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ABSTRACT target events is realized. In addition, conventional IS is
plagued with the problem of decreasing likelihood ratios.
Rare event simulation using splitting has been shown to In contrast to conventional 1S¢ajectory splitting (or

provide significant speed-up for large classes of problems, also referred to agnportance splittingor simply splitting)
especially when queue length distribution is of primary achieves increased occurrence of the rare target event by
interest. However, choice of the control parameters is much generating several independent sub-trajectories from less
less straightforward in cases where splitting is applied to rare states. The original idea (see, e.g., Kahn and Har-
systems in which the target event is delay, rather than ris 1951; Hammersley and Handscomb 1964; Bayes 1970)
packet loss. In this paper we propose a control strategy was first developed into a refined simulation technique and
for splitting that allows computationally efficient analysis become widely known due to V@h-Altamirano and Vikn-

of very low delay threshold probabilities which typically — Altamirano (1991) and Vikn-Altamirano etal. (1994). They
occur in communication networks. A different technique call their version of this approach RESTART. Recently, a
is required for delay because unlike the cell or packet loss number of papers have dealt with the analysis (see, e.g.,
case, the target event (delay) and the prerequisite condition Glasserman etal. 1996a; Glasserman etal. 1997; Glasserman
that leads to a rare delay event (a full buffer) do not coincide et al. 1996b), the refinement (e.g., Haraszti and Townsend
temporally. We demonstrate the technique by using it to 1998; Grg and Schreiber 1996; \Vih-Altamirano 1998)
measure delay probabilities in three examples: a simple and the application of splitting to practical rare-event prob-
ATM multiplexer, a queueing system with multiple traffic  lems (see, e.g., Haraszti and Townsend 1998; Haraszti et al.
classes, and a tandem queueing network with tagged and1998; Girg and Fuf3 1999).

background traffic. Since splitting does not modify the probability measures
of the underlying random processes in the system, it has
1 INTRODUCTION the potential to be applicable to more complex systems.

When applying splitting to a specific system, the two chief

Accurate design and characterization of high speed com- questions that need to be answered arewhgnto split
munications networks requires estimating the small proba- and 2)how manysub-trajectories to create when splitting.
bilities associated with rare cell loss and excessive delay. As we will discuss in the paper, the latter question can
Discrete Event Simulation (DES) is a powerful tool in es- be answered in a rather problem-independent way, but the
timating performance of networks, but its straightforward former question remains problem-specific.
application has the drawback of requiring prohibitive exe- To achieve efficient splitting, the splitting conditions
cution time when estimating rare event probabilities. have to be chosen in accordance with the rare event of

Importance sampling (IS) is a technique that can speed interest and its prerequisite conditions, i.e., the dominant
up the simulation of rare events under certain conditions (see, paths that lead to the rare event. In cases when such
e.g., Heidelberger 1995 and references therein). Although dominant paths are highly correlated wittsimgle system
IS has the potential for order-of-magnitude speed-up, con- parameter, the splitting conditions can be defined as the
siderablea priori knowledge is required about the system event when the system parameter exceeds (crosses) one of
being simulated. In particulaconventionallS techniques a set of pre-defined thresholds. For most existing splitting
require careful modification of the underlying probability techniques itis assumed that 1) the rare event states reside in
measures in the system, so that increased occurrence of

402



Haraszti and Townsend

the inner-most subset and 2) the system does not cross morethe simulation methodology for delay is directly applicable
than one threshold between two consecutive observations. to any packet switching technology including TCP/IP.

The splitting simulation technique derived from the the-
ory of Direct Probability Redistribution (DPR) and intro- 2 OVERVIEW ON THE DPR-BASED SPLITTING
duced in Haraszti and Townsend (1998) removes two chief ALGORITHM
limitations of existing splitting techniques. First, DPR-
based splitting allows arbitrary state-space partitions. The Here we summarize the DPR-based splitting algorithm
splitting condition is associated with the event of departing which we use to control splitting in the delay simulation;
one subset and entering another, and transition is allowed a more detailed description of DPR can be found in Ha-
between any two pairs of subsets. This feature of DPR raszti and Townsend (1998). Let e S, i € {1,...,n}
allows for the case where the transitions that occur during denote the (finiteytate-spacef the system and let the se-
system evolution skip one or more intermediate thresholds. riesVy, V1, Vo, ... (Vi € {1, ..., n}) represent the evolution
This avoids the need for setting up the thresholds during of the system, observed in successblEservation points
problem formulation to ensure that no multiple crossing can It is assumed that the system model is a discrete-time
occur. Second, under DPR-based splitting the rare event Markov chain. We partition the state-space imtomu-

of interest can overlap multiple subsets. A similar exten- tually exclusive, non-empty, indexed subsefs, ..., S,
sion to RESTART allowing this overlap was presented in (S1U...US,, = §). The partitioning is uniquely defined
Vill én-Altamirano (1998). by the so-calledsubset indicator function

Splitting has been shown to provide good speed-up
and is straightforward to apply to queuing problems where Fr@e{l,....m}: I'()=j < s €8j.

excessive queue lengths or packet loss is the target event.
This is because both the target event and the dominant DPR assigns a so-calleaversampling factary;, to
paths are related to the queue length (see, e.g., Haraszti anceach subsef;, j € {1,...,m}, and re-scales the steady
Townsend 1998). Note that for these problems there is also state probability mass such that the following equation holds
a coincidence in time between the occurrence of the rare for every state:
event and the prerequisite conditions that contribute to the

(m)
rare event. 7" = durgmi, 1)
In this paper we discuss the problem of analyzing very ) ) )
low delay threshold probabilities that typically occur in Whereém = {m,....m} and 2 = {77, ..., 7"}

ATM networks. Unfortunately, in contrast to the temporally ~ ar€ thg .equilibrium probabilities of the origi'nal and of the
coincident behavior of excessive queue length and packet 7-Partitioned system under DPR, respectively, ahds
loss described above, delay measurement has an inheren@ €-normalization constan® = 1/3 ;_; urqm. Thus,

temporal behavior that complicates application of rare event DPR ensures that states in subSgere visited relatively.;
simulation. In particular, there is a time-lag between the UMES more often than in the original system. By assigning

arrival of packets that have the potential for long delay high oversampling factors to those subsets that contain rare
and the departure of these same packets. Straightforward event states, relative occurrence of the rare events can be
application of splitting to delay through queues with random artificially increased. Expectedly, the price of increasing

service was presented ino& and Fuld (1999). However, the stef'i_d_y state p_robabilities in some SL_Jbset(s) is thaF _the
as we will show in this paper, the efficient application probabilities drop in other subsets, that is, the probability

of splitting to more complicated queueing configurations S Peing “redistributed”, hence the name DPR. We call the
and/or to queues with constant service times requires more VECIOr # = {11, ..., jun} the oversampling vector We
complicated splitting control and the addition of auxiliary @SSume thajuy =1 andpy < pup < ... < pu. These

state variables, which calls for the application of DPR-based conditions are needed for the formulation of the splitting
splitting. algorithm; they can be satisfied for arbitrary partitioning

In the remaining part of the paper, we first summarize without. loss of generality, i.(_a.{ by reordering sub.set indexes
the DPR-based splitting algorithm. Then we discuss how according tou, and normalizing the oversampling vector

to construct the splitting conditions that result in computa- to p1.

tionally efficient splitting simulations of packet delay. We DPR can be implemented using a trajectory splitting
demonstrate the technique by using it to measure delay mechanism (very similar to the multi-threshold RESTART

probabilities in three examples: a simple ATM multiplexer,  &/g0rithm in Villen-Altamirano et al. 1994). DPR allows
a queueing system with multiple traffic classes, and a tan- state transitions to arbitrary subsets and handles the case

dem queueing network with tagged and background traffic. Where the rare event set overlaps more than one subset.
Although ATM network examples are given in this paper, Splitting takes place whenever atransition to a higher indexed
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subset occurs, i.e., whenever the system makes a transitionare interested in the complementary cumulative distribution
from subsetS; to subsetS; such thai < j. The number of function (CCDF) of the delay, defined as

new sub-trajectories generated upon such a transitign,

is a random variable (RV) with expected valugYk] = D(1) 2 Pr{(s > 7).

i/ — 1. Whenj > i+ 1, special care must be taken to

maintain the proper trajectory density in the intermediate gq, 5 givento, D(t = 10) is called thedelay threshold

subsets, which is needed to preserve the unbiasedness ofyopapility; a common performance parameter of commu-
the simulation estimates. DPR addresses this issue by pication networks which is required to be very small in

employing the following ticketing mechanism: At the

S; — §; transition, each new sub-trajectory is assigned a
ticket 2. The ticketi < Q < j is the index of the “lowest”
subset which the sub-trajectory is allowed to visi is
selected according to the distribution:

real-time critical systems.

To achieve efficient simulation of delay, the subset in-
dicator function'(-), should be selected with the following
two goals in mind. First, the choice &f(-) should produce
the prerequisite conditions for rare delay events by forcing
the system into longer queue lengths. Second, it should

Pr{R =115 - &) = % ifi<l<j, keep the artificially generated sub-trajectories “alive” long
' ! 0 otherwise enough for the packets with high potential to exit the system

and thus generate the accountable target delay events. Un-
A sub-trajectory is terminated when it attempts to make a fortunately, in contrast to the temporally coincident behavior
transition to a subse$; for which/ < Q. The state upon of queue length and packet loss, delay measurement has an
which a sub-trajectory terminates should be considered an inherent temporal behavior that complicates application of

invalid sample. splitting.. . .
Under the above splitting scenario, every state in a We |IIustrate the proble_m of choosing the subset in-
subsetS; is visited, in the asymptotic sensg,; times dicator function for delay via an example. The example

more often than in an “unstressed” simulation. Unbiased sSystem is a discrete time, finite queue with batch arrivals

estimates can be obtained when events are counted duringand deterministic, constant service time. Constant service

the simulation with weight/ur v, in the kth observation time makes rare event simulation of the delay tail especially

point. challenging. Nevertheless, the solution is directly applicable
As motivated in Haraszti and Townsend (1998), the to continuous time problems, systems with random service

(near) optimajt vector is shown to be when the probabilities  times, and also to queueing networks.

are redistributed such that the subset probability masses  Let a; andgx denote thenumber of arrivalsand the

are “balanced” (i.e., nearly evenly distributed) among the queue lengthat the kth observation point, respectively.

subsets. To achieve this, the valuegihave to be inversely Assuming the early-arrival model for slotted, discrete-time

proportional to the stationary subset probability masses of systems (according to Hunter 1983) is defined as

the original system. This (near) optimal can be found

by a simple iterative process using short, repetitive DPR gk = {qr—1+ (ax — ) — 17,

simulation experiments (see, e.g., Akyamac et al. 1999).

We have found that the overhead of such an exploration wherel; is the number ofost packetsn the kth slot,

is a negligible fraction of the effective simulation time

required to obtain the DPR estimates. The main challenge Iy = {gr_1+ar — K},

in applying DPR-based splitting to new problems is to

find the appropriatd(-) function, which remains problem K is the size of the buffer an@ix}™ = x if x > 0, 0

specific. otherwise (see Figure 1). Thiene-stampof the ith packet

3 DELAY THRESHOLD SIMULATION USING

SPLITTING arivals, a
~ kth observation point
Delay is defined as the time a given packet spends in the ul
system while passing between two reference points along its } |

route. A generic method of measuring the delay requires that
the packet is tagged with a time-stamp when it passes the first
reference point, and the time-stamp is compared to the actual
time when the packet reaches the second reference point.
Let RV § describe the delay observations. Typically, we

kth time slot

departure

Figure 1: Relative order of arrivals, departures and obser-
vation points in an early-arrival discrete time queue.
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in the queuep;, i =1, ..., gk, g« > 0, can be expressed

as
Pk,i = {

The second condition in (2) is for newly arriving packets.
A departure from the server in thgh time-slot results in

a delay sample§;. A departure occurs if eithef,_1 > 0
(non-empty queue at the end of the previous slot) or if
gi—1 = 0 but ¢ > 0 (at least one new arrival). In the
former case, the observed delayis= k — pxr—1,1 + 1; in

the latter casé; = 1. Figure 3 shows a sample trace of
ax, qr anddy, obtained from simulation.

There is a significant time-lag between the rare event
(e.g., a high-delay sample in time instant B in Figure 3) and
its prerequisite condition (an earlier packet arrival when the
gueue was long at point A). This effect makes the simulation
inefficient when indicator functions are based on either
gueue length or delay only. More specifically, if we use the
gueue length as the indicator function, il(Vy) = g + 1
sub-trajectories with large potential delay can be produced
successfully, but the, typically drops by the time these
packets would depart (see point B in Figure 3), thus
terminating most of the potential sub-trajectories. Another
obvious choice i9°(Vy) = 8(k) (in slots without departure
'(Vk) = 1), which has the problem that by the time
the long delay is observed, the queue is typically very short.

fl<i<{g-1-17
if {gr1—1F <i <.

Pk—1,i+1

. )

In the deterministic service time case, splitting at this point
does not produce more packets which have the potential
of experiencing large delay. This choice for an indicator
function can also be very inefficient even if the service time
is stochastic. We demonstrate the efficiency of these two
choices forl'(-) in our first numerical example, presented
below.

A more efficient subset indicator function that maintains
both goals simultaneously can be defined as follows. We
introduce the notion of thgrimary indicator function(PIC),
denoted by (V;). The PIC is responsible for increasing the
production of packets that have the potential to experience
long delay. As illustrated in the exampl&(Vy) = gx + 1
is an efficient PIF. Since excessive queue length is the
prerequisite condition of long delay, the majority of the
potential packets would occur in sub-trajectories that would
be the result of a splitting procedure whéreVy) = T (Vy).

Our secondary objective is to keep sub-trajectories
that carry packet(s) with the potential for large delay
alive until the packet(s) reach their destination (i.e., the
second reference point). In our example this occurs when
the packet is serviced. To artificially prolong the life
of potential sub-trajectories, we introduce the following
auxiliary state variablesUpon entering the system, let each
new packet be tagged by a label, called thepotential
which equals the value of the current primary indicator
function, defined byy = T (V). LetCy denote the number
of labeled packets in the system at #lk observation point,

AN
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‘ —— Number of arrivals, a, L

VANTEA
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Observation point, k
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Time-gap between prerequisite
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H o

I
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I I
—— Queue length, ay
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Figure 2: Sample trace afy, g, and$; for a discrete time queue with constanslot service time.

The proposed splitting function is also shown.
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and¢y;, i =1, ..., Cr denote their labels. We formulate
(V) from T (V) and ¢y ; as

T'(Vi) = max(T (Vi), k) , (3)

where

O

max ¢
iell..ciy

The above formulation df (V) ensures that if a new tagged
packet passes the first reference point while the system is
in subsetS;, the subset index will not decrease until that

For N =24, « = 0.15, B = 3, andK = 64, Figures 3
and 4 plot theD(7) estimates and their normalized half-size
confidence interval®96 %confidence level) obtained by the
three methods. For each method, 5 or 6 short repetitive
simulations were used to obtain a balancmgector, and
then50independent retrials were executed, each simulating
a total number ofL(® slots (including the generated sub-
trajectories) to obtain the plotted estimates. As a reference,
the numerical solution obD(r) is also plotted in Figure 3.

The results confirm our expectation: the first two split-
ting strategies did not work. Their failure is visible in

packet passes the second reference point, thus keeping aFigure 3: they differ considerably from the numerical re-

large number of the potential sub-trajectories alive until the
critical packets result in successful delay samples. In our
example,¢r; = gx + 1 for newly arrived packets, i.e.,

fl<i<{g-1-1%
if {gr—1— Bt <i < 1.

bei = { dr—1,i+1

’ qr+1
In Figure 3 we also plot the corresponding values of the
proposed™ (V) function. It can be seen that after reaching
a high value (at point A) the indicator function sustains its
value until the last packet with high potential departs the
system (three slots after point B).

The proper choice of the PIF remains problem-specific,
but as we will demonstrate in the next section, a relatively
simple function such as the total number of packets in the
system, can provide satisfactory efficiency.

4 APPLICATION EXAMPLES
4.1 Cell Delay Analysis of a Simple ATM Multiplexer

Here we consider a discrete timed®N-OFF/D/1/K queue.
This is a specific case of the previously discussed exam-
ple, where the batch arrivals are generated\bydentical
but independent ON-OFF sources. An ON-OFF source is
a special two-state Markov Modulated Bernoulli Process
(MMBP) which generates a packet in each time-slot while
in the active state, and does not generate any packet in
theidle state. The sources are parameterized by the triplet
{N,a, B}, wherex is the aggregated load generated by the
N sources, normalized to the service rate, ghds the
average burst length of a source. The server serves exacth
one cell at each time slot. Such a system can be regarded a
a typical building block for modeling an ATM multiplexer
stage.

To estimate the delay threshold probabilities, we con-
sider the following three alternative indicator functions:

A. T'(Vk) = qx +1 (queue length based splitting)

B. I'(Vx) = & if gx—1 > 0, 1 otherwise (delay
based splitting)

C. Asin (3), usingT (Vi) =qr +1
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sult. In practical cases where numerical results are not
available, a more reliable indication of failure is the ex-
cessive variance of the estimates (Akyamac et al. 1999).
As can be seen in Figure 4, the confidence intervals for
the queue length based and for the delay based simulation
exceedlL00 %for a considerable part of the tail, which is not
acceptable. The splitting estimator based on our proposed
splitting function coincides perfectly with the numerical re-
sults and yields very small confidence intervals (i.e., below
20%in all cases).

Each of the three simulation experiments required ap-
proximatelyl.5 minutes on &66MHz Pentium Il PC using
the FreeBSD Unix operating system (including the short
iterations used for to obtaip). In Figure 3 we also plotted
the estimated speed-up for the propo&dl;) when com-
pared to brute-force simulation (estimated as described in
Haraszti and Townsend 1998).
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Figure 3: Delay threshold probabilities for thexKDN-
OFF/D/1/K queue estimated using three alternative splitting
strategies.
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Figure 4: Estimated normalized half-size confidence in- _ ] : f the shared itch
tervals (95%) for the delay threshold estimation in the F|'gure 5 A 'pO.I’tIOI’l of the shared memory ATM switc
Nx ON-OFF/D/1/K example. with three priority classes. Four ports share one memory

board (6 kcells). CBR traffic (Class 1) has fixeligh
priority, rt-VBR and nrt-VBR (Class 2 and 3) share the
remaining bandwidth using Weighted Round Robin (WRR)
scheduling.

4.2 A Shared Memory LAN Switch with Multiple
Priorities Using Static Priority and Weighted Round
Robin Scheduling

and C3 and the latter bywo, andws, respectively. Initially,
‘the counters are set& = C x wy andCz = C x w3, where
C is a cycle constant. When both counters are greater than
zero, cells from the two classes can be sent in an alternating
The system is a model of an off-the-sheshared- fashion, servicing at most one cell at each slot when there

memory ATM LAN switch that uses static priority and is no CBR cell. After sending a cell, the counter for that

Weighted Round-Robin (WRRBgheduling to provide ser- class is decremented by one. If the counter of one of the
vices for three distinct service classes. The three service classes reaches zero, there can be no further cells sent from

classes are: (Class-1) constant bit-rate (CBR) traffic with that (iueuei only tg/e oiuer queuelcan t?]ehserwcedh V(\j/hen the
real-time requirements, (Class-2) variable bit-rate traffic with counter vaiue andjor the queue fength has reached zero in

real-time requirements (1t-VBR) and (Class-3) variable bit- both classes, both cqunters are reset to their initial values,
rate data traffic with no real-time requirements (nrt-VBR). and a new cycle begins. . .

The switch works as follows (see Figure 5). Input We modeled the CBR traffic asvy independent
sources are connected via a number of adapter cards to anBernouII| cell generato'rs.' The total genergted CBR load
internal cell bus that propagates the cells to the output ports. is ay. The r-VBR tr_afflc IS modele_d bz independent
Four output ports share the same shared memory segmenth'OFF sources, with total normalized load and mean
which can store up to 16 kcells (16384 cells). From the

urst duration ofB2 [cells]. The same model is used for
shared memory, there are three virtual queues formed for thed rgt-VI?_IE tragm, W:th (tjhe rlespectlve dp?ramdeter@hag |
each output port, one queue for each of the three service ?nd 3f h €a OVT oad va UTTS 3re ﬁme ?S t € tota
classes. Cells in the three virtual queues compete for the oad of the given class normalized to the total maximum
link capacity of the output port in the following way. The throughput of the foyr output ports, and all source models
CBR queue enjoys static high priority over the other two use \the same slo(; S|hze §S| the r?utp#tlgorts.b bilit

gueues, that is, every slot when there is at least one cell in e measured the delay threshold probabilities expe-
the CBR queue, the head-of-line CBR cell is forwarded to

Our second example represents a more complicated system
although in terms of delay simulation it differs only from
the previous case in the sense that the service time is not
deterministic.

rienced by the rt-VBR and the nrt-VBR cells, respec-

the link. The rest of the link bandwidth is shared by the tively, as well as the occupancy distribution (probgbility
rt-VBR and nrt-VBR cells according to the WRR discipline mass function) of the shared memory seg_ment. _Flgur_e 6
(see, e.g., Katavenis et al. 1991 for an introduction to WRR presents both results for the sample traffic configuration
scheduling). WRR is an extension of Round-Robin which N1 = N2 = N3 = 8, ﬁl = 02, 0;12 d:IOS’ B2 :d 3, |
works in the following way. A counter and a weighting factor ?3 :r?'4’ Bs = 20.dFor_t ﬁ WRR sc f u e(; we use Ocyc €
is assigned to each queue. Let us denote the formetby ength C = 50 and weightsw; = 60% and w3 = 40%
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Figure 6: Shared memory occupancy (top plot), and Delay
Threshold Probabilities (DTP) for Class 2 and Class 3 traffic
(lower plot). (N1 = N2 = N3 = 8, a1 = 0.2, ap = 0.3,

B> = 3, ag3 = 0.4, B3 = 20, wo = 0.6, w3z = 0.4 and

C = 50 slots).

For the memory occupancy simulation, the subset indicator
function has been defined &%V;) = | X/20] + 1, where
X represents the the total number of cells in the shared

memory. The rescaling was necessary to keep the number

of subsets belov200. Although not presented in the plot,
the relative95% confidence interval was belo60% even
at the tail of the occupancy curve.

4.3 Delay Threshold Probabilities over Tandem Queues

Our third example extends the delay measurement technique
to a tandem queuing system, presented in Figure 7. A
“tagged” cell source, modeled by an ON-OFF source with
normalized loade s, and mean burst lengthg; [cells],
sends cells to the first queue. These tagged cells travel
through a tandem connection &f queues. The metric of
interest is the probability mass function of the total delay
over the M queues. Background traffic of the queues is
modeled byN additional independent ON-OFF sources,
attached to each queue, as shown in the figure. Cells of
the background traffic do not propagate to the next queue
in the tandem chain.

We only consider the homogeneous case where each
queue has the same buffer sizekotcell slots and the same
background load. The background load is parameterized
by N, the total background load,, (hormalized to the link
capacity), and the mean burst duration of the background
sources,Bp.

We applied the subset indicator strategy presented in
Section 3, and used the total number of cells in all the queues
as the basis for our primary subset indicator function. Thus,

M
T(Vi) =1+ Xi.
i=1

where X;'( represents the length of thi¢éh queue at time

The delay threshold measurements for the two classes . It can easily be seen that the abavéVy) becomes a

were performed separately, since they required different
subset indicator functions. In both cases, the number of

weaker estimate of the potential delay of the tagged cells
as M increases. This is due to the temporal shift in the

cells in the queue of the given class has been used as acontribution of each queue length to the total delay of any

primary subset indicator function. Those cells were labeled

tagged cell. Therefore, we expect a decrease in the efficiency

according to the method presented in Section 3, and the of DPR simulation using the above subset indicator strategy

extended subset indicator of (3) was applied. In all cas@s,

as M increases. This expectation is indeed supported by

independent replications were executed after balancing the the numerical results, as presented below.

subset probabilities. The execution time for each of the three
experiments was less th&0 minutes using a conventional
UNIX workstation. The accuracy of the estimated values
were very high, with the poorest accuracy in the tails of
the plots. These tail values were still with89% relative
confidence interval widths (witB5% confidence level).

N x ON-OFF
ap, Bb

N x ON-OFF
ap, Bb

Tagged
ON-OFF
af B f

Figure 8 displays the D-PMF fa¥ = 1, 2,5 and 10,
for the traffic configurationty = 0.1, By = 10, N =7,
ap = 0.4, B, = 10, and for buffer sizeX = 500cell slots.
After obtaining a quasi-balanced vector for each of the
four cases]100independent replications were executed, each
with approximatelyl0® simulation slots for the = 1, 2

N x ON-OFF
ap, Bb

delay

End-to-end delay measurement of a bursty connection
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Figure 7:

over tandem ATM queues with bursty background traffic
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Figure 8: Cell Delay Probabilities for the tandem system
for M =1, 2,5 and 10, estimated by DPR simulation.

cases, and with approximatel)0’ slots for theM = 5
and 10 cases. The required simulation times varied from
minutes (for theM = 1 case) tdB.5 hours (for theM = 10
case).

To compare the efficiency of DPR for the four cases, we

tional to the probability estimate. In the third example, the
improvement factor was very large but decreased as the
number of tandem queues increased.
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