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ABSTRACT

Rare event simulation using splitting has been shown
provide significant speed-up for large classes of problem
especially when queue length distribution is of prima
interest. However, choice of the control parameters is mu
less straightforward in cases where splitting is applied
systems in which the target event is delay, rather th
packet loss. In this paper we propose a control strate
for splitting that allows computationally efficient analysi
of very low delay threshold probabilities which typically
occur in communication networks. A different techniqu
is required for delay because unlike the cell or packet lo
case, the target event (delay) and the prerequisite condi
that leads to a rare delay event (a full buffer) do not coinci
temporally. We demonstrate the technique by using it
measure delay probabilities in three examples: a sim
ATM multiplexer, a queueing system with multiple traffi
classes, and a tandem queueing network with tagged
background traffic.

1 INTRODUCTION

Accurate design and characterization of high speed co
munications networks requires estimating the small prob
bilities associated with rare cell loss and excessive de
Discrete Event Simulation (DES) is a powerful tool in e
timating performance of networks, but its straightforwa
application has the drawback of requiring prohibitive ex
cution time when estimating rare event probabilities.

Importance sampling (IS) is a technique that can spe
up the simulation of rare events under certain conditions (s
e.g., Heidelberger 1995 and references therein). Althou
IS has the potential for order-of-magnitude speed-up, c
siderablea priori knowledge is required about the syste
being simulated. In particular,conventionalIS techniques
require careful modification of the underlying probabilit
measures in the system, so that increased occurrenc
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target events is realized. In addition, conventional IS i
plagued with the problem of decreasing likelihood ratios.

In contrast to conventional IS,trajectory splitting, (or
also referred to asimportance splitting, or simplysplitting)
achieves increased occurrence of the rare target event
generating several independent sub-trajectories from le
rare states. The original idea (see, e.g., Kahn and Ha
ris 1951; Hammersley and Handscomb 1964; Bayes 197
was first developed into a refined simulation technique an
become widely known due to Villén-Altamirano and Vilĺen-
Altamirano (1991) and Vilĺen-Altamirano et al. (1994). They
call their version of this approach RESTART. Recently,
number of papers have dealt with the analysis (see, e.
Glasserman et al. 1996a; Glasserman et al. 1997; Glasserm
et al. 1996b), the refinement (e.g., Haraszti and Townse
1998; G̈org and Schreiber 1996; Villén-Altamirano 1998)
and the application of splitting to practical rare-event prob
lems (see, e.g., Haraszti and Townsend 1998; Haraszti et
1998; G̈org and Fuß 1999).

Since splitting does not modify the probability measure
of the underlying random processes in the system, it h
the potential to be applicable to more complex system
When applying splitting to a specific system, the two chie
questions that need to be answered are: 1)when to split
and 2)how manysub-trajectories to create when splitting
As we will discuss in the paper, the latter question ca
be answered in a rather problem-independent way, but t
former question remains problem-specific.

To achieve efficient splitting, the splitting conditions
have to be chosen in accordance with the rare event
interest and its prerequisite conditions, i.e., the domina
paths that lead to the rare event. In cases when su
dominant paths are highly correlated with asinglesystem
parameter, the splitting conditions can be defined as t
event when the system parameter exceeds (crosses) on
a set of pre-defined thresholds. For most existing splittin
techniques it is assumed that 1) the rare event states resid
2
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the inner-most subset and 2) the system does not cross m
than one threshold between two consecutive observatio

The splitting simulation technique derived from the th
ory of Direct Probability Redistribution (DPR) and intro
duced in Haraszti and Townsend (1998) removes two ch
limitations of existing splitting techniques. First, DPR
based splitting allows arbitrary state-space partitions. T
splitting condition is associated with the event of departi
one subset and entering another, and transition is allow
between any two pairs of subsets. This feature of D
allows for the case where the transitions that occur dur
system evolution skip one or more intermediate thresho
This avoids the need for setting up the thresholds dur
problem formulation to ensure that no multiple crossing c
occur. Second, under DPR-based splitting the rare ev
of interest can overlap multiple subsets. A similar exte
sion to RESTART allowing this overlap was presented
Vill én-Altamirano (1998).

Splitting has been shown to provide good speed-
and is straightforward to apply to queuing problems whe
excessive queue lengths or packet loss is the target ev
This is because both the target event and the domin
paths are related to the queue length (see, e.g., Haraszt
Townsend 1998). Note that for these problems there is a
a coincidence in time between the occurrence of the r
event and the prerequisite conditions that contribute to
rare event.

In this paper we discuss the problem of analyzing ve
low delay threshold probabilities that typically occur i
ATM networks. Unfortunately, in contrast to the temporal
coincident behavior of excessive queue length and pac
loss described above, delay measurement has an inhe
temporal behavior that complicates application of rare ev
simulation. In particular, there is a time-lag between t
arrival of packets that have the potential for long del
and the departure of these same packets. Straightforw
application of splitting to delay through queues with rando
service was presented in Görg and Fuß (1999). However
as we will show in this paper, the efficient applicatio
of splitting to more complicated queueing configuratio
and/or to queues with constant service times requires m
complicated splitting control and the addition of auxiliar
state variables, which calls for the application of DPR-bas
splitting.

In the remaining part of the paper, we first summari
the DPR-based splitting algorithm. Then we discuss h
to construct the splitting conditions that result in compu
tionally efficient splitting simulations of packet delay. W
demonstrate the technique by using it to measure de
probabilities in three examples: a simple ATM multiplexe
a queueing system with multiple traffic classes, and a t
dem queueing network with tagged and background traf
Although ATM network examples are given in this pape
4
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the simulation methodology for delay is directly applicabl
to any packet switching technology including TCP/IP.

2 OVERVIEW ON THE DPR-BASED SPLITTING
ALGORITHM

Here we summarize the DPR-based splitting algorith
which we use to control splitting in the delay simulation
a more detailed description of DPR can be found in Ha
raszti and Townsend (1998). Letsi ∈ S, i ∈ {1, . . . , n}
denote the (finite)state-spaceof the system and let the se-
riesV0, V1, V2, . . . (Vk ∈ {1, . . . , n}) represent the evolution
of the system, observed in successiveobservation points.
It is assumed that the system model is a discrete-tim
Markov chain. We partition the state-space intom mu-
tually exclusive, non-empty, indexed subsets,S1, . . . , Sm

(S1 ∪ . . . ∪ Sm = S). The partitioning is uniquely defined
by the so-calledsubset indicator function

0(i) ∈ {1, . . . , m} : 0(i) = j ⇐⇒ si ∈ Sj .

DPR assigns a so-calledoversampling factor, µj , to
each subsetSj , j ∈ {1, . . . , m}, and re-scales the steady
state probability mass such that the following equation hold
for every state:

π
(m)
i = 8µ0(i)πi, (1)

where π = {π1, . . . , πn} and π (m) = {π(m)
1 , . . . , π

(m)
n }

are the equilibrium probabilities of the original and of the
m-partitioned system under DPR, respectively, and8 is
a re-normalization constant,8 = 1/

∑n
i=1 µ0(i)πi . Thus,

DPR ensures that states in subsetSj are visited relativelyµj

times more often than in the original system. By assignin
high oversampling factors to those subsets that contain ra
event states, relative occurrence of the rare events can
artificially increased. Expectedly, the price of increasin
the steady state probabilities in some subset(s) is that
probabilities drop in other subsets, that is, the probabili
is being “redistributed”, hence the name DPR. We call th
vector µ = {µ1, . . . , µm} the oversampling vector. We
assume thatµ1 = 1 and µ1 ≤ µ2 ≤ . . . ≤ µm. These
conditions are needed for the formulation of the splittin
algorithm; they can be satisfied for arbitrary partitioning
without loss of generality, i.e., by reordering subset indexe
according toµ, and normalizing the oversampling vector
to µ1.

DPR can be implemented using a trajectory splittin
mechanism (very similar to the multi-threshold RESTART
algorithm in Villén-Altamirano et al. 1994). DPR allows
state transitions to arbitrary subsets and handles the c
where the rare event set overlaps more than one sub
Splitting takes place whenever a transition to a higher index
03
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subset occurs, i.e., whenever the system makes a transiti
from subsetS i to subsetSj such thati < j . The number of
new sub-trajectories generated upon such a transition,Yij ,
is a random variable (RV) with expected value E[Yij ] =
µj /µi − 1. Whenj > i + 1, special care must be taken to
maintain the proper trajectory density in the intermediate
subsets, which is needed to preserve the unbiasedness
the simulation estimates. DPR addresses this issue b
employing the following “ticketing” mechanism: At the
S i → Sj transition, each new sub-trajectory is assigned a
ticket, �. The ticketi < � ≤ j is the index of the “lowest”
subset which the sub-trajectory is allowed to visit.� is
selected according to the distribution:

Pr
{
� = l | S i → Sj

} =
{

µl−µl−1
µj −µi

if i < l ≤ j,

0 otherwise.

A sub-trajectory is terminated when it attempts to make a
transition to a subsetS l for which l < �. The state upon
which a sub-trajectory terminates should be considered a
invalid sample.

Under the above splitting scenario, every state in a
subsetSj is visited, in the asymptotic sense,µj times
more often than in an “unstressed” simulation. Unbiased
estimates can be obtained when events are counted duri
the simulation with weight1/µ0(Vk) in the kth observation
point.

As motivated in Haraszti and Townsend (1998), the
(near) optimalµ vector is shown to be when the probabilities
are redistributed such that the subset probability masse
are “balanced” (i.e., nearly evenly distributed) among the
subsets. To achieve this, the values inµ have to be inversely
proportional to the stationary subset probability masses o
the original system. This (near) optimalµ can be found
by a simple iterative process using short, repetitive DPR
simulation experiments (see, e.g., Akyamac et al. 1999
We have found that the overhead of such an exploratio
is a negligible fraction of the effective simulation time
required to obtain the DPR estimates. The main challeng
in applying DPR-based splitting to new problems is to
find the appropriate0(·) function, which remains problem
specific.

3 DELAY THRESHOLD SIMULATION USING
SPLITTING

Delay is defined as the time a given packet spends in th
system while passing between two reference points along i
route. A generic method of measuring the delay requires tha
the packet is tagged with a time-stamp when it passes the fir
reference point, and the time-stamp is compared to the actu
time when the packet reaches the second reference poin
Let RV δ describe the delay observations. Typically, we
40
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are interested in the complementary cumulative distribution
function (CCDF) of the delay, defined as

D(τ)
4= Pr{δ > τ }.

For a givenτ0, D(τ = τ0) is called thedelay threshold
probability; a common performance parameter of commu-
nication networks which is required to be very small in
real-time critical systems.

To achieve efficient simulation of delay, the subset in-
dicator function,0(·), should be selected with the following
two goals in mind. First, the choice of0(·) should produce
the prerequisite conditions for rare delay events by forcing
the system into longer queue lengths. Second, it shoul
keep the artificially generated sub-trajectories “alive” long
enough for the packets with high potential to exit the system
and thus generate the accountable target delay events. U
fortunately, in contrast to the temporally coincident behavior
of queue length and packet loss, delay measurement has
inherent temporal behavior that complicates application o
splitting.

We illustrate the problem of choosing the subset in-
dicator function for delay via an example. The example
system is a discrete time, finite queue with batch arrivals
and deterministic, constant service time. Constant servic
time makes rare event simulation of the delay tail especially
challenging. Nevertheless, the solution is directly applicable
to continuous time problems, systems with random servic
times, and also to queueing networks.

Let ak and qk denote thenumber of arrivalsand the
queue lengthat the kth observation point, respectively.
Assuming the early-arrival model for slotted, discrete-time
systems (according to Hunter 1983)qk is defined as

qk = {qk−1 + (ak − lk) − 1}+,

wherelk is the number oflost packetsin the kth slot,

lk = {qk−1 + ak − K}+,

K is the size of the buffer and{x}+ = x if x ≥ 0, 0
otherwise (see Figure 1). Thetime-stampof the ith packet

t
kth time slot

arrivals, a
k

kth observation point

departure

Figure 1: Relative order of arrivals, departures and obser
vation points in an early-arrival discrete time queue.
4
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in the queue,ρk,i , i = 1, . . . , qk, qk > 0, can be expressed
as

ρk,i =
{

ρk−1,i+1 if 1 ≤ i ≤ {qk−1 − 1}+
k if {qk−1 − 1}+ < i ≤ qk.

(2)

The second condition in (2) is for newly arriving packet
A departure from the server in thekth time-slot results in
a delay sample,δk. A departure occurs if eitherqk−1 > 0
(non-empty queue at the end of the previous slot) or
qk−1 = 0 but ak > 0 (at least one new arrival). In the
former case, the observed delay isδk = k − ρk−1,1 + 1; in
the latter caseδk = 1. Figure 3 shows a sample trace o
ak, qk andδk, obtained from simulation.

There is a significant time-lag between the rare eve
(e.g., a high-delay sample in time instant B in Figure 3) a
its prerequisite condition (an earlier packet arrival when t
queue was long at point A). This effect makes the simulati
inefficient when indicator functions are based on eith
queue length or delay only. More specifically, if we use th
queue length as the indicator function, i.e.,0(Vk) = qk +1:
sub-trajectories with large potential delay can be produc
successfully, but theqk typically drops by the time these
packets would depart (see point B in Figure 3), th
terminating most of the potential sub-trajectories. Anoth
obvious choice is0(Vk) = δ(k) (in slots without departure
0(Vk) = 1), which has the problem that by the tim
the long delay is observed, the queue is typically very sho
40
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In the deterministic service time case, splitting at this poin
does not produce more packets which have the potent
of experiencing large delay. This choice for an indicato
function can also be very inefficient even if the service tim
is stochastic. We demonstrate the efficiency of these tw
choices for0(·) in our first numerical example, presented
below.

A more efficient subset indicator function that maintain
both goals simultaneously can be defined as follows. W
introduce the notion of theprimary indicator function(PIC),
denoted byT (Vk). The PIC is responsible for increasing the
production of packets that have the potential to experien
long delay. As illustrated in the example,T (Vk) = qk + 1
is an efficient PIF. Since excessive queue length is th
prerequisite condition of long delay, the majority of the
potential packets would occur in sub-trajectories that wou
be the result of a splitting procedure where0(Vk) = T (Vk).

Our secondary objective is to keep sub-trajectorie
that carry packet(s) with the potential for large dela
alive until the packet(s) reach their destination (i.e., th
second reference point). In our example this occurs wh
the packet is serviced. To artificially prolong the life
of potential sub-trajectories, we introduce the following
auxiliary state variables. Upon entering the system, let each
new packet be tagged by a label,φ, called thepotential,
which equals the value of the current primary indicato
function, defined by,φ = T (Vk). Let Ck denote the number
of labeled packets in the system at thekth observation point,
0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

Observation point, k

a k

Number of arrivals, a
k

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16
Queue length, q

k
       

Delay samples, δ
k
 

Proposed Γ function

Observation point, k

q k , 
 δ

k , 
 Γ

(V
k)

Time-gap between prerequisite
condition (A) and the rare
event it causes(B).

BA

Figure 2: Sample trace ofak, qk andδk for a discrete time queue with constant1 slot service time.
The proposed splitting function is also shown.
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Rare Event Simulation of D

and φk,i , i = 1, . . . , Ck denote their labels. We formulate
0(Vk) from T (Vk) andφk,i as

0(Vk) = max
(
T (Vk), φ̄k

)
, (3)

where
φ̄k = max

i∈{1,...,Ck}
φk,i

The above formulation of0(Vk) ensures that if a new tagged
packet passes the first reference point while the system
in subsetSj , the subset index will not decrease until tha
packet passes the second reference point, thus keepin
large number of the potential sub-trajectories alive until th
critical packets result in successful delay samples. In o
example,φk,i = qk + 1 for newly arrived packets, i.e.,

φk,i =
{

φk−1,i+1 if 1 ≤ i ≤ {qk−1 − 1}+
qk + 1 if {qk−1 − 1}+ < i ≤ qk.

In Figure 3 we also plot the corresponding values of th
proposed0(Vk) function. It can be seen that after reachin
a high value (at point A) the indicator function sustains i
value until the last packet with high potential departs th
system (three slots after point B).

The proper choice of the PIF remains problem-specifi
but as we will demonstrate in the next section, a relative
simple function such as the total number of packets in t
system, can provide satisfactory efficiency.

4 APPLICATION EXAMPLES

4.1 Cell Delay Analysis of a Simple ATM Multiplexer

Here we consider a discrete time N×ON-OFF/D/1/K queue.
This is a specific case of the previously discussed exa
ple, where the batch arrivals are generated byN identical
but independent ON-OFF sources. An ON-OFF source
a special two-state Markov Modulated Bernoulli Proce
(MMBP) which generates a packet in each time-slot whi
in the active state, and does not generate any packet
the idle state. The sources are parameterized by the trip
{N, α, B}, whereα is the aggregated load generated by th
N sources, normalized to the service rate, andB is the
average burst length of a source. The server serves exa
one cell at each time slot. Such a system can be regarde
a typical building block for modeling an ATM multiplexer
stage.

To estimate the delay threshold probabilities, we co
sider the following three alternative indicator functions:

A. 0(Vk) = qk +1 (queue length based splitting)
B. 0(Vk) = δk if qk−1 > 0, 1 otherwise (delay

based splitting)
C. As in (3), usingT (Vk) = qk + 1
40
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For N = 24, α = 0.15, B = 3, andK = 64, Figures 3
and 4 plot theD(τ) estimates and their normalized half-size
confidence intervals (95 %confidence level) obtained by the
three methods. For each method, 5 or 6 short repetitiv
simulations were used to obtain a balancingµ vector, and
then50 independent retrials were executed, each simulatin
a total number of106 slots (including the generated sub-
trajectories) to obtain the plotted estimates. As a referenc
the numerical solution ofD(τ) is also plotted in Figure 3.

The results confirm our expectation: the first two split-
ting strategies did not work. Their failure is visible in
Figure 3: they differ considerably from the numerical re-
sult. In practical cases where numerical results are n
available, a more reliable indication of failure is the ex-
cessive variance of the estimates (Akyamac et al. 1999
As can be seen in Figure 4, the confidence intervals fo
the queue length based and for the delay based simulati
exceed100 %for a considerable part of the tail, which is not
acceptable. The splitting estimator based on our propos
splitting function coincides perfectly with the numerical re-
sults and yields very small confidence intervals (i.e., below
20 % in all cases).

Each of the three simulation experiments required ap
proximately1.5 minutes on a466MHz Pentium II PC using
the FreeBSD Unix operating system (including the shor
iterations used for to obtainµ). In Figure 3 we also plotted
the estimated speed-up for the proposed0(Vk) when com-
pared to brute-force simulation (estimated as described
Haraszti and Townsend 1998).
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Figure 3: Delay threshold probabilities for the N×ON-
OFF/D/1/K queue estimated using three alternative splittin
strategies.
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Figure 4: Estimated normalized half-size confidence i
tervals (95%) for the delay threshold estimation in th
N×ON-OFF/D/1/K example.

4.2 A Shared Memory LAN Switch with Multiple
Priorities Using Static Priority and Weighted Round
Robin Scheduling

Our second example represents a more complicated syst
although in terms of delay simulation it differs only from
the previous case in the sense that the service time is
deterministic.

The system is a model of an off-the-shelfshared-
memory ATM LAN switch that uses static priority and
Weighted Round-Robin (WRR)scheduling to provide ser-
vices for three distinct service classes. The three serv
classes are: (Class-1) constant bit-rate (CBR) traffic w
real-time requirements, (Class-2) variable bit-rate traffic wi
real-time requirements (rt-VBR) and (Class-3) variable b
rate data traffic with no real-time requirements (nrt-VBR

The switch works as follows (see Figure 5). Inpu
sources are connected via a number of adapter cards to
internal cell bus that propagates the cells to the output po
Four output ports share the same shared memory segm
which can store up to 16 kcells (16384 cells). From th
shared memory, there are three virtual queues formed
each output port, one queue for each of the three serv
classes. Cells in the three virtual queues compete for
link capacity of the output port in the following way. The
CBR queue enjoys static high priority over the other tw
queues, that is, every slot when there is at least one cel
the CBR queue, the head-of-line CBR cell is forwarded
the link. The rest of the link bandwidth is shared by th
rt-VBR and nrt-VBR cells according to the WRR discipline
(see, e.g., Katavenis et al. 1991 for an introduction to WR
scheduling). WRR is an extension of Round-Robin whic
works in the following way. A counter and a weighting facto
is assigned to each queue. Let us denote the former byC2
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Figure 5: A portion of the shared memory ATM switch
with three priority classes. Four ports share one memo
board (16 kcells). CBR traffic (Class 1) has fixedhigh
priority, rt-VBR and nrt-VBR (Class 2 and 3) share the
remaining bandwidth using Weighted Round Robin (WRR
scheduling.

andC3 and the latter byw2 andw3, respectively. Initially,
the counters are set toC2 = C×w2 andC3 = C×w3, where
C is a cycle constant. When both counters are greater th
zero, cells from the two classes can be sent in an alternati
fashion, servicing at most one cell at each slot when the
is no CBR cell. After sending a cell, the counter for tha
class is decremented by one. If the counter of one of th
classes reaches zero, there can be no further cells sent fr
that queue, only the other queue can be serviced. When t
counter value and/or the queue length has reached zero
both classes, both counters are reset to their initial value
and a new cycle begins.

We modeled the CBR traffic asN1 independent
Bernoulli cell generators. The total generated CBR loa
is α1. The rt-VBR traffic is modeled byN2 independent
ON-OFF sources, with total normalized loadα2 and mean
burst duration ofB2 [cells]. The same model is used for
the nrt-VBR traffic, with the respective parametersN3, α3
and B3. The above load values are defined as the tot
load of the given class normalized to the total maximum
throughput of the four output ports, and all source mode
use the same slot size as the output ports.

We measured the delay threshold probabilities expe
rienced by the rt-VBR and the nrt-VBR cells, respec
tively, as well as the occupancy distribution (probability
mass function) of the shared memory segment. Figure
presents both results for the sample traffic configuratio
N1 = N2 = N3 = 8, α1 = 0.2, α2 = 0.3, B2 = 3,
α3 = 0.4, B3 = 20. For the WRR scheduler we used cycle
length C = 50 and weightsw2 = 60% and w3 = 40%.
7
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Figure 6: Shared memory occupancy (top plot), and De
Threshold Probabilities (DTP) for Class 2 and Class 3 traf
(lower plot). (N1 = N2 = N3 = 8, α1 = 0.2, α2 = 0.3,
B2 = 3, α3 = 0.4, B3 = 20, w2 = 0.6, w3 = 0.4 and
C = 50 slots).

For the memory occupancy simulation, the subset indica
function has been defined as0(Vk) = bXk/20c + 1, where
Xk represents the the total number of cells in the sha
memory. The rescaling was necessary to keep the num
of subsets below200. Although not presented in the plot
the relative95% confidence interval was below60% even
at the tail of the occupancy curve.

The delay threshold measurements for the two clas
were performed separately, since they required differ
subset indicator functions. In both cases, the number
cells in the queue of the given class has been used a
primary subset indicator function. Those cells were labe
according to the method presented in Section 3, and
extended subset indicator of (3) was applied. In all cases50
independent replications were executed after balancing
subset probabilities. The execution time for each of the th
experiments was less than20 minutes using a conventiona
UNIX workstation. The accuracy of the estimated valu
were very high, with the poorest accuracy in the tails
the plots. These tail values were still within60% relative
confidence interval widths (with95% confidence level).
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4.3 Delay Threshold Probabilities over Tandem Queues

Our third example extends the delay measurement techniq
to a tandem queuing system, presented in Figure 7.
“tagged” cell source, modeled by an ON-OFF source wi
normalized load,αf , and mean burst length,Bf [cells],
sends cells to the first queue. These tagged cells tra
through a tandem connection ofM queues. The metric of
interest is the probability mass function of the total dela
over theM queues. Background traffic of the queues
modeled byN additional independent ON-OFF sources
attached to each queue, as shown in the figure. Cells
the background traffic do not propagate to the next que
in the tandem chain.

We only consider the homogeneous case where ea
queue has the same buffer size ofK cell slots and the same
background load. The background load is parameteriz
by N , the total background load,αb (normalized to the link
capacity), and the mean burst duration of the backgrou
sources,Bb.

We applied the subset indicator strategy presented
Section 3, and used the total number of cells in all the queu
as the basis for our primary subset indicator function. Thu

T (Vk) = 1 +
M∑

i=1

Xi
k,

where Xi
k represents the length of theith queue at time

tk. It can easily be seen that the aboveT (Vk) becomes a
weaker estimate of the potential delay of the tagged ce
as M increases. This is due to the temporal shift in th
contribution of each queue length to the total delay of an
tagged cell. Therefore, we expect a decrease in the efficien
of DPR simulation using the above subset indicator strate
as M increases. This expectation is indeed supported
the numerical results, as presented below.

Figure 8 displays the D-PMF forM = 1, 2, 5 and10,
for the traffic configurationαf = 0.1, Bf = 10, N = 7,
αb = 0.4, Bb = 10, and for buffer sizesK = 500cell slots.
After obtaining a quasi-balancedµ vector for each of the
four cases,100independent replications were executed, ea
with approximately106 simulation slots for theM = 1, 2
raffic.
K

1

K

2

K

M

delay

Tagged
ON-OFF

N x ON-OFF
αb, Bb

N x ON-OFF
αb, Bb

N x ON-OFF
αb, Bb

DDD

αf, Bf

Figure 7: End-to-end delay measurement of a bursty connection over tandem ATM queues with bursty background t
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Figure 8: Cell Delay Probabilities for the tandem syste
for M = 1, 2, 5 and10, estimated by DPR simulation.

cases, and with approximately107 slots for theM = 5
and10 cases. The required simulation times varied from5
minutes (for theM = 1 case) to8.5 hours (for theM = 10
case).

To compare the efficiency of DPR for the four cases, w
focused on the delay probability estimate that was neares
the10−12 value, and used its estimator variance to estima
the simulation speed-up for each of the four cases. F
values ofM = 1, 2, 5, and 10, the respective speed-u
factors obtained are7.5 × 105, 1.1 × 105, 1.2 × 104, and
3.2 × 103. It can be concluded that the speed-up fact
decays severely asM increases. This example shows tha
a more refined subset indicator strategy would have to
developed to keep DPR efficient if simulating larger numbe
of tandem queues.

5 CONCLUDING REMARKS

In this paper we proposed a splitting rule to estimate very lo
delay threshold probabilities through a network using DPR
based splitting simulation. The method presented produc
the prerequisite conditions for the rare target events.
the case of rare delay events, this involves forcing th
system into longer queue lengths. However, unlike cell
packet loss, for delay events the method keeps the artificia
generated sub-trajectories “alive” long enough for the ce
with high potential to exit the system and thus generate t
accountable target delay events.

We showed the efficiency of the technique by usin
it to measure delay probabilities in three different exam
ples: a simple ATM multiplexer, a queueing system wit
multiple traffic classes, and a tandem queuing system w
tagged and background traffic. For the first two example
the factor of speed-up over straight-forward simulation w
experimentally determined to be nearly inversely propo
40
o

r

e

s

y

e

,

tional to the probability estimate. In the third example, the
improvement factor was very large but decreased as th
number of tandem queues increased.
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Vill én-Altamirano, M., Mart́ınez-Marŕon, A., Gamo, J.,
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