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ABSTRACT RAM can store and sort one million observations ten times

in less than three minutes and has the capacity to store and
This paper discusses implementation of a sequential quantile- sort up to four million observations. However, depending
estimation algorithm for highly correlated steady-state sim- on the underlying distribution, the quantile to be estimated,
ulation output. Our primary focus is on issues related to and the precision required, the required sample size can
computational and storage requirements of order statistics. be hundreds of millions. Therefore, using “brute force” to
The algorithm can compute exact sample quantiles and pro- store and sort all the observations can be applied in only
cess sample sizes up to several billion without storing and very limited cases. Algorithms that can be used to estimate
sorting the whole sequence. The algorithm dynamically quantiles without storing and sorting all observations are
increases the sample size so that the quantile estimatedstill required.

satisfies a pre-specified precision requirement. The output processes of virtually all dynamic simula-
tions are nonstationary and autocorrelated. Thus, classical
1 INTRODUCTION statistical techniques based on i.i.d. (independent and iden-

tically distributed) observations are not directly applicable.

A properly selected set afjuantiles (percentiles) reveals By contrast, order statistics can be used not only when the
all the essential distributional features of output random data are i.i.d., but also when the data are drawn from a
variables analyzed by simulation. For< p < 1, the p stationary,¢-mixing process (a relatively mild assumption;
guantile of a distribution is the value at or below which see Section 2) of continuous random variables. Yet when
100p percent of the distribution lies. Quantiles are also the output processes of simulations are stationary, most of
more robust to outliers than are the mean and standard them satisfy thep-mixing conditions. Therefore, classi-
deviation. A few exceptional observations do not affect the cal statistical techniques can be used on the order-statistics
guantiles as heavily as they affect the mean and standard quantile estimators of those processes.
deviation. However, quantiles have seldom been used in The problem with which we are concerned is the estima-
simulation studies. We believe that the reason for this lies tion of a quantile for a discrete-time, covariance-stationary
in the complexity of quantile estimation. stochastic process. We discuss a procedure for estimating

Estimating quantiles is computationally more difficult quantiles from simulation output. The proposed procedure
than estimating the mean and variance. One of the basic will control the length of a simulation run so that the quantile
problems in estimation of quantiles is that the whole output estimated satisfies a pre-specified precision requirement.
sequence must be stored and sorted if the estimates are  In Section 2, we discuss some theoretical background
based on order statistics. In the past, because of limited of simulation output analysis. In Section 3, we present
computational capability of computers, the quantile estima- our methodologies and proposed procedure for quantile
tion procedures of Iglehart (1976) and Seila (1982a, 1982b) estimation. In Section 4, we give concluding remarks.
can only estimate quantiles of regenerative processes. For
general processes, special algorithms, such as the maximum2 THEORETICAL BACKGROUND
transformation of Heidelberger and Lewis (1984) and the
P2 algorithm of Jain and Chlamtac (1985), were needed Let X1, X»,---, X,,, be a sequence of i.i.d. random vari-
to obtain estimates. But the advance of computer technol- ables from a continuous distributiaf(x) with probability
ogy has alleviated some of the computational issues. Now, density function f(x). Letx, (0 < p < 1) denote the
a 200MHz Pentium computer with only 32 megabytes of 100p’" percentiles as the quantile, such tha¥ (x,) =
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Pr(X < xp) = p. Thus,x, =inf{x : F(x) < p}. If Here Py, (0) is the initial point on the spectrum of the binary
Y1, Y2, ..., Y,, are the order statistics corresponding to the process{I,(x,)}, where
X;'s from n independent observations, (i.€; is the i’
smallest ofX1, X, ..., X,) then a point estimator far, I, (x) = { 1 if X, <ux,
based on the order statistics is the samplguantilex,, 7T 0 otherwise.

Rp = Yup ()

k=00

where[z] denotes the integer ceiling (round-up) of the real Py, (0) = Z Covl[l,(xp), Intk(xp)]
numberz. k=—o0

To define ¢-mixing, let {X;; —o0 < i < oo} be a
stationary sequence of random variables defined on a prob-
ability space @, A, P). Thus, if M and My, are o?(%p) = Py, (0)/[nf2(xp)].
respectively the sequences generated{¥y,i < k} and
{Xi;i > k+j}, and if E; e M* _ and E; € MRS ;. then Therefore,
forall k (—oo <k <o0)andj (j = 1), if A

and

% PN, 1)
|P(E2lE1) — P(E2)| < $(j). #()) =0, o)
asn — oo.
wherel > ¢(1) > ¢(2) > ---, andlim j_.c$(j) = 0, then The factor Py, (0) measures not only the variance of
{X;; —00 < i < oo} is calledg-mixing. Roughly speaking each individual observation but also the correlation between
X1, X2, -+, X,, is ¢-mixing if X; andX;; become essen- observations. One can estimdtg, (0) using the methods of
tially independent ag becomes large. For example, the Heidelberger and Welch (19814, 1981b). The ratif,gf(0)
waiting-time W; of an M/M/1 delay-in-queue ig-mixing, to its value p(1 — p) for the i.i.d. process with identical
becauseW; andW;,; become essentially independentjas ~ marginal distributions gives us a measure of the inflation
becomes large. factor of the required sample size over the independence

Quantile estimation can be computed using standard Case.
nonparametric estimation based on order statistics, which
can be used not only when the data are i.i.d. but also when 3 METHODOLOGIES
the data are drawn from a stationagymixing process of
continuous random variables. Itis shown in Sen (1972) that This section presents the methodologies we will use for our
quantile estimates, based on order statistics, have a normalquantile estimation. The results from Sen (1972) provided us
limiting distribution and are asymptotically unbiased, if the With a strong theoretical basis for using classical statistical

following three conditions are satisfied: techniques to develop order-statistics quantile estimators.
However, data are almost always expensive and scarce.
1. The proces$X;} satisfies thep-mixing con- Increasing the sample size is costly and time-consuming,
dition. both in the sampling procedure and in processing the data.
2. The cumulative distribution functioif, (x), is Although asymptotic results are often applicable when the
absolutely continuous. amount of data is “large enough,” the point at which the
3. The density functionf (x), is finite, positive, asymptotic results become valid generally depends on un-
and absolutely continuous for all= F~1(r) known factors. An important practical decision must be
and0 <t < 1. made regarding the sample sizeequired to achieve the

desired precision. Therefore, both asymptotic theory and
For the case ap-mixing sequences, quantile estimation workable finite-sample approaches are needed by the prac-
is much more difficult than in the independent case. The titioner.
usual order-statistic point estimats,, is still asymptotically
unbiased; however, its variance is inflated by a fag{g0). 3.1 Proportional Half-Width

Usually, the stopping rule of absolute-precision simulation
procedures will ensure that

Xpexy,te (2)
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with a certain confidence level, whefg is the estimated
quantile,x, is the true (but unknown) quantile, ards the
maximum allowed half-width of confidence.

Since we are estimating quantiles, a different precision
requirement can be used. We can control the precision by
ensuring that the quantile estimator

®3)

xP (S] x[pié/]é

where
pEe if0<p—€ andp+¢€ <1,
[p£e'ls = 0,p+¢€] if0>p—€andp+¢€ <1,
p—¢€,1] f0<p—€andp+e > 1
That is, if
P ifo<P<1,
[Plg=1 0 if P <O,
1 if P>1,

then we haved — « confidence that the quantile estimator
%p is between thép — €'13 and[p + €13 quantiles, i.e.

PrilF(iy) —pl<€1=1-a

where €’ is the maximum proportion half-width of the
confidence. We would like to point out that the absolute half-
width € has the sammeasurement unés the variate under
investigation and can be any positive value. However, the
proportional half-widthe’ is dimensionless; it is a proportion
value with no measurement unit and must be between 0
andmax(p,1—p),0<p < 1L

Using the second precision requirement (i.e. equation
(3)), the required sample size, for a fixed-sample-size
procedure of estimating the quantile of an i.i.d. sequence
is the minimumz , that satisfies

2

g 2]’(1 - D)
np = /(ET (4)
wherez;_q/2 is thel —«/2 quantile of the standard normal
distribution, ¢’ is the maximum proportion half-width of
the confidence interval, antl— « is the confidence level.

If we use equation (2) as the precision requirement,

then the sample size, needs to be inflated by a factor of
1/f%(xp). That is

n; = np/fz(xp).

Furthermore, if the sequences grenixing instead of i.i.d.,

then the sample size needs to be further inflated by a factor

of P, (0)/p(L= p).
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3.2 Test of Independence

Because the required sample sizes are drastically different
between i.i.d. and correlated sequences, it is beneficial to
check whether the input data appear to be independent.
We use aruns-uptest for this purpose, see Knuth(1981,
pp. 65-68). The observation immediately following a
run is discarded so that subsequent runs are independent.
Therefore, a straightforward chi-square test can be used.
The runs-up tests looks solely for independence and has
been shown to be very powerful. If the input data sequence
appears to be dependent, then a sequential procedure will
be used.

The test statistic of this simple runs-up test is sensitive to
high correlation with the correlation coefficient of first-order
autoregression data sequence. The runs-up test statistic
becomes larger as the lag 1 (positive) correlation of the
input data sequence becomes stronger. The variance of the
input data sequence that are positively correlated at several
different lags will be at least as large as the variance of the
input data sequence that are correlated only at lag 1 with
the same correlation. Therefore, we can use the runs-up
test statistic to compute the lower bound of the required
sample size for a sequential procedure.

A stochastic model that has such a covariance structure
and admits an exact analysis of performance criteria is the
first-order auto-regressivéAR(1)) process, generated by
the recurrence relation

Xi=p+pXici—p)+e for i=12,...,

where
2 ..
ifi=j ,
E(e;) =0, E(Eief):{g otrlmervdise
O<p<l,

and Xg is deterministically specified to be some constant
xo. Thee;’s are commonly calleerror terms

The AR(1) process, as defined above, has been used as a
model for simulation output processes by humerous authors,
for example, Law and Kelton (1984); it shares many charac-
teristics observed in simulation output processes, including
first- and second-order non-stationarity and autocorrelations
that decline exponentially with increasing lag (so AR(1) se-
guences arg-mixing sequences). If we make the additional
assumption that the;’s are normally distributed, since we
have already assumed that they are uncorrelated, they will
now be independent as well, i.e., thés are i.i.d. A'(0, 1).

Therefore,x;; —=> (0, 17_1/;2)' The spectrum of the AR(1)

process isPx, (0) = 1/(1— p)2.
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We ran ten replications of the runs-up test for each can be used for the lower and upper bound to reduce the
AR(1) process withe’ set t00.005. The average of the test  needed iterations.
statistics with corresponding spectrum and required sample There are two phases in the zoom-in algorithm. First,
size are listed in Table 1. We could plot a graph of the the zoom-in process determines the required simulation run
runs-up test statistic vs. the required sample size to get length with pre-specified precision requirements. Second,
an idea of the relationship between these two variables. replications will be executed iteratively to obtain a con-

Because of the convex nature of their relationship, we can
use linear interpolation to get a conservative estimate of
the lower bound of the required sample size for any given
runs-up test statistic.

Table 1: The Required Sample Size for AR(1) with the
Maximum Proportional Half-Width Set to 0.005

0 Py, (0) | Test Statistici Sample Size
0.5 4 2659 4330
0.75 16 8782 17319
0.80 25 10954 27061
0.85 45 14009 48709
0.90| 100 16877 108241
0.93| 200 19804 216482
0.95| 400 21052 432964

3.3 Sequential Procedure

One of the most important aspects of the design of experi-

ments is the determination of the appropriate sample size of

the basic experiment. Because almost all simulation output

processes are autocorrelated and nonstationary, no fixed-
sample-size procedures can be relied upon to produce a c.i.

that coversy, with the desired probability level, if the fixed
sample size is too small for the system being simulated.
In addition to this problem of coverage, a simulator might

want to determine a sample size large enough to produce

a c.i. with a small absolute precisieanor a small propor-
tional precisione’. It will seldom be possible to know in

advance even the order of the magnitude of the sample size

needed to meet these goals in a given simulation problem,

so some sort of procedure to increase iteratively this sample

size would be needed. Consequently, sequential procedure
have been developed (Law and Kelton 1991).

We propose a simple sequential algorithm with com-
bined precision stopping rules and use order statistics to
estimate quantiles. Theoom-inalgorithm, which is an
enclosure methqdgives upper and lower bounds on the
quantilex, at every step. We assume that theguantile
of F, is finite, i.e. —oo < x, < oo. That implies that
the initial lower and upper bounds af, are greater than
—oo and less tharo respectively. In our algorithm, the
default lower and upper bounds are settb0%%8 and 10308
respectively, which are roughly the minimum and maximum
of floating-point numbers on a 32-bit computer. However,
any a priori knowledge regarding the value of a quantile
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fidence interval. Amemory buffer which is an array of
variables that are defined dsuble(in the C language), is
allocated at the beginning of the computer program. The
memory buffer is used to store and sort the observations
that are deemed most likely to be the true quantile value.
Let ng be the initial sample size, which is also the initial
buffer size. We compute the sample quantile according to
equation (1). The sample quantile lower and upper bound
arex,; andx,,, which can be estimated by

(®)

Xpi = Yin,
and

(6)

wheren,; = no(p —8p), npy = no(p+46,), and0 < §, <
0.5. If np < 0, then the lower bound is not changed. If
npy > no, then the upper bound is not changed.

Once we obtain the lower and upper bounds of phe
quantile, the sample value§; fori =1,...,n, —1 and
i =np+1, ..., noarenolonger needed. More samples can
then be generated to fill in the available slots in the memory
buffer. We will store the newly generated sample values in
the buffer only when the value is between the lower and
upper bounds inclusively. If the sample value is less than
the lower bound, we increase the countgr by one. If the
sample value is larger than the upper bound, we increase the
countern ,, by one. The total sample sizein the second
iteration is then equal tag +n,; +n,,. Thatis, the sample
sizeis increased by, +n ., andno/25, < E(n) < no/ép.
When the buffer is filled completely again, new sample-
guantile lower and upper bounds can be recomputed. The
gaps, is multiplied by DFACTOR & 1, we use0.90) in

xpu = anpu-"

subsequent iterations. A test is also used to see whether the
number of available slots is more than R% (we use 10%) of
the buffer size, in which case DSIZE (we use 1,000) slots
will be added to the buffer when the number of available
slots is less than R% of the buffer size. The process can be
repeated iteratively until the pre-specified stopping criteria
are satisfied. In cases that the sample quantile is outside
the range of the buffer, i.enp < n, or np > np,, then

the simulation needs to be restarted with a larger memory
buffer or larger DFACTOR. The lower and upper bounds
estimated in the current run can be used for later runs so
that the program can be re-started from where the program
terminated without starting from the very beginning. The
estimator can also be estimated by linear extrapolation, but
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the estimator will not be the exact order-statistics quantile
in this case.

It is also possible that while the quantile estimator is
inside the lower and upper bound during the sample-size-
estimating phase, some of the quantile estimators are outside
the range in subsequent replications. In these cases, the
estimators will be treated as outliers and the lower or upper
bounds of the sample quantiles will be used as estimators.

The proposed stopping criterion includes six parts:

1. The difference of consecutive quantile estima-
tors have changed sign at le&stimes, and the
last L consecutive quantile estimators do not
increase or decrease monotonically. Based on
the results of our empirical studies, we set both
K and L to 4. If we assume the consecutive
sample quantiles are independent, the possi-
bility of having four monotonically increasing
or decreasing sample quantiles is 1/24.
There is no hew maximum or minimum in
subsequent simulation runs.

The range covered by, and %,,, ie.
F(Xpu) — F(Xp), should be roughly the
same aspy,, wWhich is the proportion of ob-
servations betweert,; and %,,. That is,
|(F()%pu) - F()?pl)) — pul < €.

The range covered by-po, % ;) and ¢ ., 00),
should be roughly the same psandp,,, which

are the proportion of observations smaller than
xp and larger thart,,, respectively. That is,
|I/:(£pl) —pil <€ and|F()2pu) -1-pJl <

€.
The absolute and relative difference of the
consecutive quantile estimatats of the se-
guential procedure is within tolerance, i.e. less
thane’.

The coverage of,; andx,, is less thare’.
Thatis,F(Xpu) — F (X)) < €,i.e.8, < €'/2.
The zoom-in algorithm:

1. Remark: bfmax is the maximum size of the
memory buffer to be allocated, and ier is an
error flag to the user. bfsize is the size of the
buffer used to store and sort observations,.
and x,, are the lower and upper bounds of
the quantile to be estimated; they are initially
set to—oo and, oo respectively. Dsize is the
incremental size used to expand the buffer.
Simulate bfsize observations and use order
statistics to estimate the quantilg, the lower
boundx,;, and the upper bound,,.

If the observations are determined to be i.i.d.
then go to step 9.
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4. Computer,;, the number of observations that
are smaller than,;, andn p,, the number of
observations that are larger thap,.

Simulate more observations until all the avail-
able slots in the buffer are filled. Use order
statistics to estimate the quantilg, the lower
boundx,;, and the upper bound,,.

If the stopping criteria are satisfied, go to step
9.

Otherwise, if the number of available slots
in the buffer is less thaR% of the current
buffer size, increase the buffer size by Dsize.
If bfsize > bfmax, set ier = 1 and exit.

Go to step 4.

Make anotheK replications, and use the val-
ues of bfsizex,; andx,, computed above.
While the standard deviation of the sample
guantiles is greater than tolerance, make 3
more replications, and s& = K + 3.

Set the quantile point estimator to the upper
bound of the confidence interval of the ob-
servedK + 1 quantile estimators.

©

10.

11.

The first five stopping rules are connected by “and,”
the last stopping rule is connected by “or.” That is, the
procedure will terminate if either stopping rule 6 alone is
satisfied or stopping rules 1 through 5 are satisfied. To avoid
premature stopping of the sequential procedure, we will stop
it only when stopping rules 2 through 5 have been satisfied
in three consecutive iterations. Of course, the number of it-
erations that stopping rules 2 through 5 must be satisfied can
be increased for conservative users. On the other hand, the
sequential procedure will stop immediately whenever stop-
ping rule 6 is satisfied, therefore, the zoom-in algorithm will
always terminate gracefully. This is because once the value
of ¢/ has been decided, the maximum number of iterations
n; can be computed by; = [In(¢'/28,) / In(DFACTORY)]
(because DFACTOR, < €'/2). Therefore, if the number
of iterations that stopping rules 2 through 5 must be satisfied
was set too large, the sequential procedure will always be
terminated by stopping rule 6. Then the sequential proce-
dure will behave like a fixed-sample-size procedure, and the
sample size determined by those stopping rules will be still
large enough for highly correlated data but will be larger
than required for data that are only slightly correlated.

Figure 1 gives an example of the 0.75 quantile
estimator for the waiting-time of an M/M/1 delay-in-
queue process with arrival rate = 0.75, service rate
m 1.0, and ¢ = 0.005 at each iteration. Figure
2 shows the corresponding sample size at each iter-

ation. The process iterates 26 times before it stops.
During the sample-size-determination iterations, the
quantile estimators are not independent, but we as-

sume that those quantile estimators satisfy ¢hmixing
conditions. The sample size grows exponentially during this
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xp 4 CONCLUDING REMARKS

The results from our empirical experiments show that the
procedure is excellent in achieving the pre-specified accu-
] racy. However, the variance of the run length from our
] sequential procedure is large. We ran ten replications of
guantile estimation and set the point estimator to the upper
bound of the confidence interval. Figure 3 gives an example
420 1 of the results of our 0.95 quantile estimator for an AR(1)
] processes witlp = 0.95, « = 0.10% and e’ = 0.0025

The horizontal axis is the run number and the vertical axis
is the cumulative distribution function value, i.E(x ). In

A the 100 runs we did, 97 of those 0.95 quantile estimators

cover at leasB5% of the distribution, and there are only

Iteration three estimators that cover more tf#505% |n those three
Figure 1: 0.75 Quantile Estimator for M/M/1 Queue with C8S€S that the coverages are less B the deviations
A/ = 0.75, ¢ = 0.005 are less thar0.001% i.e. they cover more thaB4.99%
' of the distribution. The maximum deviation of these 100
Sample Size estimators is less thah06%, which is much smaller than

— the required precision’ = 0.0025

F(%p)

0.9508

5000000

4000000
0.9508

3000000
0.9504

2000000 4 09502

0.8500

1000000

0.9498 -

123 4567 8 910112131415 1617 1819 20 21 222324 25 26 27 28 29 30 31 32 33 34 35 3

. 0.9495
Iteratlon T4 7 01318 1922 25 28 3134 37 40 43 45 49 52 55 88 G164 67 70 73 76 79 B2 85 83 91 94 97 100

Run Number

Figure 2: Sample Size for M/M/1 Queue withi = 0.75,
¢’ = 0.005at Each lteration Figure 3: Sequential Estimators of 90% Confidence 0.95
Quantile for AR(1) withp = 0.95 ande’ = 0.0025
phase and the incremental sample size seems large enough
to influence the distribution of the output sequence. Thus, Our proposed zoom-in algorithm requires storing and
the correlation between those estimators is very weak if sorting only a sequence of the most likglyquantile values.
they are correlated at all. The sequential sample quantiles Savings in storage and sorting are substantial for our method.
converge to the true quantile value of 4.39445. The proposed procedure for estimating quantiles can process
The process executes 9 more replications before it sample sizes up to several billion. Our approach has the
stops, and the average sample size of these 9 replications isdesirable properties that it is a sequential procedure and
5,450,000. The sample quantile of each replication fluctuates it does not require the user to haegepriori knowledge
around the true value. The average of these 10 sample of values that the data might assume. This allows the
guantiles is 4.3929, or approximately the 0.749903 quantile. user to apply this method without having to run a pilot
Even though the sample size used in the simulation run is run to determine the range of values to be expected or
much smaller than the theoretical value, the precision of the guess and risk having to re-run the simulation. Either of
estimator is still very good. We believe that this is because these options represents potentially large costs to the user
the theoretical value is for the worst-case scenario. For because many realistic simulations are time-consuming to
most cases, we are able to get good estimates with samplerun. The simplicity of this method should make it attractive
sizes considerably less than the theoretical value. to simulation practitioners.
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