative.

4.1 Batch Means

Instead of working with the batch means directly, we ca
consider the lower-level observations that comprise the ba
means. For a generic alternative, letXi1, Xi2, . . . , Xin de-
note the stochastic output process of the simulation obs
vations from theith alternative. For example,Xi` could
be the`th individual waiting time in theith queueing sys-
tem under consideration. These observations, arising fr
some steady-state simulation, are rarely i.i.d. or normal, th
necessitating the need for a non-trivial variance estimat

In order to explicitly relate the lower-levelXi`’s with the
higher-levelYij ’s (the batch or replicate means) we can divid
Xi1, Xi2, . . . , Xin into b contiguous batches, each of lengt
m (where we assume for convenience thatn = bm); the
observationsXi,(j−1)m+1, Xi,(j−1)m+2, . . . , Xi,jm comprise
the j th batch,j = 1, 2, . . . , b. The quantity

X̄i,j,m ≡ 1

m

m∑
p=1

Xi,(j−1)m+p

is called thej th batch meanfrom scenarioi — what we have
been referring to asYij , the j th high-level “observation”
when we speak of a generic scenarioi.

The point estimator that we shall always use for th
meanµi of the ith system is the sample mean

X̄i,n ≡ 1

n

n∑
p=1

Xip = 1

b

b∑
j=1

Yij .

In order to estimate the variance of theYij ’s, we
could use their sample variance; this is what is com
monly known as the batch means (BM) estimator f
Var(Yij ), which we henceforth denote byVB . The
idea behind BM is that, for a fixed number of batche
a central limit theorem kicks in, so that the batc
means,Yi1, Yi2, . . . , Yib, are approximately i.i.d. normal
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for large enough batch sizem. In fact, under mild conditions,
it is well known that

mVB ≡ m

b − 1

b∑
j=1

(X̄i,j,m − X̄i,n)2

D→ v2
i χ2(b − 1)

b − 1
, b > 1,

wherev2
i ≡ limn→∞ nVar(X̄i,n) is thevariance parameter

of the stochastic process, and the symbol “
D→ ” denotes

convergence in distribution asm → ∞.

4.2 STS Estimators

We now look at a completely different methodology fo
estimating the variance of theYij ’s — standardized time
series.

For i = 1, 2, . . . , k, j = 1, 2, . . . , b, and ` =
1, 2, . . . , m, the`th cumulative meanfrom batchj of sce-
nario i is

X̄i,j,` ≡ 1

`

∑̀
p=1

Xi,(j−1)m+p.

For i = 1, 2, . . . , k, j = 1, 2, . . . , b, and 0 ≤ t ≤ 1, the
standardized time seriesfrom batchj of scenarioi is given
by

Ti,j,m(t) ≡ bmtc(X̄i,j,m − X̄i,j,bmtc)
vi

√
m

,

whereb·c is the greatest integer function,. Schruben (198
shows that ifXi1, Xi2, . . . , Xin is a stationary sequence
satisfying certain mild moment and mixing conditions, the

as m → ∞, we haveTi,j,m(t)
D→ B(t), 0 ≤ t ≤ 1, a

standard Brownian bridge process. All finite-dimensiona
joint distributions ofB are normal andCov(B(s), B(t)) =
min(s, t)(1−max(s, t)), 0 < s, t < 1. Schruben also shows
that Ti,j,m(t) andX̄i,j,m are asymptotically independent as
the batch sizem becomes large.

We denote the weighted area under the standardiz
time series formed by thej th batch of observations from
scenarioi, i = 1, 2, . . . , k, andj = 1, 2, . . . , b, by

Ai,j ≡ vi

m

m∑
`=1

w(`/m)Ti,j,m(`/m),
3

r
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where w(·) is a pre-specified weighting function that is
continuous on [0,1], not dependent onm, and normalized
so that

Var

(∫ 1

0
w(t)B(t) dt

)

= 2
∫ 1

0

∫ u

0
w(u)w(t)t (1 − u) dt du = 1.

(This expression can be simplified considerably; see Gold
man, Meketon, and Schruben 1990 for details.) Finally
define the location on[0, 1] of the maximum of the stan-
dardized time series from thej th batch of observations from
scenarioi, i = 1, 2, . . . , k, andj = 1, 2, . . . , b, by

ti,j ≡ argmax1≤`≤m{Ti,j,m(`/m)}
m

.

In addition to the BM estimatorVB , we then have
a collection of estimators forv2

i (cf. Glynn and Iglehart
1990, and Goldsman and Schruben 1990):

(Weighted) Area estimator:

mVA ≡ 1

b

b∑
j=1

A2
i,j

D→ v2
i χ2(b)

b
, b ≥ 1.

Combined BM + Area estimator:

mVB+A ≡ m((b − 1)VB + bVA)

2b − 1

D→ v2
i χ2(2b − 1)

2b − 1
, b > 1.

Maximum estimator:

mVM ≡ v2
i

3b

b∑
j=1

T 2
i,j,m(ti,j )

ti,j (1 − ti,j )

D→ v2
i χ2(3b)

3b
, b ≥ 1.

Combined BM + Maximum estimator:

mVB+M ≡ m((b − 1)VB + 3bVM)

4b − 1

D→ v2
i χ2(4b − 1)

4b − 1
, b > 1.
85
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5 COMPARISONS

Notice that the variance estimators from the previous sec
are all asymptoticallyχ2, and that we have convenientl
arranged them in order of increasing degrees of freedom
turns out that more degrees of freedom is inherently a g
thing, but this boon is sometimes purchased at a price
particular, the increased degrees of freedomν yields

• A smaller variance of the variance estimator
Vi , i = 1, 2, . . . , k.

• A smaller Rinotth-value for a given number
n1 of first-stage batch or replicate means.

• Possible slower convergence of the variance
estimator to its limitingχ2 distribution.

The first two items are favorable; they (usually) result in
smaller expected total number of observations taken by
procedure. The third item is problematic, since the inva
distributional assumption may cause trouble involving low
than-desired Pr{CS}.

5.1 Expected Number of Required Samples

It is possible to calculate the expected number of obs
vations, sayE[Ni], that the Rinott procedure will nee
from each scenario. This quantity is a function of t
experimenter’s specified parameter choices as well as
underlying variances of the competing scenarios. With
going into the details, we can consider a simple exam
Suppose that the experimenter specifies a required Pr{CS}
of 1 − α = 0.95, an indifference parameter ofδ = 0.5,
and various choices ofn1 for the first-stage sample siz
(in terms of batches or replications). Further suppose
we are conducting the comparison amongk = 2 scenarios,
both of which haveσ 2

i = 1. In this example, we will use
the BM estimator. Figure 1 displaysE[Ni] (which will be
the same for both of thek = 2 scenarios) as a function o
n1.

For small n1, increasing the degrees of freedom
ν = n1 − 1, initially decreases the variance of the va
ance estimator, resulting in lowerE[N ] for the procedure.
Eventually, however, we collect so many first-stage samp
that we do not need to take any in the second stage —
wasteful situation resulting in the linear slope ofE[N ] for
n1 > 30 or so.

5.2 Rinott h-value

Generally speaking, the value ofh decreases with increase
degrees of freedom — up to a point, where it begins
level off. This is illustrated in Figure 2, where we ploth as
a function of the BM method’s first-stage sample sizen1
for 1 − α = 0.95 and a selection ofk-values; the number
3
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Figure 1:  Relationship  BetweenE[N ] and n1 for BM
Variance  Estimator

Figure 2:  Relationship  Betweenh andn1 for BM  Variance
Estimator

of scenarios isk = 2, . . . , 10, with the largest value ofk
corresponding to largest values ofh, and thus the top-most
curve.

5.3 Convergence of Variance Estimators

A high degrees of freedom does not necessarily guarant
that one estimator is superior to another, especially if th
higher degrees of freedom is purchased at the cost of
slower convergent rate to the limitingχ2 distribution. In
fact, it was shown in Sargent, Kang, and Goldsman (1992
86
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and it is well known, that some of the STS estimator
converge to their limiting distributions more slowly than
does the BM estimator; the maximum and combined BM
+ maximum estimators converge especially slowly. A con
sequence of this slow convergence is that the offendin
variance estimators often underestimate the true varianc
σ 2

i of the batch means. This underestimation results
smaller-than-needed second-stage sample sizes, and t
smaller-than-anticipated Pr{CS}.

6 CONCLUSIONS

On the plus side of things, we saw that certain STS e
timators have more degrees of freedom than that of th
BM estimator. On the other hand, STS variance estimato
tend to require larger sample sizes than the BM estimat
in order to converge to their assumed distributions. The
considerations result in trade-offs involving the Rinott pro
cedure’s achieved probability of correct selection as we
as the procedure’s expected sample size, and are subje
of ongoing research.

The problem of dealing with the underlying “low-level”
process observations (as opposed to assuming that the ba
means are obligingly i.i.d. normal) has not been studied
great deal. Besides a couple of robustness papers in
literature, it seems that only Dudewicz and Zaino (1977
present a procedure to handle an explicit non-i.i.d. proce
(namely, a first-order autoregressive model). This too,
the subject of ongoing research on our part.

The reader may have noticed that all of the varianc
estimators studied in the current article were (asympto
cally, at least)χ2. Proving that the use of these estimator
satisfies the Rinott probability requirement is not a prob
lem since, as with BM, the STS estimators are not on
χ2, they are also (asymptotically) independent of the batc
means. An interesting question to investigate is that of usin
other, non-χ2 variance estimators in the Rinott procedure
For example, the low variance and reasonable convergen
properties of the overlapping batch means estimator (Mek
ton and Schmeiser 1984) or the STS Cramér–von Mises
estimator (Goldsman, Kang, and Seila 1999) might mak
them attractive candidates for inclusion in Rinott.
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