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ABSTRACT In this paper, we develop a hybrid algorithm that

integrates with theested partitiondNP) method, and an
Discrete resource allocation is a common problem in efficient technique for simultaneous simulation
supply chain management. However, stochastic discrete experiments. The NP method is a randomized optimization
resource allocation problems are difficult to solve. In this method that has recently been developed for global
paper, we propose a nhew algorithm for solving such optimization (Shi and Olafsson 1999). This method has
difficult problems. The algorithm integrates the nested been found to be promising for difficult combinatorial
partitions method with an optimal computing budget deterministic optimization problems (Shi et al. 1999). The
allocation method. The resulting hybrid algorithm retains NP method may be described as an adaptive sampling
the global perspective of the nested partitions method andmethod that uses partitioning to concentrate the sampling
the efficient simultaneous simulation experiments of the effort in those subsets of feasible region that are considered
optimal computing budget allocation. Numerical results the most promising. It combines global search through
demonstrate that the hybrid algorithm can be effectively global sampling of the feasible region, and local search that
used for a large-scale discrete resource allocation problem. is used to guide where the search should be concentrated.
In each iteration, the NP method needs to identify the
1 INTRODUCTION most promising region by conducting a set of simultaneous
simulation experiments. However, simulation can be both
Many resource allocation problems in supply chain expensive and time consuming. In our hybrid approach, we
management such as facility planning, job scheduling, apply our efficient technique to control the simultaneous
buffer allocation, pollution control, and portfolio simulation experiments. As a result, the simulation
management can be modeled as stochastic discreteefficiency is significantly improved and the overall
optimization problems. Owing to the complexity inherent computation time for searching the optimal design is
in these systems, the search of optimal solutions can be adrastically reduced. Intuitively, to have a set of
difficult task. Two key difficulties for solving the problem  simultaneous simulation experiments, a larger portion of
are: (1) the combinatorial explosion of alternatives the computing budget should be allocated to those designs
normally leads to NP-hard optimization problems; (2) the that are critical in the process of identifying good designs.
lack of analytical expressions relating performance In other words, a larger number of simulations must be
functions to solutions usually results in noise estimates of conducted with those critical designs in order to reduce
the performances. Recent methods proposed for thisestimator variance. On the other hand, limited
problem include: simulating annealing (Gelfand and Mitter computational effort should be expanded on non-critical
1989), the stochastic ruler method (Yan and Mukai 1993), designs that have little effect on identifying the good
the stochastic comparison method (Gong et al. 1992), designs even if they have large variances. In doing so, less
ordinal optimization (Ho et al. 1992, Dai 1996, Cassandras computational effort is spent on simulating non-critical
et al. 1998), the stochastic branch-and-bound method designs and more computational effort is spent on
(Norkin et al. 1996), the method of Andradottir (1995), the simulating critical designs; hence, the overall simulation
nested partitions method (Shi and Olafsson 1999), and theefficiency is improved. Ideally, we want to optimally
simulated entropy method (Rubinstein 1999). choose the number of simulation samples for all designs to
maximize simulation efficiency with a given computing
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budget. This is the basic ideaadtimal computing budget
allocation (OCBA) (Chen et al. 1996, 1999).

We apply the hybrid algorithm for a stochastic
resource allocation problem, where no analytical
expression exists for the objective function, and it is
estimated through simulation. Numerical results show that
our proposed algorithm can be effectively used for solving
large-scale stochastic discrete optimization problems.

The paper is organized as follows: In section 2 we
formulate the resource allocation problem as a stochastic
discrete optimization problem. In section 3 we present the
hybrid algorithm. The performance of the algorithm is
illustrated with one numerical example in Section 4.
Section 5 concludes the paper.

2 RESOURCE ALLOCATION PROBLEMS

There are many resource allocation problems in the design
of discrete event systems. In this paper we consider the
following resource allocation optimization problem:

min J
min ()

(2.1)
where ©@is a finite discrete set and: © - R is a
performance function that is subject to noise. Ofig is

an expectation of some random estimate of the
performance,

J(6) =EL(6, 4] (2.2)

wheref is a random vector that represents uncertain factors
in the systems. The "stochastic" aspect has to do with the

problem of performing numerical expectation since the
functionalL(6,¢) is available only in the form of a complex
calculation via simulation. The standard approach is to
estimate B[(6, &)] by simulation sampling, i.e.,

. t
B, 9] = 30) = Y LO.E) (2.3)
=

Unfortunately,t can not be too small for a reasonable
estimation of H[(6, ¢é)]. And the total number of
simulation samples can be extremely large since in the
resource allocation problems, the number&f @.,..., 6y)
combinations is usually very large as we will show the
following example.

2.1 Buffer Allocation in Supply Chain Management

We consider a 10-node network shown in Figure 1. There
are 10 servers and 10 buffers, which is an example of a
supply chain, although such a network could be the model
for many different real-world systems, such as a
manufacturing system, a communication or a traffic
network. There are two classes of customers with different
arrival distributions, but the same service requirements. We
consider both  exponential and non-exponential
distributions (uniform) in the network. Both classes arrive
at any of Nodes 0~3, and leave the network after having
gone through three different stages of service. The routing
is not probabilistic, but class dependent as shown in Figure
1. Finite buffer sizes at all nodes are assumed which is
exactly what makes our optimization problem interesting.
More specific, we are interested in distributing optimally
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Figure 1: A 10-node Network in the Resource Allocation Problem
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buffer spaces to different nodes given a limited budget for
them. A buffer is said to be full if there are as many
customers as its size in it, not including the customer being
served in the server. We consider the problem of allocating
12 buffer units, among the 10 different nodes numbered
from 0 to 9. We denote the buffer size of node iByy
Specifically,
B+By+By+ ... By =12. (2.4)

Note that there are 293,930 different combinations of
[Bo, B1, By, ..., Bg] which satisfy the constrain in (2.4).
Unfortunately, due to the dynamic nature of the system,
there is no closed-form analytical formula to evaluate the
performance function. For each combination, the
performance measure estimation involves a very long
simulation (for steady state simulation) or a huge number
of independent replications (for transient simulation). The
total simulation cost is prohibitively large even if the
simulation cost for a single design alternative is not
expensive. In Section 4, we will illustrate the benefits of
using the proposed algorithm to this buffer allocation
problem.

3 AHYBRID ALGORITHM

In this section, we will present our hybrid algorithm for
solving optimization problems discussed in the previous
section. Our approach integrates Nested Partitions method
and optimal computing budget allocation (OCBA). Optimal
Computing Budget Allocation (OCBA) enhances the
efficiency of simultaneous simulation experiments by
intelligently determining the best allocation of simulation
trials or samples necessary to maximize the probability of
identifying the optimal ordinal solution. The integration with
a Nested Partitions method further extends the applicability
to an optimization with an extremely huge design space.

3.1 Nested Partitions Method

The Nested Partitions (NP) method has recently been
proposed to solve global optimization problems. The
method can be briefly described as follows. In each
iteration we assume that we have a region that is
considered the most promising. We partition this most
promising region into M subregions and aggregate the
entire surrounding region into one region. At each
iteration, we therefore look &l +1 disjoint subsets that
cover the feasible region. Each of thédet1 regions is
sampled using some random sampling scheme and the
estimated performance function values at randomly
selected points are used to estimate the promising index for
each region. This index determines which region becomes
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the most promising region in the next iteration. If one of
the subregions is found to be best this region becomes the
most promising region. If the surrounding region is found
to be best the method backtracks to a larger region. To
choose this larger region we use a fixed backtracking rule.
The new most promising region is then partitioned and
sampled in a similar fashion. The methodology described
above may be divided into four main steps that constitute
the NP method. Each of these steps can be implemented in
a generic fashion, but can also be combined with other
optimization methods and adapted to take advantage of any
special structure of a given problem.

1. Partitioning. The first step is to partition the
current most promising region into several
subregions and aggregate the surrounding
region into one region. The partitioning
strategy imposes a structure on the feasible
region and is therefore very important for the
speed of convergence of the algorithm. If the
partitioning is such that most of the good
solutions tend to be clustered together in the
same subregions, it is likely that the
algorithm quickly concentrates the search in
these subsets of the feasible region. It should
be noted that since the feasible region is finite
the partitioning can be done by grouping
arbitrary points together in each subregion.
Therefore, a good partitioning strategy
always exists, although it may not be easy to
identify.

Random Sampling The next step of the
algorithm is to randomly sample from each of
the subregions and from the aggregated
surrounding region. This can be done in
almost any fashion. The only condition is that
each solution in a given sampling region
should be selected with a positive probability.
Clearly uniform sampling can always be
used. However, it may often be worthwhile to
incorporate  special structures into the
sampling procedure. The aim of such a
sampling method should be to select good
solutions with a higher probability than poor
solutions.

Calculation of Promising Index Once each
region has been sampled the next step is to
use the sample points to calculate the
promising index of each region. However, the
total number of designs that must be
evaluated using simulation in each iteration is
equal to the total number of samples in all
regions. The total simulation time in this step
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could be very long. So Step 3 is the most time
consuming step in the NP algorithm.
Therefore, the improvement of computation
efficiency at Step 3 is crucial to the efficiency
of the hybrid algorithm. OCBA will be
applied to improve simulation efficiency as
shown in the following subsection.
Backtracking. If one of the subregions has
the best promising index, the algorithm
moves to this region and considers it to be the

Theorem 1. Given total number of simulation budget
T to be allocated to a finite number of competing designs,
the P{CS} can be asymptotically maximized when

0 /2
@l 2P
b Sp E:;Héa,i

b & Mgforemeandei;:a:: b,
t, Hob/5a,bH

most promising region in the next iteration. If

the surrounding region has the best promising
index the algorithm backtracks to a larger
region.

wherea is the design having the largest sample mbas,
the design having the second largest sample mean, and

tzl—(i,fu) - tltzj L(j,&,) foranyi,jOo. #

|
u=l ju

3.2 The OCBA Technique 3, = 1
T

In the Step 3 of the NP algorithm, we have to conduct a set of
simultaneous simulation experiments, which is the most time-
consuming step in the whole algorithm. The OCBA technique 4 NUMERICAL RESULTS

is applied to improve the efficiency of this bottleneck.

More specifically, suppose we select a design (or a In this section, we apply the hybrid algorithm to the buffer
solution) 8, using the following criterion in this set of  allocation problem discussed in section 2. Before we report
simultaneous simulation experiments: the numerical result of the hybrid algorithm, we first
demonstrate in section 4.1 how OCBA technique can be
applied to a simplified version of the buffer allocation
problem. In this simplified version, where the total of
designs (or solutions) is 210. We show that OCBA can
achieve a speedup factor as high as 23. This means that the
_ _ | _ total computation time is reduced by 96% with the use of
current top-raking desig#f, is actually the best design }.  ocBA. In section 4.2, we apply the hybrid algorithm to
Let t, be the number of simulation samples of dedigff deal with the original buffer allocation problem that has a
simulation is performed on a sequential computer and the ch larger design space. We show that a better solution
difference of computation costs of simulating different -5n be obtained with a reasonable simulation cost.
designs is negligible, the total computation cost can be

approximated byZGDOtQ . The goal is to choogg for all

_ramin S L
6=argmin J(6) (= ;;L(G,Ei)). (3.1)

Define theprobability of correct selectigiP(CS)= P{ The

4.1 A Reduced Problem

6 such that the total computation cost is minimized, subject ) ) ) )
to the restriction that the confidence level defined by Consider the 10-node network presented in section 2 in
P{CS} is greater than some satisfactory level. which the objective is to select a design with minimum

expected time to process the first 100 customers from a
same initial state that the system is empty. Multiple
simulation runs are needed to seatmatie(s&f )] for
each®. As discussed in section 2, even for an allocation of
12 buffer units to 10 nodes, there are 293,930 different
where P is a user-defined confidence level requirement, combinations. While the simulation time for each
which corresponds to the stopping criterion in each Ccombination is not very long, the total simulation time for
iteration of the Nested Partition Method. 293,930 designs are not affordable. By observation, we can
Chen et al. (1999) approximat{CS} using the see the network is symmetric. To reduce the number of
Chernoff bounds (Ross 1994) and a Bayesian model (Chendesigns for consideration torauch smaller size, we set
1996) and offer an asymptotically solution, which is three constraints for symmetry reasons:
summarized in the following theorem.

min t
to Zeue 6

s.t.P{CS} = F'.

B: Bl = BZ = B3 (41a)
BB (4.1.b)
B B, (4.1.0)
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Figure 2: P{CS} vs. the Computation Budgéli. Note thex-axis is in log scale. The
computation cost for obtaining{CS}=99% with OCBA is 14,600. On the other hand,
the cost is 330,000 if OCBA is not used (equal simulation)

With the above three constraints, the number of 4.2 The Original Resource Allocation Problem
designs considered here is reduced to 210. Since the
network is symmetric, we originally anticipated that the In this subsection we apply our hybrid algorithm to the
optimal design should satisfy the above three constraints. original 10-node network. Note that the problem
This turns out to be wrong after we apply the hybrid considered here has 293,930 different designs, which is
algorithm, as we will show later in next subsection. Now dramatically bigger than the 210 designs considered in the
we first focus on the reduced 210 designs and apply OCBA reduced problem.
to this simplified problem. Different computing budgets In each iteration, we randomly sample 45 designs from
are allocated. 10,000 independent experiments arethe promising region, and 105 designs from the
performed to estimateP{CS}. In all the numerical surrounding regions, making the total 150 design for
illustrations, we estimat®{CS} by counting the number consideration in an iteration. The stopping criterion is that
of times we successfully find the true best design in those the confidence level of identifying the best in the 150
10,000 independent experimenB®CS} is then obtained design is no less than 90%, iR{CS}>90%.
by dividing this number by 10,000, representing the correct In order to improve the quality of our sampling
selection frequency. Figure 2 shows the test results usingdesigns, we adopt the very simple heuristic presented in
OCBA and equal allocation of simulation budget (without section 3.4.2 for our sampling scheme. Our algorithm
OCBA). converges to a desigB{, By, By, ..., Bg] =12, 1, 1,1, 2, 1,
From Figure 2, we observe that a higher computing 2, 1, 0, 1]. It turns out this design is better than the design
budget can obtain a highd?{CS}. Using the OCBA we found in Section 4.1. Obviously, this design does not
scheme, however, significantly reduces the computation satisfy the symmetric constraints in (4.1). The total number
cost for a desired level #{CS}. The speedup factor is as  of simulation runs to converge to this design is only 3
high as 23. This means that our OCBA can further reduce times bigger than the needed cost for the reduced problem
the required simulation time for a crude NP by 96%. This in Section 4.1. Given that the design space is much bigger
is a tremendous saving already. (293,930/2181400 bigger), the timesaving is tremendous.
In order to have a better idea about the optimal design,
we conduct a simulation experiment wigh = 99.999%. 5 CONCLUSIONS
The best design we obtained B,[By, B,, ..., Bg] = [1, 1,
1,1,2,1, 2,1, 1, 1]. We will show that the proposed In this paper we introduced a hybrid algorithm for
hybrid algorithm can obtain a better design with a stochastic discrete resource allocation optimization. The
reasonable simulation cost in the next subsection. hybrid algorithm combines a recently developed
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optimization framework, theNested Partitionsmethods
with the paradigm of an efficient ranking and selection
technique calledoptimal computing budget allocation
(OCBA). We applied the proposed algorithm to a
stochastic buffer allocation problem. Our numerical results
show that we are able to quickly obtain a near optimal
solution by evaluated a very small fraction of the solution
space.

ACKNOWLEDGEMENTS

This work has been supported in part by NSF under grants

DMI-9713647 and DMI-9732173, by Sandia National
Laboratories under contract BD-0618, and by the
University of Pennsylvania Research Foundation.

REFERENCES

Andradottir, S. 1995. “A Method for Discrete Stochastic
Optimization,”Management Sciencé1:1946-1961.

Cassandras, C, L. Dai, and C. G. Panayiotou. 1998.
"Ordinal Optimization for a Class of Deterministic and
Stochastic Discrete Resource Allocation Problems,’
IEEE Trans. on AC 43:881-900.

Chen, C. H., H. C. Chen, and L. Dai. 1996. "A Gradient
Approach of Smartly Allocating Computing Budget
for Discrete Event Simulation,Proceedings of the
1996 Winter Simulation Conferenc898-405.

Chen, C. H. 1996. “A Lower Bound for the Correct Subset-
Selection Probability and Its Application to Discrete
Event System Simulations.lEEE Transactions on
Automatic Contrqgl 41:1227-1231.

Chen, C. H., V. Kumar, and Y. C. Luo. 1998. "Motion
Planning of Walking Robots Using Ordinal
Optimization," IEEE Robotics and Automation
Magazing 22-32.

Chen, C. H., S. D. Wu, and L. Dai. 1999. "Ordinal
Comparison of Heuristic Algorithms Using Stochastic
Optimization," IEEE Transactions on Robotics and
Automation 15: 44-56.

Chen, H. C.,, C. H. Chen, and E. Ylcesan. 1999.

"Computing  Efforts  Allocation for  Ordinal

Optimization and Discrete Event Simulation,” To

appear inEEE Transactions on Automatic Control

L. 1996. "Convergence Properties of Ordinal

Comparison in the Simulation of Discrete Event

Dynamic Systems,'Journal of Optimization Theory

and Applications91: 363-388.

Gelfand, S. B., and S. K. Mitter. 1989. "Simulated
Annealing with Noisy or Imprecise Energy
Measurements,” Journal of Optimiation: Theory and
Application, 62:49-62.

Gong, W. B., Y. C. Ho, and W. Zhai. 1995. "Stochastic
Comparison Algorithm for Discrete Optimization with

Dai,

400

Estimations," Discrete Event
Theory and Applications

Ho, Y. C., R. S. Sreenivas, and P. Vakili. 1992. "Ordinal
Optimization of DEDS,"Journal of Discrete Event
Dynamic System2:61-88.

Inoue, K. and S. Chick. 1998. "Comparison of Bayesian
and Frequentist Assessments of Uncertainty for
Selecting the Best SystenProceedings of the 1998
Winter Simulation Conferenc@27-734.

Norkin, W.I., Y.M. Ermoliev, and A. Ruszczynski. 1996.
“On Optimal Allocation of Indivisables Under
Uncertainty,” Operations Research, 46:381-395.

Patsis, N. T., C. H. Chen, and M. E. Larson. 1997. "SIMD
Parallel Discrete Event Dynamic System Simulation,"
IEEE Transactions on Control Systems Technglogy
5:30-41.

Rubinstein, R.Y. 1999. “The Simulated Entropy Method
for Combinatorial And Continuous Optimization”
Manuscript.

Shi, L. and S. Olafsson. 1999. “Nested Partitions Method
for Global Optimization.” To appear i®perations
Research

Shi, L., S. Olafsson, and N. Sun. 1999. “New Parallel
Randomized Algorithms for the Traveling Salesman
Problem,” Computers and Operations Research
26:371-394.

Ross, S. 1994A First Course in ProbabilityPrentice Hall

Dynamic Systems:

Inc.
Yan, D. and H. Mukai. 1993. "Optimization Algorithm
with  Probabilistic  Estimation,” Journal of

Optimization Theory and Applications9: 345-371.
AUTHOR BIOGRAPHIES

LEYUAN SHI is an Assistant Professor in the Department
of Industrial Engineering at the University of Wisconsin-

Madison. She holds a B.S. degree in Mathematics from
Nanjing Normal University, China (1982), an M.S. degree
in Applied Mathematics from Tsinghua University, China

(1985), and an M.S. and a Ph.D. degrees in Applied
Mathematics from Harvard University (1990 ,1992). Her

research interests include modeling, analysis, and
optimization of discrete event systems, discrete-event
simulation, and sensitivity analysis.

CHUN-HUNG CHEN is an Assistant Professor of
Systems Engineering at the University of Pennsylvania,
Philadelphia, PA. He received his Ph.D. degree in
Simulation and Decision from Harvard University in 1994.
His research interests cover a wide range of areas in Monte
Carlo simulation, web-based simulation, optimal control,
stochastic decision processes, ordinal optimization, and
their applications to manufacturing systems. Dr. Chen won
the 1994 Harvard University Eliahu 1. Jury Award for the



Simultaneous Simulation Experiments and Nested Partition for Discrete Resource Allocation

best thesis in the field of control. He is also one of the
recipients of the 1992 MasPar Parallel Computer Challenge
Award.

ENVER YUCESAN is a Professoof Operations Research

at INSEAD in Fontainebleau, FRANCE. He holds a BSIE
degree from Pudue University, and an MS and a Ph.D. both
in OR, from Cornell University. The work described in this
paper has been initiated while he was visiting the
Department of Systems Engineering at the University of
Pennsylvania. His research interests include web-based
simulation, systems design and optimization, and supply
chain management.

401



	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search CD-ROM
	Search Results
	Print

