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ABSTRACT

We describe an improved batch-means procedure for bu
ing a confidence interval on a steady-state expected s
ulation response that is centered on the sample mean
a portion of the corresponding simulation-generated tim
series and satisfies a user-specified absolute or relative p
sion requirement. The theory supporting the new algorith
merely requires the output process to be weakly dep
dent (phi-mixing) so that for a sufficiently large batch siz
the batch means are approximately multivariate normal
not necessarily uncorrelated. A variant of the method
nonoverlapping batch means (NOBM), the Automated Si
ulation Analysis Procedure (ASAP) operates as follows: t
batch size is progressively increased until either (a) the ba
means pass the von Neumann test for independence,
then ASAP delivers a classical NOBM confidence inte
val; or (b) the batch means pass the Shapiro-Wilk test
multivariate normality, and then ASAP delivers a correct
confidence interval. The latter correction is based on
inverted Cornish-Fisher expansion for the classical NOB
t-ratio, where the terms of the expansion are estima
via an autoregressive–moving average time series mode
the batch means. An experimental performance evalua
demonstrates the advantages of ASAP versus other wid
used batch-means procedures.

1 INTRODUCTION

In discrete-event simulation, we are often interested
estimating the steady-state meanµX of a stochastic output
process{Xi : i ≥ 1} generated by a single, though long
simulation run. Assuming the target process is station
and given a time series of lengthn from this process, we see
that a natural estimator ofµX is the sample mean, given by

X(n) = 1

n

n∑
i=1

Xi.
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We also require some indication of this estimator’s precision
and typically a confidence interval (CI) forµX is constructed
at a certain confidence level1 − α, where 0 < α < 1.
Normally, we would like the CI forµX to satisfy two
criteria: (a) the CI is narrow enough to be informative, and
(b) the actual coverage probability of the CI is close to th
nominal coverage probability1− α.

The usual method of CI construction from classica
statistics, which assumes independent and identically di
tributed (i.i.d.) observations, is not directly applicable since
observations of a simulation-generated output process a
typically neither independent nor identically distributed
Several methods have been proposed for constructing C
based on dependent observations, including the method
nonoverlapping batch means (NOBM).

In the NOBM method, the sequence of simulation
generated outputs{Xi : i = 1, . . . , n} is divided into k

adjacent nonoverlapping batches, each of sizem. For sim-
plicity, we assume thatn is a multiple ofm so thatn = km;
thus whenk is fixed andm→∞, we haven→∞. The
sample mean,Yj (m), for the j th batch is calculated by

Yj (m) = 1

m

mj∑
i=m(j−1)+1

Xi for j = 1, . . . , k. (1)

Then the grand meanY (n, k) of the individual batch means,
given by

Y (n, k) = 1

k

k∑
j=1

Yj (m) , (2)

is used as an estimator forµX (note thatY (n, k) = X(n)).
Naturally, we seek to construct a CI centered on the estimat
(2).

We will assume the selected output process{Xi} is
stationary(or stationary in the strict sense), that is, the join
distribution of theXi ’s is insensitive to time shifts. We
42
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will also assume the process isweakly dependent, that is,
Xi ’s widely separated from each other in the sequence
almost independent (in the sense ofφ-mixing, see Billingsley
(1968)) so that the lag-q covarianceγ (q)→ 0asq increases.
These weakly dependent processes typically obey a Cen
Limit Theorem (CLT) for dependent processes of the for

√
n
[
X(n)− µX

] D−→
n→∞ N

(
0, σ 2

)
,

whereσ 2 ≡ lim
n→∞ nVar

[
X (n)

]
=

∞∑
i=−∞

γ (i) = γ (0)+ 2
∞∑

i=1

γ (i)

is the steady-state variance constant (SSVC) (as dis
guished from the process varianceσ 2

X). A sufficient con-
dition for the SSVC to exist is that

∑∞
i=−∞ |γ (i) | < ∞

(Anderson 1971). Note thatγ (0) = Var[Xi ].

2 METHOD OF NONOVERLAPPING
BATCH MEANS (NOBM)

Although some output analysis methods attempt to es
mate the steady-state variance constantσ 2 for the con-
struction of the CI, NOBM in its classical setting, i.e.
when the number of batches is fixed, does not. NOB
seeks to make each batch a “repetition" of the exp
iment on the process. In order to achieve this, w
assume that the batch size is sufficiently large so th
the batch means

{
Yj (m) : 1≤ j ≤ k

}
are i.i.d. normal,{

Yj (m) : 1≤ j ≤ k
} i.i.d.∼ N

[
µX, σ 2(m) /m

]
, where the

symbol ∼ is read “is distributed as,"σ 2(m) = γ (0) +
2
∑m−1

q=1

(
1− q

m

)
γ (q) , and Var

[
Yj (m)

] = σ 2(m) /m. It

follows that limm→∞ σ 2(m) = σ 2 and Var
[
Yj (m)

] ≈
σ 2/m, provided thatm is sufficiently large.

We can now apply a classical result from statistics
compute a confidence interval forµX from the batch means

{Yj (m) : 1 ≤ j ≤ k}. If
{
Zj : 1≤ j ≤ k

} i.i.d.∼ N
(
µZ, σ 2

Z

)
so that the{Zi} constitute a random sample of sizek from
a normal distribution with meanµZ and varianceσ 2

Z, then
the sample meanZ(k) and the sample varianceS2

k of the
{Zj } are independent with

Z(k) ∼ N

(
µZ,

σ 2
Z

k

)
, (3)

(k − 1) S2
k

σ 2
Z

∼ χ2
k−1, (4)
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Z(k)− µ√
S2

k /k

∼ tk−1, (5)

where tk−1 denotes the Studentt-distribution with k −
1 degrees of freedom andχ2

k−1 denotes the chi-square
distribution with k − 1 degrees of freedom. We can then
construct an exact100(1− α)% CI for µZ of the form
Z(k) ± t1−α/2,k−1Sk/

√
k. The sample variance of thek

batch means of batches of sizem is

S2
n,k =

1

k − 1

k∑
j=1

[
Yj (m)−X(n)

]2
. (6)

Therefore the NOBMt-ratio equivalent to the ratio in (5)
is

t = Y − µ√
S2

n,k/k

=

Y − µ√
Var

[
X(n)

]
√√√√kVar

[
X(n)

]
Var

[
X(m)

]
√

S2
n,k

Var
[
X(m)

] , (7)

whereX(m) = Y (m) (the mean of a batch of sizem), X(n) =
Y (n, k) (= Y , the grand mean ofn = km observations
organized intok nonoverlapping batches each of sizem),
and S2

n,k (the sample variance of thek batch means) are

respectively defined by (1), (2), and (6). ReplacingZ(k) by
X(n) andS2

k by the sample variance of the batch meansS2
n,k

in (3)–(5), we have that (3)–(5) are approximately satisfie
as the batch sizem becomes sufficiently large while the
batch countk is fixed. Then asm→∞ with k fixed so that
n→∞, an asymptotically valid100(1− α)% confidence
interval for µX is

X(n)± t1−α/2,k−1
Sn,k√

k
. (8)

This CI is approximately valid when the batch countk

is fixed and the batch sizem becomes large because the
batch meansY1(m), . . . , Yk(m) become almost independent
(since the process is weakly dependent) and almost no
mally distributed (from an appropriate CLT for dependen
processes). Thus the asymptotic validity of NOBM depend
on both the assumption of approximate independence of t
batch means and the assumption of the batch means be
approximately normally distributed.

NOBM procedures address the problem of determinin
the batch size,m, and the number of batches,k, that are
required to satisfy the assumptions of independence a
normality. Theoretically, if these assumptions are satisfie
3
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then we will get CIs whose actual coverage is close to th
nominal coverage. In this paper we present a new procedu
called AutomatedSimulation AnalysisProcedure (ASAP)
for implementing the NOBM procedure.

3 BASIS FOR THE AUTOMATED SIMULATION
ANALYSIS PROCEDURE (ASAP)

Prior to developing a new procedure, we carried out the
retical and empirical analyses of the convergence propert
of batch means in selected stochastic processes (Stei
1999). The cases studied were chosen so that a variety
correlation structures and marginal distributions of theXi ’s
were represented. We concluded from the results of the
analyses that if the vector of batch means has a multivaria
normal distribution, then the first two moments of the squar
of the denominator of the classical batch meanst-statistic
(7) are close to the first two moments of aχ2

k−1/(k − 1)

random variable. Additionally, although the numerator o
the t-statistic (7) may not display the correct variance, i.e
the variance may not be equal to one, the multivariate no
mality of the batch means results in a numerator that
normally distributed with expected value zero.

We can also show that the numerator and squar
denominator in (7) have zero correlation when the batc
means are multivariate normal. Therefore, if we have
batch size large enough so that the batch means hav
joint distribution that is approximately multivariate normal,
then we may reasonably assume that the denominator
the t-statistic (7) possesses the required distribution an
that the numerator and the denominator of thet-statistic are
independent; and if these assumptions hold, then we c
make a correction to the classical batch means confiden
interval (8) to compensate for the failure of the numerato
of the NOBM t-statistic to possess a variance of one.

The proposed correction to (8) is based on an inverte
Cornish-Fisher expansion (Hall 1983) for thet-statistic in
which the terms of the expansion are estimated by fitting a
autoregressive–moving average (ARMA) time series mod
(Box and Jenkins 1976) to the series of final batch mean
This approach should result in improved CI coverage
smaller batch sizes, even when the batch means do
appear to be independent. These considerations motiva
the development of the new batch-means procedure tha
described in the next section.

4 OVERVIEW OF ASAP

ASAP requires the following user-supplied inputs:

1. a simulation-generated output process{Xj :
j = 1, 2, . . . , n} from which the steady-state
expected responseµX is to be estimated;
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2. a confidence coefficientα specifying that the
desired confidence-interval coverage probabil-
ity is 1− α; and

3. an absolute or relative precision requirement
specifying the final confidence-interval half-
length in terms of (a) a maximum absolute
half-length H ∗, or (b) a maximum relative
fractionr∗ of the magnitude of the final grand
meanY .

ASAP delivers the following outputs:

1. a nominal100(1− α)% confidence interval
for µX having the form

Y ±H where H ≤ H ∗ or H ≤ r∗|Y |, (9)

provided no additional simulation-generated
observations are required;

2. a new total sample sizen to be supplied to
the algorithm; or

3. the estimated final sample sizeN∗, final batch
sizem∗, and final batch countk∗ required to
deliver a valid confidence interval of the form
(9) that satisfies the user-specified precision
requirement.

If additional observations of the target process must b
generated by the user’s simulation model before a confiden
interval with the required precision can be delivered, the
ASAP must be called again with the additional data; and th
cycle of simulation followed by analysis may be repeate
several times before ASAP finally delivers a confidenc
interval.

A flow chart of ASAP is depicted in Figure 1. On each
iteration of ASAP, the algorithm operates as follows. The
simulation outputs are divided into a fixed number of batche
(namely, 96 batches); and batch means are computed. T
first two batches are discarded, and the remaining 94 bat
means are tested for independence. If the test for ind
pendence fails, then the batch means are tested for jo
multivariate normality. If the normality test fails, then the
batch size is increased by a factor of

√
2 and the process

is repeated until one of the tests is passed.
Upon acceptance of either the hypothesis of indepe

dence or the hypothesis of joint multivariate normality of the
batch means, a CI is constructed—either the usual NOB
CI (8) (in the case of acceptance of independence) or
corrected CI (in the case of acceptance of multivariate no
mality). The correction uses an inverted Cornish-Fishe
expansion (Hall 1983 and Kendall, Stuart and Ord 1987) o
the NOBM t-statistic whose terms are estimated by fitting
an ARMA model to the batch means process. Subseque
iterations of ASAP that are performed to satisfy the use
4
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Figure 1:  Flow Chart of ASAP
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specified precision requirement (if there is one) do not rep
testing for independence or multivariate normality of th
overall set of batch means. These subsequent iterat
require additional sampling, computing the additional ba
means, and reconstructing the CI, again discarding the
two batches of the overall data set (consisting of all origin
observations plus any additional observations required
ASAP). Successive iterations of ASAP continue until th
precision requirement is met.

Subsections 4.1–4.6 below provide some details on
main steps in the operation of ASAP. Steiger (1999) giv
a complete description of ASAP.

4.1 Sample Size for First Iteration of ASAP

ASAP begins with an initial batch sizem1 = 16and requires
data fork1 = 96 initial batches to be collected. The resul
of our tests and experiments with the algorithm show th
ASAP performs well with this initial batch size, even fo
processes that are highly dependent and exhibit mar
departures from normality. There were several reaso
which are presented in the following sections, for choos
an initial batch count of 96. While a total ofk1m1 = 1536
observations may be more than is actually needed in a
4
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cases, such a sample size is usually easy and inexpens
to generate.

4.2 Testing Batch Means for Independence

ASAP uses the von Neumann ratio of the sample mea
square successive difference to the sample variance (v
Neumann 1941, Fishman 1978) to test for independen
of the batch means. For a sample ofk observations,
Z1, Z2, . . . , Zk, this ratio is

Ck = 1−
∑k−1

j=1

(
Zj − Zj+1

)2
2
∑k

j=1

(
Zj − Z

)2 . (10)

The null hypothesis of this test is that theZj ’s are
i.i.d. If the Zj ’s are normally distributed, then underH0,

Ck
·∼ N

(
0, (k − 2)/(k2− 1)

)
, for k as small as 8. If the

Zj ’s are nonnormal, then underH0, Ck has mean zero. Fur-
thermore, as the sample size (in the case of batch mea
k is the number of batches ) increases, the variance
Vk ≡ Ck/

√
(k − 2)/(k2− 1) approaches one and the skew

ness and excess kurtosis converge to zero (Fishman 197
Therefore, ifk is large, then the large sample propertie
suggest that we can approximate the distribution ofVk with
45
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the N(0, 1) distribution, provided that theZj ’s are i.i.d.
The critical values forVk with k ≥ 25 are extremely close
to the critical values of theN(0, 1) (Anderson 1971). We
note here that the more observations used for the test
more powerful the test is, i.e. the more capable the tes
of detecting type II errors. The relative power of the v
Neumann test with largek is one reason for starting with
a batch count of 96.

Our studies of the batch means process reveal
correlation between batch means is not always a mono
decreasing function of the batch size. Therefore, we ch
to use a two-sided test for the independence of the b
means with sizeαind = 0.20. The first two batches of dat
are excluded from computations of batch-means statis
in an effort to overcome the initial bias problem. L
k∗1 = k1−2= 94denote the number of batch means retain
for confidence-interval construction. Thek∗1 retained batch
means are tested for independence using von Neuma
ratio (10). If thek∗1 = 94batch means pass the independe
test, then the classical batch means confidence interva
is constructed with midpointY and half-length

H = t1−α/2,k∗1−1

Sn,k∗1√
k∗1

.

No correction is made to the confidence interval because
sumably none is needed if the batch means are indepen
(Fishman 1978, Fishman and Yarberry 1997).

4.3 Testing Batch Means for Joint Normality

If the test for independence fails, then ASAP tests the ba
means for joint normality in the following manner. Firs
g = 16 vectors each consisting ofr = 4 adjacent batch
means are constructed. Two batch means between eac
of four are ignored in an effort to obtain approximate
independent 4-dimensional vectors of batch means, i.e

Y3(m), Y4(m), Y5(m), Y6(m)︸ ︷︷ ︸
1st (4×1) vector y1

, Y7(m), Y8(m)︸ ︷︷ ︸
ignored

,

Y9(m), Y10(m), Y11(m), Y12(m)︸ ︷︷ ︸
2nd (4×1) vector y2

, Y13(m), Y14(m)︸ ︷︷ ︸
ignored

,

. . . , Y93(m), Y94(m), Y95(m), Y96(m)︸ ︷︷ ︸
16th (4×1) vector y16

. (11)

We apply the Shapiro-Wilk test for multivariate normali
(Malkovich and Afifi 1973, Tew and Wilson 1992) to th
resulting sampleg = 16 vectors, each consisting ofr = 4
adjacent batch means. Although joint normality of the
selected sets of4 adjacent batch means is not sufficient
ensure joint normality of all96 batch means (see exerci
15.20 on p. 504 of Kendall, Stuart and Ord 1987),
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results reported of an extensive experimental evaluation
ASAP’s performance strongly suggest that testing for joi
quadrivariate normality in adjacent batch means yields go
performance in many situations.

Given a random sample{yi : i = 1, . . . , g} of r-
dimensional response vectors, we perform the test for m
tivariate normality as follows. First we compute the samp
statistics

ȳ = g−1
g∑

i=1

yi and A =
g∑

i=1

(yi − ȳ)(yi − ȳ)T .

Throughout the rest of this discussion, we assume thatA
is nonsingular with probability one. This property can
be ensured, for example, by a mild technical requireme
detailed by Tew and Wilson (1992), provided the replicatio
count g > r; and since we taker = 4 and g = 16 in
ASAP, with probability one we can identify the observatio
y† ∈ {yi : i = 1, 2, . . . , g} for which

(y† − ȳ)TA−1(y† − ȳ) = max
i=1,...,g

{
(yi − ȳ)TA−1(yi − ȳ)

}
.

We compute Zi ≡ (y† − ȳ)TA−1(yi − ȳ) for i =
1, 2, . . . , g,and we sort these quantities in ascending ord
to obtain the corresponding order statisticsZ(1) < Z(2) < · · ·
< Z(g). Let {ai : i = 1, 2, . . . , g} denote the coefficients of
the univariate Shapiro-Wilk statistic for a random samp
of size g (see Royston 1982a, 1982b). The multivariat
Shapiro-Wilk statistic is then given by

W ∗ =
[∑g

i=1 aiZ(i)

]2
(y† − ȳ)TA−1(y† − ȳ)

(Malkovich and Afifi 1973). The null hypothesis of multi-
normal responses{yi} is rejected at theα level of significance
(0 < α < 1) if W ∗ < w∗α(r, g), where w∗α(r, g) denotes
the quantile of orderα for the null distribution ofW ∗ (that
is, the distribution ofW ∗ when this statistic is based on
a random sample of sizeg taken from anr-dimensional
nonsingular normal distribution).

For the multivariate normality test in ASAP, we used
the sizeαmvn = 0.10based on results of experimenting with
the parameterαmvn. In practice, ASAP appears to perform
well even where there is mild departure from multivariat
normality of the batch means.

4.4 Additional Iterations of ASAP

On theith iteration of ASAP, we letki andmi respectively
denote the batch count and the batch size; and we ta
k1 = 96, m1 = 16 on the first iteration of the procedure.
6
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An additional iteration of ASAP will be required if the
following conditions occur on iterationi:

a) the independence test (see Section 4.2) yields
a significant result (that is, independence is
rejected) at the level of significanceαind when
this test is applied to theki batch means for
batches of sizemi ; and then

b) the multivariate Shapiro-Wilk test (see Section
4.3) yields a significant result (that is, mul-
tivariate normality is rejected) at the level of
significanceαmvn when this test is applied to
the corresponding sample of size 16 consisting
of four-dimensional random vectors formed
from adjacent batch means.

Now if conditions a) and b) both occur on iterationi of
ASAP, then iterationi + 1 will be required in which the
batch size and batch count are respectively taken to be

mi+1 = b
√

2mic and ki+1 = ki

so the total required sample size isni+1=mi+1ki+1; and thus
the user must generate the additional simulation respon{
Xj : j = ni + 1, ni + 2, . . . , ni+1

}
before executing iter-

ation i + 1 of ASAP. We chose to increase the batch siz
by the factor

√
2 at each iteration so that the total samp

size would double on every other iteration.

4.5 Inverted Cornish-Fisher Correction for
Dependent Normal Batch Means

If the batch means have failed the test for independence
have passed the test for joint multivariate normality, then w
would like to make a correction to the classical batch mea
CI to adjust for the correlation between the batch mea
A standard way of adjusting CIs for nonnormality is to us
some version of an inverted Edgeworth expansion for t
corresponding point estimator of the parameter of intere
(Hall 1983, Kendall, Stuart and Ord 1987). ASAP uses
inverted Cornish-Fisher expansion of the NOBMt-statistic
(7) that is in terms of the statistic’s first four cumulants
Expressions for these cumulants involve Var[X(m)] and
Var[X(n)]. Therefore, in order to compute sample estim
tors of these cumulants, we must have sample estima
of Var[X(m)] and Var[X(n)].

If the hypothesis of multivariate normality in Section 4.
is accepted, then to obtain sample estimators of Var[X(m)]
and Var[X(n)] ASAP first fits an ARMA process of at most
order 2 to the set ofk∗ = 94batch means. Obtaining a good
result from the ARMA fitting process generally requires ove
50 observations (Box and Jenkins 1976, p. 18), which
the final reason for choosing an initial number of batch
close to 100. Fits of five possible ARMA models are a
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tempted: AR(1), AR(2), MA(1), MA(2), and ARMA(1,1).
IMSL routines (IMSL Problem Solving Software Systems
1987) are used to estimate the autoregressive–moving ave
age parameters, the residual variance,σ 2

a , and the process
variance,σ 2

Y = Var[Y`], for the five ARMA models. Then
the “best" fit of the five is chosen. Preference is given to
the AR(1) model. An alternate model is used only if it
has a significantly smaller residual variance than the AR(1)
model.

The estimators of Var[X(m)] and the parameters from
the ARMA fit are then used to estimate Var[X(n)]:

V̂ar
[
X(n)

] = 1

k∗
k∗−1∑

q=−k∗+1

(
1− |q|

k∗

)
γ̂m(q), (12)

whereγ̂m(q) denotes the estimated lag-q covariance of the
batch meansYj , j = 3, . . . , k based on the fitted time series
model.

The derivation of the terms in the inverted Cornish-
Fisher expansion is based on the following three assump
tions:

A1: The batch means have a joint multivariate nor-
mal distribution.

A2: The numerator and denominator of thet-ratio
(7) are independent.

A3: The square of the denominator of thet-ratio
(7) is distributed asχ2

k−1/(k − 1).

AssumptionA1 is based on using a batch size large enough
to yield a nonsignificant result for the multivariate Shapiro-
Wilk test as described in Section 4.3. AssumptionA2 is
supported by the result that if the batch means have a
multivariate normal distribution, then the numerator and
squared denominator of thet-statistic (7) are uncorrelated.
Finally, results of our studies of the convergence properties
of the numerator and squared denominator of the NOBM
t-ratio (7) suggest that the square of the denominator ha
approximately achieved the distribution of aχ2

k−1/(k − 1)

variate if the batch sizem is large enough to result in
approximate multivariate normality of the batch means.

The following are the cumulantsκ1, κ2, κ3 and κ4 of
the NOBM t-ratio (7) computed under assumptionsA1–A3:

κ1 = κ3 = 0, (13)

κ2 = kVar[X(n)](k − 1)

Var[X(m)](k − 3)
, (14)
7
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and

κ4 = 2k2(k − 1)2Var2[X(n)]
(k − 3)2(k − 5)Var2[X(m)] . (15)

Based on an inverted Cornish-Fisher expansion for th
classical NOBMt-ratio, an adjusted100(1−α)%confidence
interval for µX is[

X(n)− h′(z1−α/2)
Sn,k√

k
, X(n)− h′(−z1−α/2)

Sn,k√
k

]
,

wheren = km and

h′(z1−α/2) = z1−α/2+ (κ1− κ3/6)

+ [(κ2− 1)/2] z1−α/2+ (κ3/6)z2
1−α/2,

for the first-order pivot, or

h′(z1−α/2) = z1−α/2+ (κ1− κ3/6)

+ [(κ2− 1)/2− κ4/8] z1−α/2

+(κ3/6)z2
1−α/2+ (κ4/24)z3

1−α/2,

for the second-order pivot, andκi denotes theith cumulant
of the t-statistic, fori = 1, 2, 3, 4 (Hall 1983, Chien 1989).

Under the assumptionsA1–A3, the first four cumulants
of thet-ratio are given by (13)–(15). By substituting the vari
ance estimator̂Var[X(m)] from the ARMA fit for Var[X(m)]
and by substituting the variance estimator̂Var[X(n)] of dis-
play (12) for Var[X(n)] in the expressions (14) and (15) for
κ2 andκ4, we obtain the following approximate100(1−α)%
confidence intervals forµX:

X(n)± z1−α/2

(
1+ κ̂2− 1

2

)√
V̂ar[X(m)]

k
, (16)

or

X(n)±
[
z1−α/2

(
1+ κ̂2− 1

2
− κ̂4

8

)
+ κ̂4

24
z3

1−α/2

]

×
√

V̂ar[X(m)]
k

,(17)

depending on which pivot is used.

4.6 Fulfilling the Precision Requirement

The final step in ASAP is to determine if the confidenc
interval that was constructed meets the user’s requireme
for precision. The confidence interval may be the one bas
on a nonsignificant result from the independence test (th
is, the batch means pass the test for independence) or
adjusted CI based on a nonsignificant result from the te
44
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for multivariate normality of the batch means (that is, the
batch means pass the test for multivariate normality). If the
relevant requirement

H ≤ H ∗ or H ≤ r∗|Y | (18)

for the precision of the confidence interval is satisfied, then
ASAP terminates, returning the sample meanY and the
CI half-lengthH . If the precision requirement (18) is not
satisfied on iterationi of ASAP, then the procedure estimates
the number of additional batchesk+i required to satisfy (18)
using batch sizemi ,

k+i =
⌈(

H

H ∗

)2

ki

⌉
− ki ;

thus on iterationi+1of ASAP the batch count and batch size
areki+1← ki+k+i andmi+1← mi so that the total required
sample size on iterationi+1 is ni+1← mi+1ki+1; and thus
the user must generate the additional simulation respons
{Xj : j = ni+1, ni+2, . . . , ni+1}before executing iteration
i + 1 of ASAP.

The user then performs iterationi+1 of ASAP with the
values ofmi+1, ki+1 andni+1 for the batch size, batch count
and total sample size, respectively. The first two batche
are again omitted from the calculation of the sample mean
The batch means of(ki+1 − 2) batches of sizemi+1 are
computed. If an ARMA model was used in constructing
an adjusted CI on the previous iteration, then an update
ARMA fit is made using(ki+1− 2) batches of sizemi+1;
moreover, in this situation new estimates of Var[X(m)],
Var[X(n)], κ2 andκ4 are computed, and the CI (16) or (17)
is constructed. If the CI for the previous iteration was based
on batch means that passed the independence test, then
classical NOBM confidence interval (8) is constructed with
the batch means of(ki+1− 2) batches of sizemi+1. If the
precision requirement (18) is satisfied on iterationi + 1 of
ASAP, then the algorithm terminates, returningY and H .
If the required precision is not achieved on iterationi + 1,
ASAP estimates a new number of batches and sample siz
to be used for the next iteration.

5 PERFORMANCE EVALUATION
FOR ASAP

We tested ASAP on many problems representing variou
types of stochastic processes. In this section we discus
the results of this experimentation on two of the processe
tested. The steady-state mean is available analytically i
these models. Therefore, we were able to evaluate th
performance of ASAP in terms of actual coverage versu
nominal coverage.
8
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The first test case we present is a process defined
a real-valued function on a simple 2-state Discrete Ti
Markov Chain (DTMC) whose one-step probability trans
tion matrix and cost vector associated with the states
respectively given by

P =
( 0 1

0 0.99 0.01
1 0.01 0.99

)
and h = ( 0 1

5 10
)
. (19)

The second case is the waiting time process in theM/M/1
queue with utilizationτ = 0.9. Both of these processe
display high dependency. Also the marginal distribution
theXi ’s in the waiting time process of theM/M/1queue has
an exponential tail and is therefore markedly nonnormal.
believe the characteristics of high dependency and mark
nonnormal marginal distribution should stress any out
analysis procedure.

We made 100 independent simulations of these t
systems and attempted to construct nominal 90% confide
intervals for three cases:

(i) no precision requirement, i.e., we terminated
the procedure when a CI was constructed based
on 94 batches of the size at which the batch
means passed either the statistical test for inde-
pendence or the test for multivariate normality;

(ii) ±15% precision so thatr∗ = 0.15 in (18);
and

(iii) ±7.5% precision so thatr∗ = 0.075 in (18).

This enabled us to estimate the actual coverage of CIs c
structed via the ASAP algorithm. We also tested the per
mance of the LBATCH and ABATCH algorithms (Fishma
1996, Fishman and Yarberry, 1997) for comparison. Sin
LBATCH and ABATCH do not explicitly determine a sampl
size, we passed to the LBATCH and ABATCH algorithm
the same data sets used by ASAP. Therefore, the CIs c
puted by the LBATCH and ABATCH algorithms are base
on the same sample sizes and data sets used for AS
We do not mean to imply that these results are what
could expect routinely from either LBATCH or ABATCH
but only what one could expect by applying LBATCH an
ABATCH to the data sets that resulted from first using t
ASAP algorithm.

Tables 1 and 2 display in detail the results of our tes
Table 3 displays the additional results obtained throu
standalone application of LBATCH and ABATCH to waitin
times in theM/M/1 queue withτ = 0.9 when LBATCH
and ABATCH operate with a stopping rule based on
user-specified precision requirement for the final confide
interval. We began the experiments for these systems w
a sample size of 1536 (the same sample size required
the first iteration of ASAP). We then applied a stopping ru
4
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Table 1:  Performance of Batch-Means Procedures for th
2-State DTMC Defined by (19) Based on 100 Independen
Replications of Nominal90% Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH ASAP†

NO PRECISION
avg. sample size 3036
coverage 70% 85% 96%
avg. rel. precision 0.069 0.086 0.159
avg. CI half-length 0.515 0.642 1.20
var. CI half-length 0.009 0.012 0.172
±15% PRECISION
avg. sample size 5171
coverage 72% 81% 96%
avg. rel. precision 0.060 0.070 0.120
avg. CI half-length 0.045 0.053 0.906
var. CI half-length 0.011 0.010 0.023
±7.5% PRECISION
avg. sample size 22711
coverage 81% 86% 99%
avg. rel. precision 0.034 0.038 0.059
avg. CI half-length 0.253 0.284 0.438
var. CI half-length 0.003 0.003 0.006

†No. of classical and corrected CIs generated by ASAP: 0 and
100, respectively.

Table 2:  Performance of Batch-Means Procedures for th
M/M/1 Queue Waiting Time Process withτ = 0.9 Based on
100 Independent Replications of Nominal90%Confidence
Intervals

Precision Procedure
Requirement LBATCH ABATCH ASAP†

NO PRECISION
avg. sample size 7719
coverage 44% 60% 83%
avg. rel. precision 0.202 0.301 1.088
avg. CI half-length 1.70 2.67 11.8
var. CI half-length 0.683 3.92 523.0
±15% PRECISION
avg. sample size 298950
coverage 79% 80% 88%
avg. rel. precision 0.061 0.069 0.089
avg. CI half-length 0.543 0.613 0.783
var. CI half-length 0.027 0.039 0.082
±7.5% PRECISION
avg. sample size 815755
coverage 88% 90% 94%
avg. rel. precision 0.039 0.043 0.046
avg. CI half-length 0.353 0.382 0.413
var. CI half-length 0.012 0.039 0.018

†No. of classical and corrected CIs generated by ASAP: 4 and
96, respectively.
49



e

r

n
a
e

r
.

i
u

e
o

c
s

io

o
.

r

f-

n

we
g
h
d.
es

s,
nt

e

ld
at

lts,

d,
t

by
e

55

le

nt

:

50
Improved Batching for Confidence Int

Table 3:  Performance of LBATCH and ABATCH unde
a Relative Precision Requirement forM/M/1 Queue with
τ = 0.9 Based on 100 Independent Replications of Nomin
90% Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH

NO PRECISION
avg. sample size 1536 1536
coverage 35% 54%
avg. rel. precision 0.204 0.338
avg. CI half-length 1.648 2.882
var. CI half-length 0.552 4.250
±15% PRECISION
avg. sample size 34349 50910
coverage 65% 77%
avg. rel. precision 0.121 0.125
avg. CI half-length .1.071 1.080
var. CI half-length 0.0513 0.0336
±7.5% PRECISION
avg. sample size 227987 397387
coverage 80% 81%
avg. rel. precision 0.062 0.062
avg. CI half-length 0.551 0.553
var. CI half-length 0.005 0.007

similar to the one used for ASAP. After the initial run with
1536 observations was made, the final CI constructed
LBATCH or ABATCH was examined to see if the precisio
requirement was met. If not, then we calculated an estim
of additional observations that would be required, we gen
ated the additional observations, and we executed LBATC
or ABATCH again with all of the observations accumulate
so far. This process was repeated until the final CI delive
by LBATCH or ABATCH met the precision requirement
We realize that LBATCH and ABATCH were not really
designed to be used in this way, but using such stopp
rules is a natural approach to planning steady-state sim
tions; and we believe that the results in Table 3 provide
more complete perspective on the relative performance
LBATCH and ABATCH versus ASAP. No effort was mad
to analyze the convergence of the sample estimators fr
LBATCH and ABATCH, as is suggested in Fishman (1998
We only include these results to highlight the performan
advantages achieved by ASAP without requiring analy
or manual intervention by the user.

ASAP showed somewhat better coverage than d
LBATCH in the case of the 2-state DTMC (19) with high
positive correlation, especially in the cases of no precis
requirement and±15% precision requirement. For this
model, ASAP constructed adjusted CIs based on a n
significant result on the test for multivariate normality (i.e
the batch means passed the Shapiro-Wilk test for multiva
ate normality) in all 100 cases. The CIs from ASAP a
wider than those from LBATCH and ABATCH, which is

4

rval Construction in Steady-State Simulation

al

by

te
r-
H

d
ed

ng
la-
a
of

m
).
e
is

id

n

n-
,
ri-
e

necessary for the improved coverage. However, the coe
ficient of variation of the CI half-lengths are smaller than
those from LBATCH and ABATCH.

As stated previously the waiting time process in the
M/M/1queue withτ = 0.9 is a difficult case in that the lag-1
correlation of the observations is close to one, the correlatio
function decays slowly, and the marginal distribution ofXi

has an exponential tail. Because of these characteristics,
can expect slow convergence to both conditions for ensurin
the validity of the batch means method, i.e., that the batc
means are independent and identically normally distribute
This case most dramatically displays one of the advantag
of the ASAP algorithm, i.e., it does not rely solely on the von
Neumann test for independence. In fact, in 96 replication
ASAP constructed adjusted CIs based on a nonsignifica
result from the test for multivariate normality.

As can be seen from Table 2, ASAP substantially
outperforms LBATCH and ABATCH for the case of no
precision requirement. As we demand more precision, w
are of course forced to perform more sampling. At the
precision requirement of±7.5% the three algorithms give
similar results. This implies that LBATCH and ABATCH
will give satisfactory results if supplied with an adequate
amount of data. However, LBATCH and ABATCH provide
no mechanism for assessing the amount of data which shou
be used. This emphasizes a desirable feature of ASAP—th
it determines a sample size that gives acceptable resu
even when no precision is specified.

From Table 3 we see that in theM/M/1 queue with
τ = 0.9, if LBATCH and ABATCH are run until a certain
precision requirement is met, coverage is severely degrade
especially when the precision requirement is so “loose" tha
it leads to relatively little additional sampling. Note that
the sample sizes are much smaller than those required
ASAP to achieve the same precision. For example, th
average sample size used by ABATCH for the waiting time
process in theM/M/1 queue with utilizationτ = 0.9
and ±7.5% precision is approximately 397,387. This is
considerably less than the average sample size of 815,7
used by ASAP. For±7.5% precision and90% confidence,
Whitt’s (1989) approximation for estimating required run
lengths of queueing simulations yields an estimated samp
size of 855,238 for the waiting time process in theM/M/1
queue withτ = 0.9. This strongly suggests that ASAP
yields adequate sample sizes when a precision requireme
is specified.

6 CONCLUSIONS

The advantages of ASAP may be summarized as follows

• ASAP addresses the initial bias problem.
• ASAP is fully automated, since it

− specifies initial sample size,
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− determines final sample size,

− delivers CI of prespecified precision, and

− requires no intervention or analysis by the
user.

• Although it is heuristic, ASAP has some the-
oretical basis.

• ASAP does not rely solely on tests for inde-
pendence.

• ASAP gives good results for highly dependent
processes.

• ASAP delivers stable CIs with close to nominal
coverage.
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