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ABSTRACT We also require some indication of this estimator’s precision;

and typically a confidence interval (Cl) fary is constructed
We describe an improved batch-means procedure for build- at a certain confidence levdl — «, where0 < o < 1.
ing a confidence interval on a steady-state expected sim- Normally, we would like the CI foruyx to satisfy two
ulation response that is centered on the sample mean of criteria: (a) the Cl is narrow enough to be informative, and
a portion of the corresponding simulation-generated time (b) the actual coverage probability of the Cl is close to the
series and satisfies a user-specified absolute or relative preci-nominal coverage probability — «.
sion requirement. The theory supporting the new algorithm The usual method of CI construction from classical
merely requires the output process to be weakly depen- statistics, which assumes independent and identically dis-
dent (phi-mixing) so that for a sufficiently large batch size, tributed (i.i.d.) observations, is not directly applicable since
the batch means are approximately multivariate normal but observations of a simulation-generated output process are
not necessarily uncorrelated. A variant of the method of typically neither independent nor identically distributed.
nonoverlapping batch means (NOBM), the Automated Sim- Several methods have been proposed for constructing Cls
ulation Analysis Procedure (ASAP) operates as follows: the based on dependent observations, including the method of
batch size is progressively increased until either (a) the batch nonoverlapping batch means (NOBM).
means pass the von Neumann test for independence, and In the NOBM method, the sequence of simulation-
then ASAP delivers a classical NOBM confidence inter- generated output$X; : i = 1,...,n} is divided intok
val; or (b) the batch means pass the Shapiro-Wilk test for adjacent nonoverlapping batches, each of gizé-or sim-
multivariate normality, and then ASAP delivers a corrected plicity, we assume that is a multiple ofm so thatn = km;
confidence interval. The latter correction is based on an thus whenk is fixed andm — oo, we haven — oo. The
inverted Cornish-Fisher expansion for the classical NOBM sample meany; (m), for the jth batch is calculated by
t-ratio, where the terms of the expansion are estimated

via an autoregressive—moving average time series model of 1 mj
the batch means. An experimental performance evaluation Yim== > X; forj=1...k (1
demonstrates the advantages of ASAP versus other widely M em(-1D41

used batch-means procedures.

Then the grand meari(n, k) of the individual batch means,
1 INTRODUCTION given by

. . . . . k
In discrete-event simulation, we are often interested in — 1
estimating the steady-state meag of a stochastic output Yin, k) = k Z Yjm), @
process{X; : i > 1} generated by a single, though long, =1
simulation run. Assuming the target process is stationary s ysed as an estimator fary (note thaty (n, k) = X (n)).
and given a time series of lengttfrom this process, we see  Natyrally, we seek to construct a Cl centered on the estimator
that a natural estimator ¢fy is the sample mean, given by ).

; We will assume the selected output procg3s} is

X(n) = } Z X, stationary(or stationary in the strict sense), that is, the joint
n = a distribution of theX;'s is insensitive to time shifts. We
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will also assume the processusakly dependenthat is,

X;'s widely separated from each other in the sequence are

almostindependent (in the sens@efixing see Billingsley
(1968)) so that the lag-covariance’ (q) — 0asq increases.

These weakly dependent processes typically obey a Central

Limit Theorem (CLT) for dependent processes of the form

N(O, 02) ,

D

—
n—o0

Vi [X(n) — x|

whereo? = lim nVar[X (n)]
=Y rO=yO+2) @
i=—00 i=1

is the steady-state variance constant (SSVC) (as distin-
guished from the process varianc%). A sufficient con-
dition for the SSVC to exist is tha} ;2 |y(i)| < oo
(Anderson 1971). Note that(0) = Var[ X;].

2 METHOD OF NONOVERLAPPING
BATCH MEANS (NOBM)

Although some output analysis methods attempt to esti-
mate the steady-state variance consiaftfor the con-
struction of the CI, NOBM in its classical setting, i.e.,
when the number of batches is fixed, does not. NOBM
seeks to make each batch a “repetition” of the exper-
iment on the process. In order to achieve this, we
assume that the batch size is sufficiently large so that
the batch meandY;(m):1< j <k} are iid. normal,

{Yim):1<j <k} " Nux.o %) /m], where the
symbol ~ is read “is distributed as,5%(m) = y(0) +
2y 11— L) y(g). mﬂ\mﬁwmﬂ._a%mnm It
follows that lim,,_.oc 02(m) = o2 and Var[Y;(m)] ~
o?/m, provided thatn is sufficiently large.

We can now apply a classical result from statistics to
compute a confidence interval fary from the batch means
Yimy:1<j<kh If{z;:1<j <k} "™ N(uz. o2)
so that the{Z;} constitute a random sample of sizdrom
a normal distribution with meapz and variancer2, then
the sample mea (k) and the sample varianc® of the
{Z;} are independent with

— O'2
ﬂ@“NOLf>, ®3)
(k — 1) §?
———* ~xe 1 4)
0z

and
Z(k) —

Y
JS2/k

where 1,_1 denotes the Studentdistribution with & —

1 degrees of freedom anpjk , denotes the chi-square
distribution with k — 1 degrees of freedom. We can then
construct an exacl00(1 — «)% CI for uz of the form
Z(k) + tl_a/z,k_lsk/\/E. The sample variance of the
batch means of batches of sizeis

®)

k

3 [vim) - X))

j=1

(6)

Therefore the NOBM-ratio equivalent to the ratio in (5)
is

Y — 1 kVar [ X (n)]
Y _ Var [X )]\ Var[X(m)]
L Y—p _ [X(m)] 7 @
Vi Sr%k/k Sn k
Var [ X (m)]
whereX (m) = Y (m) (the mean of abatch of size), X (n) =

Y(n,k) (= Y, the grand mean of = km observations
organized intok nonoverlapping batches each of sizg,
and S,f,k (the sample variance of the batch means) are
respectively defined by (1), (2), and (6). Replacif@) by

X (n) andS? by the sample variance of the batch me&fis

in (3)—(5), we have that (3)—(5) are approximately satisfied
as the batch size: becomes sufficiently large while the
batch count is fixed. Then ag: — oo with k fixed so that

n — oo, an asymptotically validlOO(1 — «)% confidence
interval for uwy is

_ Sy
X(n) £ t1-a/24-1—= 8)

N
This Cl is approximately valid when the batch count

is fixed and the batch siz& becomes large because the
batch meangi(m), ..., Y, (m) become almost independent
(since the process is weakly dependent) and almost nor-
mally distributed (from an appropriate CLT for dependent
processes). Thus the asymptotic validity of NOBM depends
on both the assumption of approximate independence of the
batch means and the assumption of the batch means being
approximately normally distributed.

NOBM procedures address the problem of determining
the batch sizem, and the number of batchek, that are
required to satisfy the assumptions of independence and
normality. Theoretically, if these assumptions are satisfied,
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then we will get Cls whose actual coverage is close to the
nominal coverage. In this paper we present a new procedure
called AutomatedSimulation Analysis Procedure (ASAP)

for implementing the NOBM procedure.

3 BASIS FOR THE AUTOMATED SIMULATION
ANALYSIS PROCEDURE (ASAP)

Prior to developing a new procedure, we carried out theo-
retical and empirical analyses of the convergence properties

2. a confidence coefficient specifying that the
desired confidence-interval coverage probabil-
ity is 1 — «; and

3. an absolute or relative precision requirement

specifying the final confidence-interval half-
length in terms of (a) a maximum absolute
half-length H*, or (b) a maximum relative

fractionr* of the magnitude of the final grand
meany .

of batch means in selected stochastic processes (SteigerASAP delivers the following outputs:

1999). The cases studied were chosen so that a variety of
correlation structures and marginal distributions of ¥é&s
were represented. We concluded from the results of these
analyses that if the vector of batch means has a multivariate
normal distribution, then the first two moments of the square
of the denominator of the classical batch measssatistic
(7) are close to the first two moments ofxé_l/(k -1
random variable. Additionally, although the numerator of
the ¢-statistic (7) may not display the correct variance, i.e.,
the variance may not be equal to one, the multivariate nor-
mality of the batch means results in a numerator that is
normally distributed with expected value zero.

We can also show that the numerator and squared
denominator in (7) have zero correlation when the batch
means are multivariate normal. Therefore, if we have a

batch size large enough so that the batch means have a

joint distribution that is approximately multivariate normal,
then we may reasonably assume that the denominator of
the r-statistic (7) possesses the required distribution and
that the numerator and the denominator of ttstatistic are
independent; and if these assumptions hold, then we can
make a correction to the classical batch means confidence
interval (8) to compensate for the failure of the numerator
of the NOBM ¢-statistic to possess a variance of one.

The proposed correction to (8) is based on an inverted
Cornish-Fisher expansion (Hall 1983) for thetatistic in
which the terms of the expansion are estimated by fitting an
autoregressive—moving average (ARMA) time series model
(Box and Jenkins 1976) to the series of final batch means.
This approach should result in improved Cl coverage at
smaller batch sizes, even when the batch means do not

appear to be independent. These considerations motivated

the development of the new batch-means procedure that is
described in the next section.

4 OVERVIEW OF ASAP

ASAP requires the following user-supplied inputs:

1. a simulation-generated output procgss; :
j=1,2,...,n} from which the steady-state

expected responsey is to be estimated:;

1. a nominall00(1 — @)% confidence interval

for ux having the form
Y+ H where H<H* or H<r*Y], (9)
provided no additional simulation-generated
observations are required;

a new total sample size to be supplied to
the algorithm; or

the estimated final sample si¥e, final batch
sizem™, and final batch count* required to
deliver a valid confidence interval of the form
(9) that satisfies the user-specified precision
requirement.

If additional observations of the target process must be
generated by the user’s simulation model before a confidence
interval with the required precision can be delivered, then
ASAP must be called again with the additional data; and this
cycle of simulation followed by analysis may be repeated
several times before ASAP finally delivers a confidence
interval.

A flow chart of ASAP is depicted in Figure 1. On each
iteration of ASAP, the algorithm operates as follows. The
simulation outputs are divided into a fixed number of batches
(namely, 96 batches); and batch means are computed. The
first two batches are discarded, and the remaining 94 batch
means are tested for independence. If the test for inde-
pendence fails, then the batch means are tested for joint
multivariate normality. If the normality test fails, then the
batch size is increased by a factor <@ and the process
is repeated until one of the tests is passed.

Upon acceptance of either the hypothesis of indepen-
dence or the hypothesis of joint multivariate normality of the
batch means, a Cl is constructed—either the usual NOBM
Cl (8) (in the case of acceptance of independence) or a
corrected CI (in the case of acceptance of multivariate nor-
mality). The correction uses an inverted Cornish-Fisher
expansion (Hall 1983 and Kendall, Stuart and Ord 1987) of
the NOBM ¢-statistic whose terms are estimated by fitting
an ARMA model to the batch means process. Subsequent
iterations of ASAP that are performed to satisfy the user-
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Figure 1: Flow Chart of ASAP

specified precision requirement (if there is one) do not repeat cases, such a sample size is usually easy and inexpensive
testing for independence or multivariate normality of the to generate.

overall set of batch means. These subsequent iterations

require additional sampling, computing the additional batch 4.2 Testing Batch Means for Independence

means, and reconstructing the Cl, again discarding the first

two batches of the overall data set (consisting of all original ASAP uses the von Neumann ratio of the sample mean-

observations plus any additional observations required by square successive difference to the sample variance (von
ASAP). Successive iterations of ASAP continue until the Neumann 1941, Fishman 1978) to test for independence

precision requirement is met. of the batch means. For a sample bfobservations,
Subsections 4.1-4.6 below provide some details on the Z1, Zo, ..., Z, this ratio is
main steps in the operation of ASAP. Steiger (1999) gives
.. k—1 2
a complete description of ASAP. o1 Yic1(Zj = Zj4a) (10
= p >
4.1 Sample Size for First Iteration of ASAP 221':1 (ZJ' - 7)

ASAP begins with an initial batch size; = 16and requires ~ 1he null hypothesis of this test is that thg;'s are
data fork; = 96 initial batches to be collected. The results 1--d- If the Z;’s are normally distributed, then undéo,
of our tests and experiments with the algorithm show that Cyi ~ N(O, (k —2)/ (k% — 1)), for k as small as 8. If the
ASAP performs well with this initial batch size, even for  Z;’s are nonnormal, then undéfy, C; has mean zero. Fur-
processes that are highly dependent and exhibit marked thermore, as the sample size (in the case of batch means,
departures from normality. There were several reasons, k is the number of batches ) increases, the variance of
which are presented in the following sections, for choosing Vi = Ci/+/(k — 2)/(k%? — 1) approaches one and the skew-
an initial batch count of 96. While a total éfm1 = 1536 ness and excess kurtosis converge to zero (Fishman 1978).
observations may be more than is actually needed in a few Therefore, ifk is large, then the large sample properties
suggest that we can approximate the distributiof’;ofvith
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the N (0, 1) distribution, provided that the;’s are i.i.d.
The critical values foV;, with £ > 25 are extremely close
to the critical values of th&v (0, 1) (Anderson 1971). We

results reported of an extensive experimental evaluation of
ASAP’s performance strongly suggest that testing for joint
quadrivariate normality in adjacent batch means yields good

note here that the more observations used for the test, the performance in many situations.

more powerful the test is, i.e. the more capable the test is

of detecting type Il errors. The relative power of the von
Neumann test with largé is one reason for starting with
a batch count of 96.

Our studies of the batch means process reveal that

Given a random sampléy; : i 1,...,g} of r-
dimensional response vectors, we perform the test for mul-
tivariate normality as follows. First we compute the sample
statistics

8

correlation between batch means is not always a monotone
decreasing function of the batch size. Therefore, we chose
to use a two-sided test for the independence of the batch
means with sizerjn,g = 0.20. The first two batches of data

8
D Wi =Dy -

i=1

y=¢ 'Y yi and A=
i=1

i -~ Throughout the rest of this discussion, we assume Ahat
are excluded from computations of batch-means statistics is nonsingular with probability one. This property can
n an effort to overcome the initial bias problem. Let o ongyred, for example, by a mild technical requirement
ki = k1—2 = 94denote the number of batch means retained  yo5jjed by Tew and Wilson (1992), provided the replication
for confidence-interval construction. Th# retained batch countg > r; and since we take — 4 and g = 16 in
means are tested for independence using von Neumann'sASAP’ with probability one we can identify the observation
ratio (10). Ifthex] = 94batch means pass the independence ylely:i=12 ¢} for which

test, then the classical batch means confidence interval (8) . D

is constructed with midpoinrand half-length

Sn,kI

H =114/ -1

No correction is made to the confidence interval because pre-
sumably none is needed if the batch means are independent< Z,. Let{q; :i =1,2, ..

(Fishman 1978, Fishman and Yarberry 1997).
4.3 Testing Batch Means for Joint Normality
If the test for independence fails, then ASAP tests the batch

means for joint normality in the following manner. First,
g = 16 vectors each consisting of = 4 adjacent batch

means are constructed. Two batch means between each se

of four are ignored in an effort to obtain approximately
independent 4-dimensional vectors of batch means, i.e.,

Y3(m), Y4(m), Ys(m), Ye(m), Y7(m), Yg(m),

1st (4x1) vectory,

ignored
Yg9(m), Y10(m), Y11(m), Y12(m), Y13(m), Y14(m),
2nd (4x1) vectory, ignored
..., Yg3(m), Yoa(m), Yos(m), Yoe(m) .
16th (4x1) vectory;g

(11)

We apply the Shapiro-Wilk test for multivariate normality
(Malkovich and Afifi 1973, Tew and Wilson 1992) to the
resulting sample; = 16 vectors, each consisting of= 4
adjacent batch means. Although joint normality of these
selected sets of adjacent batch means is not sufficient to
ensure joint normality of alP6 batch means (see exercise
15.20 on p. 504 of Kendall, Stuart and Ord 1987), the
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We compute Z; vyt — 9TA Yy, —y) for i
1,2,..., g,and we sort these quantities in ascending order
to obtain the corresponding order statistits) < Z¢) < - - -

., g} denote the coefficients of
the univariate Shapiro-Wilk statistic for a random sample
of size g (see Royston 1982a, 1982b). The multivariate

Shapiro-Wilk statistic is then given by

2
we X aiZa]
¥ =9TA Ly —y)

EMaIkovich and Afifi 1973). The null hypothesis of multi-
normal responsdy; } is rejected at the level of significance
O <a<l)if W* < wk(r, g), wherew(r, g) denotes
the quantile of ordew for the null distribution ofW* (that
is, the distribution of W* when this statistic is based on
a random sample of sizg taken from anr-dimensional
nonsingular normal distribution).

For the multivariate normality test in ASAP, we used
the sizaxmyn = 0.10based on results of experimenting with
the parametesnyn. In practice, ASAP appears to perform
well even where there is mild departure from multivariate
normality of the batch means.

4.4 Additional Iterations of ASAP
On theith iteration of ASAP, we lek; andm; respectively

denote the batch count and the batch size; and we take
k1 = 96, m1 = 16 on the first iteration of the procedure.
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An additional iteration of ASAP will be required if the tempted: AR(1), AR(2), MA(1), MA(2), and ARMA(1,1).

following conditions occur on iteratiort IMSL routines (IMSL Problem Solving Software Systems
1987) are used to estimate the autoregressive—moving aver-
a) the independence test (see Section 4.2) yields age parameters, the residual variangg, and the process
a significant result (that is, independence is variance,o2 = Var[Y,], for the five ARMA models. Then
rejected) at the level of significanegq when the “best" fit of the five is chosen. Preference is given to
this test is applied to the; batch means for the AR(1) model. An alternate model is used only if it
batches of sizen;; and then has a significantly smaller residual variance than the AR(1)
b) the multivariate Shapiro-Wilk test (see Section model.
4.3) yields a significant result (that is, mul- The estimators of V4K (m)] and the parameters from
tivariate normality is rejected) at the level of the ARMA fit are then used to estimate V&i(n)]:
significancexmyn when this test is applied to
the corresponding sample of size 16 consisting o K-t 4l
of four-dimensional random vectors formed Var[X(n)] = o Z <1— —*) Y (q), (12)
from adjacent batch means. g=—k*+1
Now if conditions a) and b) both occur on iteratierof wherey,, (¢) denotes the estimated lggeovariance of the
ASAP, then iteration + 1 will be required in which the batch meang;, j =3, ..., k based on the fitted time series

batch size and batch count are respectively taken to be  maodel.
The derivation of the terms in the inverted Cornish-
mip1 = [v/2m;] and kiv1 =k Fisher expansion is based on the following three assump-
tions:
sothe total required sample sizejs1 = m; 1k;+1; and thus
the user must generate the additional simulation responses ~ Az1: The batch means have a joint multivariate nor-

{Xj:j=ni+Ln+2,..., ni1} before executing iter- mal distribution. _ _
ationi + 1 of ASAP. We chose to increase the batch size Az: The numerator and denominator of theatio
by the factor/2 at each iteration so that the total sample (7) are independent.

size would double on every other iteration. Asz: The square of the denominator of theatio

(7) is distributed as¢? ,/(k — 1).
4.5 Inverted Cornish-Fisher Correction for

Dependent Normal Batch Means AssumptionA1 is based on using a batch size large enough

to yield a nonsignificant result for the multivariate Shapiro-

If the batch means have failed the test for independence but Wilk test as described in Section 4.3. Assumptibp is
have passed the test for joint multivariate normality, then we SUPPOrted by the result that if the batch means have a
would like to make a correction to the classical batch means Multivariate normal distribution, then the numerator and
Cl to adjust for the correlation between the batch means. Sduared denominator of thestatistic (7) are uncorrelated.

A standard way of adjusting Cls for nonnormality is to use Finally, results of our studies of the convergence properties
some version of an inverted Edgeworth expansion for the ©f the numerator and squared denominator of the NOBM
corresponding point estimator of the parameter of interest /atio (7) suggest that the square of the denominator has
(Hall 1983, Kendall, Stuart and Ord 1987). ASAP uses an aPProximately achieved the distribution o ;/(k — 1
inverted Cornish-Fisher expansion of the NOB#Mtatistic variate if the baich sizen is large enough to result in
(7) that is in terms of the statistic’s first four cumulants. aPProximate multivariate normality of the batch means.

Expressions for these cumulants involve &gm)] and The following are the cumulants;, «2, 3 andis of

Var[X(n)]. Therefore, in order to compute sample estima- he NOBMz-ratio (7) computed under assumptioks-As:

tors of these cumulants, we must have sample estimators

of Var{X(m)] and Vafx(n)]. K1 =13 =0, (13)
If the hypothesis of multivariate normality in Section 4.3

is accepted, then to obtain sample estimators ofXfan)] _

and VafX (n)] ASAP first fits an ARMA process of at most Ky = kvarlX (n)](k — 1), (14)

order 2 to the set of* = 94 batch means. Obtaining a good Var[X (m)](k — 3)

result from the ARMA fitting process generally requires over

50 observations (Box and Jenkins 1976, p. 18), which is

the final reason for choosing an initial number of batches

close to 100. Fits of five possible ARMA models are at-
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and for multivariate normality of the batch means (that is, the
) o i batch means pass the test for multivariate normality). If the
2k“(k — 1)“Var‘[X (n)] relevant requirement

= — . 1
T k= 3)2(k — B)Var[X(m)] (19)

H<H* or H<r¥Y| (18)
Based on an inverted Cornish-Fisher expansion for the
classical NOBM-ratio, an adjusteO0(1—a)% confidence for the precision of the confidence interval is satisfied, then

interval for uwy is ASAP terminates, returning the sample me&rand the
Cl half-length H. If the precision requirement (18) is not
= Snk <= Sn.k atisfied on iteratiohof ASAP, then the procedure estimates
X(n) — h'(21-g/2) —=, X(n) —h (—z1- ’i|, S ; P
[ () (21-as2) Jk ) (=21-a/2) Jk the number of additional batchkﬁ required to satisfy (18)

using batch sizen;,
wheren = km and

/ + H 2
h'(z21-a)2) = 21—a/2 + (k1 — k3/6) k" = I ki | — ki
+[(c2 = D/2 21-0/2 + (k3/8)FF_q o,
thus on iteratiori+1 of ASAP the batch count and batch size

for the first-order pivot, or arek;41 < ki +k;"andm; 1 < m; so that the total required
) sample size on iterationt+ 1isn; 1 < m;11k;+1; and thus
W (21-a/2) = 21-aj2 + (K1 — 13/6) the user must generate the additional simulation responses
+[(k2 —1)/2 — ka/8] 21—a/2 {(X;:j=n;+1n4+2, ..., n;11} before executing iteration

i + 1 of ASAP.
The user then performs iteration- 1 of ASAP with the

for the second-order pivot, ang denotes théth cumulant values ofn; 1, ki1 andn, 11 for the batch size, batch count
of the-statistic, fori = 1, 2, 3, 4 (Hall 1983, Chien 1989). and total sample size, respectively. The first two batches
Under the :;lssumptic’)rt’sl;Ag the first four cumulants  @re again omitted from the calculation of the sample mean.

of ther-ratio are given by (13)~(15). By substituting the vari- The batch means ofk;1 — 2) batches of sizen;., are
ance estimatovar| X (m)] from the ARMA fit for Var X (m)] compgted. If an ARMA mo_del was L!sed in constructing
and by substituting the variance estimavar| X (n)] of dis- an adju§t§d Cl on th.e previous iteration, then. an updated
play (12) for VafX (n)] in the expressions (14) and (15) for ARMA fit is made using(k;+1 — 2) batches of sizen;1;

k2 andi, we obtain the following approxima®0(1—a)% moreover, in this situation new estimates of Magm)],
confidence intervals fopx: Var[X (n)], k2 andk4 are computed, and the CI (16) or (17)

is constructed. If the ClI for the previous iteration was based
on batch means that passed the independence test, then the

+(3/8)Z_q 0 + (ka/28F_ 3.

X(n) £ 2102 (1 L K 1) VarXml 1) classical NOBM confidence interval (8) is constructed with
2 k the batch means ak; 1 — 2) batches of sizen; 1. If the
or precision requirement (18) is satisfied on iteratich 1 of
o Ro—1 &4 R4 ASAP, then the algorithm terminates, returnifigand H.
X(n) £ |:Zl—a/2 <1+ 5~ §> + lel_a/z} If the required precision is not achieved on iteratiofn 1,

ASAP estimates a new number of batches and sample size

@[y(m)] to be used for the next iteration.
S (17)

5 PERFORMANCE EVALUATION
depending on which pivot is used. FOR ASAP

4.6 Fulfilling the Precision Requirement We tested ASAP on many problems representing various
types of stochastic processes. In this section we discuss
The final step in ASAP is to determine if the confidence the results of this experimentation on two of the processes
interval that was constructed meets the user’s requirement tested. The steady-state mean is available analytically in
for precision. The confidence interval may be the one based these models. Therefore, we were able to evaluate the
on a nonsignificant result from the independence test (that Performance of ASAP in terms of actual coverage versus
is, the batch means pass the test for independence) or thenominal coverage.
adjusted CI based on a nonsignificant result from the test
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The first test case we present is a process defined by Table 1: Performance of Batch-Means Procedures for the
a real-valued function on a simple 2-state Discrete Time 2-State DTMC Defined by (19) Based on 100 Independent
Markov Chain (DTMC) whose one-step probability transi- Replications of NominaB0% Confidence Intervals

tion matrix and cost vector associated with the states are

- A Precision Procedure
respectively given by Requirement | LBATCH ABATCH ASAP;
NO PRECISION

0 1 0 1 avg. sample size 3036

p_0 (0.99 001) and h= (5 10). (19) coverage 70% 85%| 96%

11001 099 avg. rel. precision 0.069]  0.086| 0.159

avg. ClI half-length 0.515 0.642 1.20

The second case is the waiting time process inMhyé/ /1 var. Cl half-length 0.009 0.012| 0.172
gueue with utilizationt = 0.9. Both of these processes 115% PRECISION

display high dependency. Also the marginal distribution of avg. sample size 5171

the X;’'s in the waiting time process of theé /M /1 queue has coverage 72% 81% 96%

an exponential tail and is therefore markedly nonnormal. We avg. rel. precision 0.060 0.070 0.120

believe the characteristics of high dependency and markedly avg. Cl half-length 0.045 0.053 0.906

nonnormal marginal distribution should stress any output var. Cl half-length 0.011 0.010 0.023
analysis procedure. 175% PRECISION

We made 100 independent simulations of these two avg. sample size 29711

systems and attempted to construct nominal 90% confidence coverage 81% 86% 99%

intervals for three cases: avg. rel. precision| ~ 0.034|  0.038| 0.059

. - . . . avg. ClI half-length 0.253 0.284| 0.438

(i) no precision requirement, i.e., we terminated var. Cl half-length 0003 0003 0006

the procedure when a Cl was constructed based - . . :

on 94 batches of the size at which the batch
means passed either the statistical test for inde-
pendence or the test for multivariate normality;

tNo. of classical and corrected Cls generated by ASAP: 0 and

100, respectively.

Table 2: Performance of Batch-Means Procedures for the
M/M/1 Queue Waiting Time Process with= 0.9 Based on

(i) +£15% precision so that* = 0.15 in (18);

and

(iii) +7.5% precision so that* = 0.075in (18). 100 Independent Replications of Nomirg#l% Confidence
Intervals
This enabled us to estimate the actual coverage of Cls con- Precision Procedure
structed via the ASAP algorithm. We also tested the perfor- Requirement |LBATCH ABATCH ASAP;
mance of the LBATCH and ABATCH algorithms (Fishman NO PRECISION
1996, Fishman and Yarberry, 1997) for comparison. Since avg. sample size 7719
LBATCH and ABATCH do not explicitly determine a sample coverage 44% 60% 83%
size, we passed to the LBATCH and ABATCH algorithms avg. rel. precision 0.202 0.301] 1.088
the same data sets used by ASAP. Therefore, the Cls com- | ayg. CI half-length 1.70 267 11.8
puted by the LBATCH and ABATCH algorithms are based var. Cl half-length 0.683 3.92| 523.0
on the same sample sizes and data sets used for ASAP. 1150, PRECISION
We do not mean to imply that these results are what one avg. sample size 298950
could expect routinely from either LBATCH or ABATCH, coverage 79% 80% 88%
but only what one could expect by applying LBATCH and avg. rel. precision 0.061 0.069 0.089
ABATCH to the data sets that resulted from first using the avg. CI half-length 0.543 0613 0.783
ASAP dlgorithm. var. Cl half-length|  0.027|  0.039] 0.082
Tables 1 and 2 display in detail the results of our tests. +75% PRECISION
Table 3 displays the additional results obtained through avg. sample size 815755
standalone application of LBATCH and ABATCH to waiting coverage 88% 90% 94%
times in theM /M /1 queue witht = 0.9 when LBATCH avg. rel. precision 0.039 0043 0046
and ABATCH operate with a stopping rule based on a avg. CI half-length 0.353 0382 0413
user-specified precision requirement for the final confidence var. CI half-length 0.012 0.039 0.018

interval. We began the experiments for these systems with
a sample size of 1536 (the same sample size required for
the first iteration of ASAP). We then applied a stopping rule
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tNo. of classical and corrected Cls generated by ASAP: 4 and

96, respectively.
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Table 3: Performance of LBATCH and ABATCH under
a Relative Precision Requirement fof/ M /1 Queue with

7 = 0.9 Based on 100 Independent Replications of Nominal
90% Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH
NO PRECISION
avg. sample size 1536 1536
coverage 35% 54%
avg. rel. precision 0.204 0.338
avg. Cl half-length 1.648 2.882
var. Cl half-length 0.552 4.250
+15% PRECISION
avg. sample size 34349 50910
coverage 65% 7%
avg. rel. precision 0.121 0.125
avg. Cl half-length  .1.071 1.080
var. Cl half-length| 0.0513| 0.0336
+7.5% PRECISION
avg. sample size | 227987 397387
coverage 80% 81%
avg. rel. precision 0.062 0.062
avg. ClI half-length 0.551 0.553
var. Cl half-length 0.005 0.007

similar to the one used for ASAP. After the initial run with
1536 observations was made, the final Cl constructed by
LBATCH or ABATCH was examined to see if the precision
requirement was met. If not, then we calculated an estimate
of additional observations that would be required, we gener-
ated the additional observations, and we executed LBATCH
or ABATCH again with all of the observations accumulated
so far. This process was repeated until the final Cl delivered
by LBATCH or ABATCH met the precision requirement.
We realize that LBATCH and ABATCH were not really
designed to be used in this way, but using such stopping

necessary for the improved coverage. However, the coef-
ficient of variation of the CI half-lengths are smaller than
those from LBATCH and ABATCH.

As stated previously the waiting time process in the
M /M /1queue withe = 0.9is adifficult case inthatthe lag-1
correlation of the observations is close to one, the correlation
function decays slowly, and the marginal distributionXpf
has an exponential tail. Because of these characteristics, we
can expect slow convergence to both conditions for ensuring
the validity of the batch means method, i.e., that the batch
means are independent and identically normally distributed.
This case most dramatically displays one of the advantages
of the ASAP algorithm, i.e., it does not rely solely on the von
Neumann test for independence. In fact, in 96 replications,
ASAP constructed adjusted Cls based on a nonsignificant
result from the test for multivariate normality.

As can be seen from Table 2, ASAP substantially
outperforms LBATCH and ABATCH for the case of no
precision requirement. As we demand more precision, we
are of course forced to perform more sampling. At the
precision requirement of:7.5% the three algorithms give
similar results. This implies that LBATCH and ABATCH
will give satisfactory results if supplied with an adequate
amount of data. However, LBATCH and ABATCH provide
no mechanism for assessing the amount of data which should
be used. This emphasizes a desirable feature of ASAP—that
it determines a sample size that gives acceptable results,
even when no precision is specified.

From Table 3 we see that in the/M /1 queue with
7 = 0.9, if LBATCH and ABATCH are run until a certain
precision requirement is met, coverage is severely degraded,
especially when the precision requirement is so “loose" that
it leads to relatively little additional sampling. Note that
the sample sizes are much smaller than those required by
ASAP to achieve the same precision. For example, the
average sample size used by ABATCH for the waiting time

rules is a natural approach to planning steady-state simula- Process in theM/M/1 queue with utilizationt = 0.9

tions; and we believe that the results in Table 3 provide a
more complete perspective on the relative performance of
LBATCH and ABATCH versus ASAP. No effort was made
to analyze the convergence of the sample estimators from
LBATCH and ABATCH, as is suggested in Fishman (1998).
We only include these results to highlight the performance
advantages achieved by ASAP without requiring analysis
or manual intervention by the user.

ASAP showed somewhat better coverage than did
LBATCH in the case of the 2-state DTMC (19) with high
positive correlation, especially in the cases of no precision
requirement andt-15% precision requirement. For this
model, ASAP constructed adjusted Cls based on a non-
significant result on the test for multivariate normality (i.e.,
the batch means passed the Shapiro-Wilk test for multivari-
ate normality) in all 100 cases. The Cls from ASAP are
wider than those from LBATCH and ABATCH, which is
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and £7.5% precision is approximately 397,387. This is
considerably less than the average sample size of 815,755
used by ASAP. For:7.5% precision and0% confidence,
Whitt's (1989) approximation for estimating required run
lengths of queueing simulations yields an estimated sample
size of 855,238 for the waiting time process in thgM /1
gueue witht = 0.9. This strongly suggests that ASAP
yields adequate sample sizes when a precision requirement
is specified.

6 CONCLUSIONS

The advantages of ASAP may be summarized as follows:

e ASAP addresses the initial bias problem.

e ASAP is fully automated, since it

specifies initial sample size,
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determines final sample size,

delivers CI of prespecified precision, and

requires no intervention or analysis by the
user.

e Although it is heuristic, ASAP has some the-
oretical basis.
e ASAP does not rely solely on tests for inde-

pendence.

e ASAP gives good results for highly dependent
processes.

e ASAP delivers stable Cls with close to nominal
coverage.
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