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ABSTRACT

Simulation experiments are often designed assuming th
fixed, and known, computing budget is to be allocat
sequentially among different alternatives. However, 
actual simulation experiments, there may be bud
uncertainty or at least flexibility - for example, when the
is a soft deadline for obtaining the study results. In su
situations, it may be beneficial to allocate resourc
simultaneously in dynamically changing proportions. 
this paper, we will examine optimal resource allocatio
paths. These paths climb the contour curves of 
probability of selecting the best of several alternatives in
manner that insures that the highest probability of corr
selection P(CS) is obtained when the study is halted. 
gain insight into the complexity of optimal resourc
allocation paths, simple models exhibiting seri
correlation, cross correlation, and trends are studied.

1 INTRODUCTION AND BACKGROUND

Simulation study design often focuses on the ser
allocation of a predetermined computer budget, such as
sequential efforts of Chick and Inoue (1998) and Chen,
Yücesan, and Dai (1998). In addition, these approac
focus on output that is independent and identica
distributed.  As in Schruben (1997), we want to explo
some of the advantages of simultaneously replicat
different models with continuously variable allocations 
effort to each model. We focus on an graphic
representation of the problem in cases where the ou
series have serial correlation, cross correlation, and tren

Simulation experiment budgets can include more th
computing resources. For example, a study deadline
constraints on the analysts' time may be more critical th
computer time. Furthermore, the exact amount 
computing resources available until the study deadline
reached may not be known - particularly for importa
studies were extending deadlines may be preferred
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making the wrong decision. Automation of experimenta
design decisions may be critical to efficiently using
analysts' time or maximizing the use of availabl
computing resources before a deadline is reached.

This is further complicated by the fact that when a
experiment is halted may depend on the results obtaine
budgets may not be set a priori but are negotiable as 
study proceeds. A study may end sooner than anticipa
when the early results suggest a clear answer, allowi
attention to be directed toward other studies or oth
aspects of the same project. Conversely, more informati
may be desired when the performances of competi
alternatives are close and the project will require furthe
resources. An analyst may realize that a marginal increa
in effort will result in a significantly improved answer. Not
uncommonly, a reformulated study objective may b
dictated to support a failing "pet" option or to invalidate
the current best choice, requiring the study to continu
For these, and other, reasons it makes sense that simula
studies be designed to give the best answers available
any time during the study.

2 P(CS) CURVES AND OPTIMAL
ALLOCATION PATHS

The simplest example that illustrates these ideas, is t
problem of determining which of two random processe
has the greater asymptotic mean. The experimental des
problem is simply to determine how long to observe eac
process. We will consider more realistic situations late
however, for the time being, we will assume that, unknow
to us, the underlying random variables for the two serie
are i.i.d. N(1,16) and N(0,16), respectively. The probabilit
that the first sample mean is larger than the second sam
mean can be given in a contour plot for different samplin
combinations. The vertical axis represents the number 
points sampled from the first series and the horizontal ax
represents the number of samples from the second ser
Since the first series has a larger asymptotic mean, t
9
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probability of correct selection (P(CS)) is the probabilit
that the first sample mean is greater than the second sam
mean. This contour plot is given in Figure 1.  These P(C
curves will help us determine the optimal design for a
experiment.

Figure 1:  P(CS) Contours – Optimal Allocation Path

To decide on the optimal allocation, we also need 
know the relative sampling costs for the two series.  If th
relative sampling costs are equal, then any given sampl
budget will give an allocation falling on a line parallel to
the dashed line in Figure 1. The optimal allocation for an
budget is the tangent point of that budget line to the highe
P(CS) contour. Varying the budget gives a series 
optimal allocations. The optimal allocation path is given a
the solid arrow in Figure 1.  Different sampling costs wi
yield different optimal allocation paths. Figure 2 gives 
representative budget line and optimal allocation path f
the same problem given in Figure 1, when samples fro
series 2 are three times as costly as samples from series

We considered but do not present the optim
sampling paths when the relative sampling costs vary ov
time.  In this case, the budget lines are no longer 
mutually parallel.

The optimal allocation path will also be a function o
the output series. By changing the variance of the seco
series to 36, the optimal allocation path shifts towar
sampling series 2 more. This case is given in Figure 3.

To contrast with the optimal allocation path, conside
sampling each series equally. This choice of paths coul
cause the allocation of resources to one of the models to
early and may be wasteful.  Since we can’t take back ou
nt
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Figure 2:  Different Relative Sampling Costs

Figure 3:  Unequal Variances

samples, we may not be able to recover quickly from
poor allocation early in our study. In addition, this path 
highly dependent on a fixed budget. If, in the worst ca
the budget for this study were cut off after sampling fro
only one model, the solution quality will be no better tha
if the study were never done.

Similar paths are produced when the budget is brok
up into finite stages. Alternatively, we may simply assign
fixed allocation between the two samples at the beginn
of the study.  These paths will give much better answer
the budget is modified during the course of the stud
However, the quality of the answer will be very depende
0
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on the initial allocation choice. A multistage version of th
path modifies the allocation during the study.  In the lim
a combination of these paths approach the optim
allocation path.  Figure 4 illustrates this variety o
alternative paths in the context of Figure 3.  For referen
the dashed arrow indicates the optimal allocation path.

Figure 4: Alternatives to the Optimal Allocation Path

These P(CS) curves will be used to examine t
effects of serial correlation, cross correlation, and trends
three simple pairs of models.  In all cases, we take 
sample mean to be the performance measure.  Our dec
rule chooses the model with the current highest sam
mean. In addition, for simplicity, we will assume for th
remainder of the paper that sampling costs are the same
both models.

3 SERIAL CORRELATION

The first model focuses on serial correlation.  Here we u
an AR(1) process for each of the two models i=1,2.

Xi,t = φiXi,t-1 + Zi,t

Where {Zi,t} are independent and identically distribute
normal random variables and φi∈(0,1).  The models are
initialized at Xi,0=0, but this point is not included in the
sample mean.  Note that the asymptotic first order se
correlation of model i is φi.

By choosing parameters for the models such th
limr→∞E(X1,t)=1/3 and limr→∞E(X2,t)=0, φi=0.7 for i=1,2
and  var(Zi,t)= 1 for all i and t, we generate the contours 
Figure 5.
39
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Figure 5: Positive Serial Correlation

The solid arrow indicates the optimal allocation path
for equal sampling costs. The discontinuity occurs becaus
the contours in the range of the discontinuity closely matc
the slope of the budget line. In the space of adding a
additional sample to the budget, the contours shift jus
enough to dramatically change the optimal allocation
Figure 6 shows a close up of the contours in the region 
the discontinuity.  For reference, the budget line is show
as the dotted line.

Figure 6: Close-up of Discontinuity

In Figure 7 we choose the same parameters as in Figure
except φi =-0.7 for i=1,2.  Using the same scale on the
contours as in Figure 4, we see that the same solutio
1



Hyden and Schruben

w
tt
r
i
e

o
r

e
w

n

ss

re
t

tput

e
it
A
es

oes

in
rs,
e

the
 2.
quality comes at a much lower cost. Empirically, 
observe that the same budget will yield a poorer (be
quality solution in the presence of positive (negative) se
correlation. We also observe a different optimal allocat
path. Note that the general character of the contours gr
resembles the case found in Figure 1.

Figure 7: Negative Serial Correlation

To contrast positive and negative serial correlati
Figure 8 shows the contour plot for the same paramete
Figure 5 except φ1 =0.7 and φ2 =-0.7.  Not surprisingly, the
optimal allocation path forces more samples on mod
and provides solution quality between that of the t
previous cases.

Figure 8: Both Positive and Negative Serial Correlatio
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4 CROSS CORRELATION

The next pair of models illustrates the impact of cro
correlation. The two models are defined as follows.

Model 1: Xt = Zt + At,, t>0
Model 2: Yt= Wt  + At,, t>0

{A t}, {Z t}, and {Wt} are independent. {At}, {Z t}, and
{W t} are normal random variables.  Both series a
initialized at X0=0 and Y0=0 but the sample mean does no
include this value.  The variance of the shared series {At}
generates the cross correlation between these two ou
series.

For these models, setting E(Zt)=2, E(Wt)=1, E(At)=0,
Corr(Xt,Yt)=10/11 and Var(Zt)=Var(Wt)=1, we get the
optimal sampling path given in Figure 9.  Notice that th
optimal allocation path closely follows an even spl
between the two models, because the variance due to {t}
can be completely eliminated when the two sample siz
are equal.  For this reason, the optimal allocation path d
not change when either Var(Zt) or Var(Wt) is increased to
20 while the other variance remains at 1.  With Var(Zt)=25,
Var(Wt)=1 and Corr(Xt,Yt) now at 0.51, the optimal
allocation path finally begins to favor model 1, as shown 
Figure 10.  Also note that, due to the shape of the contou
the optimal allocation path is not affected by the relativ
sampling costs.

Figure 9: Positive Cross Correlation

For the case of negative cross correlation, we use 
same model as above except for a modification to model

Model 2:Yt= Wt  - At
2
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Setting limr→∞E(Xt)=2 and limr→∞E(Yt)=1, and
Var(Zt)=Var(Wt)=1 as before with Corr(Xt,Yt)=-10/11, we
get Figure 11.

Figure 10: Positive Cross Correlation

For this special case, there are two optimal allocat
paths, but a slight change in any of the parameters 
favor one path.  Now the relative sampling costs will aga
affect the optimal allocation path.  Also, the optim
sampling path is much more sensitive to differences 
variance for the two models.  In addition, since the scale
the same as that in Figure 11, we see that the same sol

Figure 11: Negative Cross Correlation
39
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quality comes at a lower cost.  Empirically, we observ
that the same budget will yield a better (poorer) qualit
solution in the presence of negative (positive) cros
correlation.

5 TRENDS

The final pair of models focuses on the impact of a tren
In this model, the trend disappears asymptotically, in 
similar way to warm-up.

Yi,t=Xi,j + (αi)
t-1, i∈{1,2}, t>0

X1,t~ i.i.d. N(µ1,σ1
2) ,X2,t ~ i.i.d. N(µ2,σ2

2)  and αi ∈ (0,1).
The series is initialized at Yi,0=1 for both models, but this
value is not included in the sample mean. We have a stea
state preference for model 1 if µ1>µ2 and model 2
otherwise.

The optimal path for this situation is shown in Figure
12. Here, we have chosen (µ1,σ1

2)=(0.001,1),
(µ2,σ2

2)=(0,1), and α1=α2=0.99, so the steady state
preference is for model 1.  The solid line shows the optim
allocation path.  The dotted line shows the worst possib
path.  The probability of correct selection actually
decreases along this path.

This model pair shows an interesting characteristi
The optimal designs exaggerate the true difference betwe
the two models.   For example, if we observe model one
times and model two n-m times, then the expected value
the difference in sample means is

µ1 - µ2 +  (1-α1
m)/(m(1-α1)) - (1-α2

(n-m))/((n-m)(1-α2)),

Figure 12: Trend
3
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which is greater than µ1 - µ2  along the optimal allocation
path.  This also explains why the probability of correc
selection can decrease, because the design of 
experiment can favor the wrong conclusion as well. O
course, if this is the case, perhaps we should be ask
which model will be favorable for the horizon of our study

Finally, Figure 13 shows an interesting optima
allocation path where the allocations vary radically ove
the course of the study.  The parameter settings a
(µ1,σ1

2)=(10,16), (µ2,σ2
2)=(9.5,1),  α1=0.98, and α2=0.995.

Figure 13: Trend with Highly Variable Path

6 CONCLUSION

 P(CS) curves and optimal allocation paths provid
perspective on the great untapped diversity of simulatio
experiment designs.  Stepping away from the i.i.d. case
consider three fundamental attributes of time series outp
(serial correlation, cross correlation, and trends), we see
great motivation to move toward highly adaptive an
simultaneous experimental designs.  Further enrichmen
that examine initial conditions, time varying parameters
and variable sampling costs, as well as the interactio
between all of these characteristics are worthy of furth
investigation.
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