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ABSTRACT

This paper discusses implementation of a sequential quant
estimation algorithm for highly correlated steady-state sim
ulation output. Our primary focus is on issues related
computational and storage requirements of order statisti
The algorithm can compute exact sample quantiles and p
cess sample sizes up to several billion without storing a
sorting the whole sequence. The algorithm dynamical
increases the sample size so that the quantile estima
satisfies a pre-specified precision requirement.

1 INTRODUCTION

A properly selected set ofquantiles (percentiles) reveals
all the essential distributional features of output rando
variables analyzed by simulation. For0 < p < 1, the p

quantile of a distribution is the value at or below which
100p percent of the distribution lies. Quantiles are als
more robust to outliers than are the mean and standa
deviation. A few exceptional observations do not affect th
quantiles as heavily as they affect the mean and stand
deviation. However, quantiles have seldom been used
simulation studies. We believe that the reason for this lie
in the complexity of quantile estimation.

Estimating quantiles is computationally more difficul
than estimating the mean and variance. One of the ba
problems in estimation of quantiles is that the whole outp
sequence must be stored and sorted if the estimates
based on order statistics. In the past, because of limit
computational capability of computers, the quantile estim
tion procedures of Iglehart (1976) and Seila (1982a, 1982
can only estimate quantiles of regenerative processes.
general processes, special algorithms, such as the maxim
transformation of Heidelberger and Lewis (1984) and th
P 2 algorithm of Jain and Chlamtac (1985), were neede
to obtain estimates. But the advance of computer techn
ogy has alleviated some of the computational issues. No
a 200MHz Pentium computer with only 32 megabytes o
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RAM can store and sort one million observations ten time
in less than three minutes and has the capacity to store
sort up to four million observations. However, dependin
on the underlying distribution, the quantile to be estimate
and the precision required, the required sample size c
be hundreds of millions. Therefore, using “brute force” t
store and sort all the observations can be applied in on
very limited cases. Algorithms that can be used to estima
quantiles without storing and sorting all observations a
still required.

The output processes of virtually all dynamic simula
tions are nonstationary and autocorrelated. Thus, class
statistical techniques based on i.i.d. (independent and id
tically distributed) observations are not directly applicable
By contrast, order statistics can be used not only when t
data are i.i.d., but also when the data are drawn from
stationary,φ-mixing process (a relatively mild assumption
see Section 2) of continuous random variables. Yet wh
the output processes of simulations are stationary, most
them satisfy theφ-mixing conditions. Therefore, classi-
cal statistical techniques can be used on the order-statis
quantile estimators of those processes.

The problem with which we are concerned is the estim
tion of a quantile for a discrete-time, covariance-stationa
stochastic process. We discuss a procedure for estimat
quantiles from simulation output. The proposed procedu
will control the length of a simulation run so that the quantil
estimated satisfies a pre-specified precision requiremen

In Section 2, we discuss some theoretical backgrou
of simulation output analysis. In Section 3, we prese
our methodologies and proposed procedure for quant
estimation. In Section 4, we give concluding remarks.

2 THEORETICAL BACKGROUND

Let X1, X2, · · · , Xn, be a sequence of i.i.d. random vari
ables from a continuous distributionF(x) with probability
density functionf (x). Let xp (0 < p < 1) denote the
100pth percentiles as thep quantile, such thatF(xp) =
28
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P r(X ≤ xp) = p. Thus, xp = inf {x : F(x) ≤ p}. If
Y1, Y2, . . . , Yn, are the order statistics corresponding to t
Xi ’s from n independent observations, (i.e.Yi is the ith

smallest ofX1, X2, . . . , Xn) then a point estimator forxp

based on the order statistics is the samplep quantilex̂p,

x̂p = ydnpe (1)

wheredze denotes the integer ceiling (round-up) of the re
numberz.

To define φ-mixing, let {Xi; −∞ < i < ∞} be a
stationary sequence of random variables defined on a p
ability space (�, A, P). Thus, if Mk−∞ and M∞

k+j are
respectively the sequences generated by{Xi; i ≤ k} and
{Xi; i ≥ k + j}, and if E1 ∈ Mk−∞ andE2 ∈ M∞

k+j , then
for all k (−∞ < k < ∞) andj (j ≥ 1), if

|P (E2|E1) − P (E2)| ≤ φ(j), φ(j) ≥ 0,

where1 ≥ φ(1) ≥ φ(2) ≥ · · ·, andlimj→∞φ(j) = 0, then
{Xi; −∞ < i < ∞} is calledφ-mixing. Roughly speaking
X1, X2, · · · , Xn is φ-mixing if Xi andXi+j become essen-
tially independent asj becomes large. For example, th
waiting-timeWi of an M/M/1 delay-in-queue isφ-mixing,
becauseWi andWi+j become essentially independent asj

becomes large.
Quantile estimation can be computed using stand

nonparametric estimation based on order statistics, wh
can be used not only when the data are i.i.d. but also w
the data are drawn from a stationary,φ-mixing process of
continuous random variables. It is shown in Sen (1972) t
quantile estimates, based on order statistics, have a no
limiting distribution and are asymptotically unbiased, if th
following three conditions are satisfied:

1. The process{Xi} satisfies theφ-mixing con-
dition.

2. The cumulative distribution function,F(x), is
absolutely continuous.

3. The density function,f (x), is finite, positive,
and absolutely continuous for allx = F −1(t)

and0 < t < 1.

For the case ofφ-mixing sequences, quantile estimatio
is much more difficult than in the independent case. T
usual order-statistic point estimate,x̂p, is still asymptotically
unbiased; however, its variance is inflated by a factorPxp (0).
n
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HerePxp (0) is the initial point on the spectrum of the binary
process{In(xp)}, where

In(x) =
{

1 if Xn ≤ x,
0 otherwise.

Pxp (0) =
k=∞∑

k=−∞
Cov[In(xp), In+k(xp)]

and

σ 2(x̂p) = Pxp (0)/[nf 2(xp)].
Therefore,

x̂p − xp

σ(x̂p)

D−→ N (0, 1)

asn → ∞.

The factorPxp (0) measures not only the variance of
each individual observation but also the correlation betwee
observations. One can estimatePxp (0) using the methods of
Heidelberger and Welch (1981a, 1981b). The ratio ofPxp (0)

to its valuep(1 − p) for the i.i.d. process with identical
marginal distributions gives us a measure of the inflatio
factor of the required sample size over the independen
case.

3 METHODOLOGIES

This section presents the methodologies we will use for ou
quantile estimation. The results from Sen (1972) provided u
with a strong theoretical basis for using classical statistica
techniques to develop order-statistics quantile estimator
However, data are almost always expensive and scarc
Increasing the sample size is costly and time-consumin
both in the sampling procedure and in processing the da
Although asymptotic results are often applicable when th
amount of data is “large enough,” the point at which the
asymptotic results become valid generally depends on u
known factors. An important practical decision must be
made regarding the sample sizen required to achieve the
desired precision. Therefore, both asymptotic theory an
workable finite-sample approaches are needed by the pra
titioner.

3.1 Proportional Half-Width

Usually, the stopping rule of absolute-precision simulatio
procedures will ensure that

x̂p ∈ xp ± ε (2)
9
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Simulation-Based

with a certain confidence level, wherex̂p is the estimated
quantile,xp is the true (but unknown) quantile, andε is the
maximum allowed half-width of confidence.

Since we are estimating quantiles, a different precisi
requirement can be used. We can control the precision
ensuring that thep quantile estimator

x̂p ∈ x[p±ε′]1
0

(3)

where

[p±ε′]1
0 =




p ± ε′ if 0 ≤ p − ε′ andp + ε′ ≤ 1,[
0, p + ε′] if 0 > p − ε′ andp + ε′ ≤ 1,[
p − ε′, 1

]
if 0 ≤ p − ε′ andp + ε′ > 1.

That is, if

[P ]1
0 =




P if 0 ≤ P ≤ 1,
0 if P < 0,
1 if P > 1,

then we have1−α confidence that thep quantile estimator
x̂p is between the[p − ε′]1

0 and [p + ε′]1
0 quantiles, i.e.

P r[|F(x̂p) − p| ≤ ε′] ≥ 1 − α

where ε′ is the maximum proportion half-width of the
confidence. We would like to point out that the absolute ha
width ε has the samemeasurement unitas the variate under
investigation and can be any positive value. However, t
proportional half-widthε′ is dimensionless; it is a proportion
value with no measurement unit and must be between
andmax(p, 1 − p), 0 < p < 1.

Using the second precision requirement (i.e. equati
(3)), the required sample sizenp for a fixed-sample-size
procedure of estimating thep quantile of an i.i.d. sequence
is the minimumnp that satisfies

np ≥ z2
1−α/2p(1 − p)

(ε′)2
(4)

wherez1−α/2 is the1−α/2 quantile of the standard norma
distribution, ε′ is the maximum proportion half-width of
the confidence interval, and1 − α is the confidence level.

If we use equation (2) as the precision requireme
then the sample sizenp needs to be inflated by a factor o
1/f 2(xp). That is

n′
p = np/f 2(xp).

Furthermore, if the sequences areφ-mixing instead of i.i.d.,
then the sample size needs to be further inflated by a fac
of Pxp (0)/p(1 − p).
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3.2 Test of Independence

Because the required sample sizes are drastically differe
between i.i.d. and correlated sequences, it is beneficial
check whether the input data appear to be independe
We use aruns-up test for this purpose, see Knuth(1981
pp. 65-68). The observation immediately following a
run is discarded so that subsequent runs are independe
Therefore, a straightforward chi-square test can be use
The runs-up tests looks solely for independence and h
been shown to be very powerful. If the input data sequen
appears to be dependent, then a sequential procedure
be used.

The test statistic of this simple runs-up test is sensitive
high correlation with the correlation coefficient of first-order
autoregression data sequence. The runs-up test stati
becomes larger as the lag 1 (positive) correlation of th
input data sequence becomes stronger. The variance of
input data sequence that are positively correlated at seve
different lags will be at least as large as the variance of th
input data sequence that are correlated only at lag 1 wi
the same correlation. Therefore, we can use the runs-
test statistic to compute the lower bound of the require
sample size for a sequential procedure.

A stochastic model that has such a covariance structu
and admits an exact analysis of performance criteria is th
first-order auto-regressive(AR(1)) process, generated by
the recurrence relation

Xi = µ + ρ(Xi−1 − µ) + εi f or i = 1, 2, . . . ,

where

E(εi) = 0, E(εiεj ) =
{

σ 2 if i = j ,

0 otherwise

0 < ρ < 1,

and X0 is deterministically specified to be some constan
x0. The εi ’s are commonly callederror terms.

The AR(1) process, as defined above, has been used a
model for simulation output processes by numerous autho
for example, Law and Kelton (1984); it shares many chara
teristics observed in simulation output processes, includin
first- and second-order non-stationarity and autocorrelatio
that decline exponentially with increasing lag (so AR(1) se
quences areφ-mixing sequences). If we make the additiona
assumption that theεi ’s are normally distributed, since we
have already assumed that they are uncorrelated, they w
now be independent as well, i.e., theεi ’s are i.i.d. N (0, 1).

Therefore,xi
D−→ N (0, 1

1−ρ2 ). The spectrum of the AR(1)

process isPxp (0) = 1/(1 − ρ)2.
0
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We ran ten replications of the runs-up test for ea
AR(1) process withε′ set to0.005. The average of the tes
statistics with corresponding spectrum and required sam
size are listed in Table 1. We could plot a graph of t
runs-up test statistic vs. the required sample size to
an idea of the relationship between these two variab
Because of the convex nature of their relationship, we
use linear interpolation to get a conservative estimate
the lower bound of the required sample size for any giv
runs-up test statistic.

Table 1:  The  Required  Sample  Size for AR(1) with t
Maximum  Proportional  Half-Width  Set to 0.005

ρ Pxp (0) Test Statistic Sample Size
0.5 4 2659 4330
0.75 16 8782 17319
0.80 25 10954 27061
0.85 45 14009 48709
0.90 100 16877 108241
0.93 200 19804 216482
0.95 400 21052 432964

3.3 Sequential Procedure

One of the most important aspects of the design of exp
ments is the determination of the appropriate sample siz
the basic experiment. Because almost all simulation ou
processes are autocorrelated and nonstationary, no fi
sample-size procedures can be relied upon to produce
that coversxp with the desired probability level, if the fixe
sample size is too small for the system being simula
In addition to this problem of coverage, a simulator mig
want to determine a sample size large enough to prod
a c.i. with a small absolute precisionε or a small propor-
tional precisionε′. It will seldom be possible to know in
advance even the order of the magnitude of the sample
needed to meet these goals in a given simulation prob
so some sort of procedure to increase iteratively this sam
size would be needed. Consequently, sequential proced
have been developed (Law and Kelton 1991).

We propose a simple sequential algorithm with co
bined precision stopping rules and use order statistic
estimate quantiles. Thezoom-in algorithm, which is an
enclosure method, gives upper and lower bounds on th
quantilexp at every step. We assume that thep quantile
of Fx is finite, i.e. −∞ < xp < ∞. That implies that
the initial lower and upper bounds ofxp are greater than
−∞ and less than∞ respectively. In our algorithm, the
default lower and upper bounds are set to−10308 and10308

respectively, which are roughly the minimum and maximu
of floating-point numbers on a 32-bit computer. Howev
any a priori knowledge regarding the value of a quant
43
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can be used for the lower and upper bound to reduce
needed iterations.

There are two phases in the zoom-in algorithm. Firs
the zoom-in process determines the required simulation r
length with pre-specified precision requirements. Secon
replications will be executed iteratively to obtain a con
fidence interval. Amemory buffer, which is an array of
variables that are defined asdouble(in the C language), is
allocated at the beginning of the computer program. Th
memory buffer is used to store and sort the observatio
that are deemed most likely to be the true quantile valu
Let n0 be the initial sample size, which is also the initia
buffer size. We compute the sample quantile according
equation (1). The sample quantile lower and upper bou
are x̂pl and x̂pu, which can be estimated by

x̂pl = Ybnplc (5)

and

x̂pu = Ydnpue, (6)

wherenpl = n0(p − δp), npu = n0(p + δp), and0 < δp <

0.5. If npl < 0, then the lower bound is not changed. I
npu > n0, then the upper bound is not changed.

Once we obtain the lower and upper bounds of thep

quantile, the sample valuesXi for i = 1, . . . , npl − 1 and
i = npu+1, . . . , n0 are no longer needed. More samples ca
then be generated to fill in the available slots in the memo
buffer. We will store the newly generated sample values
the buffer only when the value is between the lower an
upper bounds inclusively. If the sample value is less tha
the lower bound, we increase the counternpl by one. If the
sample value is larger than the upper bound, we increase
counternpu by one. The total sample sizen in the second
iteration is then equal ton0+npl +npu. That is, the sample
size is increased bynpl +npu, andn0/2δp < E(n) < n0/δp.
When the buffer is filled completely again, new sample
quantile lower and upper bounds can be recomputed. T
gapδp is multiplied by DFACTOR (< 1, we use0.90 ) in
subsequent iterations. A test is also used to see whether
number of available slots is more than R% (we use 10%)
the buffer size, in which case DSIZE (we use 1,000) slo
will be added to the buffer when the number of availab
slots is less than R% of the buffer size. The process can
repeated iteratively until the pre-specified stopping criter
are satisfied. In cases that the sample quantile is outs
the range of the buffer, i.e.,np < npl or np > npu, then
the simulation needs to be restarted with a larger memo
buffer or larger DFACTOR. The lower and upper bound
estimated in the current run can be used for later runs
that the program can be re-started from where the progr
terminated without starting from the very beginning. Th
estimator can also be estimated by linear extrapolation, b
1
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the estimator will not be the exact order-statistics quant
in this case.

It is also possible that while the quantile estimator
inside the lower and upper bound during the sample-siz
estimating phase, some of the quantile estimators are outs
the range in subsequent replications. In these cases,
estimators will be treated as outliers and the lower or upp
bounds of the sample quantiles will be used as estimato

The proposed stopping criterion includes six parts:

1. The difference of consecutive quantile estima-
tors have changed sign at leastK times, and the
last L consecutive quantile estimators do not
increase or decrease monotonically. Based on
the results of our empirical studies, we set both
K andL to 4. If we assume the consecutive
sample quantiles are independent, the possi-
bility of having four monotonically increasing
or decreasing sample quantiles is 1/24.

2. There is no new maximum or minimum in
subsequent simulation runs.

3. The range covered bŷxpl and x̂pu, i.e.
F(x̂pu) − F(x̂pl), should be roughly the
same asplu, which is the proportion of ob-
servations between̂xpl and x̂pu. That is,
|(F (x̂pu) − F(x̂pl)) − plu| < ε′.

4. The range covered by (−∞, x̂pl) and (̂xpu, ∞),
should be roughly the same aspl andpu, which
are the proportion of observations smaller than
x̂pl and larger than̂xpu, respectively. That is,
|F(x̂pl)−pl | < ε′ and|F(x̂pu)− (1−pu)| <

ε′.
5. The absolute and relative difference of the

consecutive quantile estimatorsx̂p of the se-
quential procedure is within tolerance, i.e. less
thanε′.

6. The coverage of̂xpl and x̂pu is less thanε′.
That is,F(x̂pu)−F(x̂pl) < ε′, i.e. δp < ε′/2.

The zoom-in algorithm:

1. Remark: bfmax is the maximum size of the
memory buffer to be allocated, and ier is an
error flag to the user. bfsize is the size of the
buffer used to store and sort observations.xpl

and xpu are the lower and upper bounds of
the quantile to be estimated; they are initially
set to−∞ and,∞ respectively. Dsize is the
incremental size used to expand the buffer.

2. Simulate bfsize observations and use order
statistics to estimate the quantilexp, the lower
boundxpl , and the upper boundxpu.

3. If the observations are determined to be i.i.d.
then go to step 9.
is
432
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4. Computenpl , the number of observations that
are smaller thanxpl , andnpu, the number of
observations that are larger thanxpu.

5. Simulate more observations until all the avail-
able slots in the buffer are filled. Use order
statistics to estimate the quantilexp, the lower
boundxpl , and the upper boundxpu.

6. If the stopping criteria are satisfied, go to step
9.

7. Otherwise, if the number of available slots
in the buffer is less thanR% of the current
buffer size, increase the buffer size by Dsize.
If bf size > bf max, set ier = 1 and exit.

8. Go to step 4.
9. Make anotherK replications, and use the val-

ues of bfsize,xpl andxpu computed above.
10. While the standard deviation of the sample

quantiles is greater than tolerance, make 3
more replications, and setK = K + 3.

11. Set the quantile point estimator to the upper
bound of the confidence interval of the ob-
servedK + 1 quantile estimators.

The first five stopping rules are connected by “and,
the last stopping rule is connected by “or.” That is, the
procedure will terminate if either stopping rule 6 alone is
satisfied or stopping rules 1 through 5 are satisfied. To avo
premature stopping of the sequential procedure, we will sto
it only when stopping rules 2 through 5 have been satisfie
in three consecutive iterations. Of course, the number of i
erations that stopping rules 2 through 5 must be satisfied c
be increased for conservative users. On the other hand, t
sequential procedure will stop immediately whenever stop
ping rule 6 is satisfied, therefore, the zoom-in algorithm wil
always terminate gracefully. This is because once the valu
of ε′ has been decided, the maximum number of iteration
ni can be computed byni = dln(ε′/2δp) / ln(DFACTOR)e
(because DFACTORnδp < ε′/2). Therefore, if the number
of iterations that stopping rules 2 through 5 must be satisfie
was set too large, the sequential procedure will always b
terminated by stopping rule 6. Then the sequential proc
dure will behave like a fixed-sample-size procedure, and th
sample size determined by those stopping rules will be st
large enough for highly correlated data but will be large
than required for data that are only slightly correlated.

Figure 1 gives an example of the 0.75 quantile
estimator for the waiting-time of an M/M/1 delay-in-
queue process with arrival rateλ = 0.75, service rate
µ = 1.0, and ε′ = 0.005 at each iteration. Figure
2 shows the corresponding sample size at each ite
ation. The process iterates 26 times before it stop
During the sample-size-determination iterations, th
quantile estimators are not independent, but we a
sume that those quantile estimators satisfy theφ-mixing
conditions. The sample size grows exponentially during th
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x̂p

Iteration

Figure 1:  0.75  Quantile  Estimator for M/M/1  Queue with
λ/µ = 0.75, ε′ = 0.005

Sample Size

Iteration

Figure 2:  Sample  Size for M/M/1  Queue withλ/µ = 0.75,
ε′ = 0.005 at  Each  Iteration

phase and the incremental sample size seems large eno
to influence the distribution of the output sequence. Thu
the correlation between those estimators is very weak
they are correlated at all. The sequential sample quanti
converge to the true quantile value of 4.39445.

The process executes 9 more replications before
stops, and the average sample size of these 9 replication
5,450,000. The sample quantile of each replication fluctuat
around the true value. The average of these 10 sam
quantiles is 4.3929, or approximately the 0.749903 quantil
Even though the sample size used in the simulation run
much smaller than the theoretical value, the precision of th
estimator is still very good. We believe that this is becaus
the theoretical value is for the worst-case scenario. F
most cases, we are able to get good estimates with sam
sizes considerably less than the theoretical value.
433
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4 CONCLUDING REMARKS

The results from our empirical experiments show that th
procedure is excellent in achieving the pre-specified acc
racy. However, the variance of the run length from ou
sequential procedure is large. We ran ten replications
quantile estimation and set the point estimator to the upp
bound of the confidence interval. Figure 3 gives an examp
of the results of our 0.95 quantile estimator for an AR(1
processes withρ = 0.95, α = 0.10%, and ε′ = 0.0025.
The horizontal axis is the run number and the vertical ax
is the cumulative distribution function value, i.e.F( ¯̂xp). In
the 100 runs we did, 97 of those 0.95 quantile estimato
cover at least95% of the distribution, and there are only
three estimators that cover more than95.05%. In those three
cases that the coverages are less than95%, the deviations
are less than0.001%, i.e. they cover more than94.99%
of the distribution. The maximum deviation of these 100
estimators is less than0.06%, which is much smaller than
the required precisionε′ = 0.0025.

F( ¯̂xp)

Run Number

Figure 3:  Sequential  Estimators of 90%  Confidence 0.9
Quantile for AR(1) withρ = 0.95 andε′ = 0.0025

Our proposed zoom-in algorithm requires storing an
sorting only a sequence of the most likelyp quantile values.
Savings in storage and sorting are substantial for our metho
The proposed procedure for estimating quantiles can proce
sample sizes up to several billion. Our approach has t
desirable properties that it is a sequential procedure a
it does not require the user to havea priori knowledge
of values that the data might assume. This allows th
user to apply this method without having to run a pilo
run to determine the range of values to be expected
guess and risk having to re-run the simulation. Either o
these options represents potentially large costs to the u
because many realistic simulations are time-consuming
run. The simplicity of this method should make it attractive
to simulation practitioners.



stimation of Quantiles

r

i-

a
n

a

s;

-

f

e

ple

f
e

g

in

e

-
.
.

e-
nd
n,
es

d
air
Simulation-Based E

ACKNOWLEDGMENTS

We would like to thank the Ohio Supercomputer Center fo
the Cray T-90 time grant.

REFERENCES

Heidelberger, P., and P. A. W. Lewis. 1984. Quantile Est
mation in Dependent Sequences.Operations Research
32:185–209.

Heidelberger, P., and P. D. Welch. 1981a. A Spectr
Method for Confidence Interval Generation and Ru
Length Control in Simulations.Communications of the
ACM. 233–245.

Heidelberger, P., and P. D. Welch. 1981b. Adaptive Spectr
Methods for Simulation Output Analysis.IBM Journal
of Research and Development25. No. 6:860–876.

Iglehart, D. L. 1976. Simulating Stable Stochastic System
VI. Quantile Estimation. J. Assoc. Comput. Mach.
23:347–360.

Jain, R., and I. Chlamtac. 1985. TheP 2 Algorithm for
Dynamic Calculation of Quantiles and Histograms with
out Storing Observations.Commun. Assoc. Comput.
Mach. 28:1076–1085.

Knuth, D. E. 1981. The Art of Computer Programming.
Vol. 2. 2nd ed. Reading, Mass.:Addison-Wesley.

Law, A. M., and W. D. Kelton. 1984. Confidence In-
tervals for Steady-State Simulations: I. A Survey o
Fixed Sample Size Procedures.Operations Research
32:1221–1239.

Law, A. M., and W. D. Kelton. 1991.Simulation Modeling
and Analysis. 2nd ed. New York:McGraw-Hill.

Seila, A. F. 1982a. A Batching Approach to Quantile
Estimation in Regenerative Simulations.Management
Science. 28. No. 5:573–581.

Seila, A. F. 1982b. Estimation of Percentiles in Discret
Event Simulation.Simulation. 39. No. 6:193–200.

Sen, P. K. 1972. On the Bahadur Representation of Sam
Quantiles for Sequences ofφ-mixing Random Variables.
Journal of Multivariate Analysis. 2. No. 1:77–95.

AUTHOR BIOGRAPHIES

E. JACK CHEN is a Ph.D. Candidate in the Department o
Quantitative Analysis and Operations Management at th
University of Cincinnati. He received a B.S. in engineerin
from National Taiwan University, an M.S. in computer
science from Syracuse University, and an M.B.A. from
Northern Kentucky University. His research interests are
the area of computer simulation.

W. DAVID KELTON is a Professor in the Department of
Quantitative Analysis and Operations Management at th
43
l

l

University of Cincinnati. He received a B.A. in mathe
matics from the University of Wisconsin-Madison, an M.S
in mathematics from Ohio University, and M.S. and Ph.D
degrees in industrial engineering from Wisconsin. His r
search interests and publications are in the probabilistic a
statistical aspects of simulation, applications of simulatio
statistical quality control, and stochastic models. He serv
as Simulation Area Editor forOperations Research; he has
also been Simulation Area Editor for theINFORMS Journal
on ComputingandIIE Transactions, and Associate Editor of
Operations Research, theJournal of Manufacturing Systems,
and Simulation. He is the INFORMS co-representative to
the Winter Simulation Conference Board of Directors an
was Board Chair for 1998. In 1987 he was Program Ch
for the WSC, and in 1991 was General Chair.
4


	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search CD-ROM
	Search Results
	Print

