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ABSTRACT and that in some cases, percentage differences were quite
high (e.g., for @ of .8 and a CV of 2 for interarrival times

This paper follows-on papers presented at the two previousand a CV of 0.5 for service times, differences between

WSC conferences on sensitivity of output measures to input Gamma and lognormal and Pearson type 5 distributions were

distribution selection in queueing modeling. Here, a real almost 30% and 70% respectively).

situation is studied, where data on input distributions are This study centers on a real situation and compares Wq

utilized and distributions selected by two fitting packages, for various empirical and fitted distributions using real data.

Arena Input Analyzer and ExpertFit. Empirical distributions Here, in addition to differences in higher moments, mean and

made from histograms of the raw data itself , as well as the variances are not identical either, and we compare empirical

first two choices from Arena and ExpertFit are compared for fits to those from two fitting packages: Arena Input Analyzer

this small bank queueing network model, showing that an and Expertfit.

output measure such as mean wait in queue is quite sensitive

to input distribution choice. 2 THE MODEL

1 INTRODUCTION A student team for a final project in a Discrete Event
Simulation course taught for George Washington University
This is the third paper on sensitivity of output performance at the Aberdeen Proving Grounds investigated an on-post
measures (e.g., mean wait in queue) to the particular shapedank and collected interarrival data and service-time data
of input distributions (interarrival times and service times) in over the noon rush hour. One hundred seventy eight
gqueueing modeling. Queueing theory shows, under certain observations of interarrival times, one hundred twenty four
conditions (M/G/1 and heavy-traffic approximations), that regular teller service times and fifty five express teller service
only the first two moments of interarrival and service times times were collected.
effect the mean queue wait. The question under study inthe  This model, built in Arena, consisted of four regular
first two papers was, “how much sensitivity to higher tellers and one express teller for deposits only. If an express
moments is there when these particular conditions are notcustomer came in and found the express teller busy, and if
met. In the first paper, Gross and Juttijudata, 1997, a G/G/1 one of the regular tellers were available, the express customer
gueue was simulated for traffic intensitigd ¢f .5 to .95, would go to the regular teller for service; otherwise the
and different families of distributions with the same first two express customer would join the express queue. Mean waits
moments (i.e., matching coefficients of variation [CV]) were in the regular and express queues were observed for 25
studied. Mean queue waits, Wq, and th& 9&rcentiles of replications of 50,000 customers (simulating a steady-state
waiting time in queue, Wq(.95), were compared. Even for during the busy lunch hour period). Traffic intensity was
cases of relatively highp, sizable differences were noted approximately .85 for the regular queue and .75 for the
both in Wq and Wq(.95). In the second paper, Gross and express queue, so that even thoughptkewnere relatively
Masi, 1998, a small queuing network (a call center) was high, heavy-traffic conditions were not really met.
studied to see if the sensitivity diminished in a network. The
study showed it did not; the sensitivities in both Wg and 3 THE INPUT DISTRIBUTIONS USED
Wq(.95) were about the same as in the single node, G/G/1
case. Also, both studies showed that the tail measure,Both empirical distributions made from the actual data and
Wq(.95), was no more sensitive than the mean measure, Wqtheoretical distributions fitted to the data by the Arena Input
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Analyzer and ExpertFit were used in the simulation studies. actual data and those that best matched the first four data
Mean queue waits (WgReg and WgExpr) were outputted for moments (mean, variance, skewness and kurtosis) were
a variety of distribution combinations comparing empirical, utilized. Several histogram approximations to the data were
Arena fits and ExpertFit fits to observe how large the percent developed and the first four moments resulting from the
differences in these output performance measures might be histograms were compared to those of the actual data. Figure
Confidence intervals were obtained using Arena’s Output 1 shows the absolute percent differences of the histogram
Analyzer, and the confidence bounds were almost always moments from the data.

within 2 to 3 % of the mean values, and never more than 5%. It appears fairly clear that for Regular Service, E2 is the
closest match to the data and for Express Service, E3 appears
3.1 Empirical Distributions best. But for interarrival times, it is not clear. E4 matches

the mean exactly, while E1 matches the variance exactly.
Since Arena has a limit of 127 characters on any input string, One might be tempted to select E2 as the best overall
empirical distributions were based on histograms of the compromise, but one might think that the greatest sensitivity
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Figure 1: Moment Comparisons of Empirical Fits to Data

of output performance measures such as Wq is to the mearmean interarrival time at .486 and using gfMEL model,

(first moment) and sensitivity lessons as the order of the which reduces the variance from 1.89 to 1.26, (a 33%
moments increase. To illustrate that this might be so, we canchange) yields a Wq of 2.744, only a 14% difference. This
look at some calculations fogM1/1 using the QTS software ~ shows how much more sensitive Wq is to the first moment
associated with Gross and Harris, 1998. Focusing on theover the second.

express server only, the data give a mean service time of

1.471, which we use for the exponential service mean. The 3.2 Arena and ExpertFit Distributions

empirical E4 interarrival time histogram hit the data mean of

.486 exactly, while E2 had a mean of .493, about a 1.5 % All 178 interarrival time observations, as well as the 124
increase. Since 25% of the arrivals go to the express serverregular service time observations and the 55 express service
the mean arrival rates become .25/.486 = .514 and .25/.493time observations were run through both Arena’s Input
= .507 respectively, yielding a traffic intensity of about Analyzer and ExpertFit. Table 1 shows the first three
(0.51)(1.471)= .75. Using the EM/1 model, the QTS choices and their relative scores. Arena’s fits are based
software gives a Wq of 3.182 for the first case and 3 for the essentially on mean squared error between the data histogram
second, an almost 6% difference. Increasing the meanand the candidate theoretical distribution (low number best).
interarrival time by 5% (from .486 to .5103) yields a Wq of ExpertFit uses a secret formula and comes out with a score
2.61, an almost 18% difference. Interestingly, keeping the from 0 to 100 (high number best). Arena has essentially
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Table 1: Arena and ExpertFit First Three Choices

Fit Package Interarrival Times Regular Service Times  Express Service Times

Distribtn Score Distribtn Score Distribtn Score
Arena-1st  Weibull 0.00146 Lognormal 0.0100 Lognormal 0.0010
Arena-2nd Beta 0.00183 Gamma 0.0195 Gamma 0.0254
Arena-3rd  Lognormal 0.00523  Weibull 0.0212 Erlang 0.0282
XFit-1st Gamma(E) 97.06 Log-logistic 100.00 Pearson-5 97.83
XFit-2nd Gamma 89.71 Pearson-6 95.00 Log-logistic 96.74
XFit-3rd Weibull(E) 86.76 Lognormal 88.75 Pearson-6 89.13
XFit-Beta* Beta 97.22

* When given an upper bound value the same as determined in the Arena 2nd Choice, Beta
scored 1st

eleven theoretical distributions it considers for fitting the Figure 3 shows the W(q for regular service and express
data. These include unbounded distributions such as gammaservice for each of the four empirical models, as well as 95%
and Weibull, as well as bounded distributions such as betaconfidence bounds and the minimum and maximum W(q
and uniform. Arena chooses the best from these, accordingvalues over the 25 replications. Note the tightness of the
to its least mean square error. Parameters are generallyconfidence bounds; all are less than + 5% from the mean. All
estimated from the data by maximum likelihood. ExpertFit models, except E4AE2E3 were within each others confidence
has many more candidate distributions to choose among,bounds. E4E2E3 shows significant differences (e.g., a
however, unless the user specifies an upper bound value tgpercent difference for express service Wq between E2/E2/E3
the variate, ExpertFit will not consider bounded distributions and E4/E2/E3 of about 8% and a percent difference for
in its automatic (guided) fitting mode. ExpertFit also uses regular service Wq of 12%). This is consistent with our
maximum likelihood in estimation of distribution parameters. earlier analysis using the/Kl/1 theoretical model from the
From Table 1, we see that Arena and ExpertFit generally QTS software, showing a percent difference in express Wq
picked different distribution families for their first three of about 6%, for this slight change in mean interarrival time
choices. None of the first choices match. The (E) after some (.486 vs. .493).
of the Expertfit distributions indicate that a location The second set of runs compares Arena and ExpertFit
parameter was added. Expertfit considers a two-parametertwo top choices (models designated as A1A1AL, A2A2A2,
family with a location parameter added as a separate choiceX1X1X1 and X2X2X2 respectively) to EAE2E3 which was
from the same family without adding the extra location chosen because of its better match to the data mean. Figure
parameter. Arena will add a location parameter if it gives a 4 shows percentage differences in Wq and percentage
better fit, but does not consider the same family without the differences in the moments of the Arena and Expert Fit first
location parameter as a competitor. Figure 2, shows, for and second choice models from the empirical model. We set
service times, the top choices for Arena and ExpertFit the empirical model as the base from which to compute the

compared to the data histograms. percent differences. We do not mean to imply that this is the
correct model - we will beg the “age-old” question of
4 RUN RESULTS whether it is better to use an empirical distribution or a fitted

distribution. However, one had to be chosen from which to
The first set of runs involved only the empirical distributions compute percentage differences and the empirical model was
to see how sensitive Wq was to the particular empirical chosen rather than to pick either Arena or ExpertFit.
distribution chosen for interarrivals. Since E2 appeared the We note from Figure 4 that the percentage differences in
best match for regular service and E3 for express service, thehe means (we also show percentage differences in the
models compared were EiE2E3, i=1,2,3,4, where Ei is the approximatep’s for regular and express service since
interarrival distribution, E2 is the regular service distribution differences in mean interarrival times and mean service times
and E3 is the express service distribution. Figure 3, showscould tend to cancel if interarrival means were
the Arena results for the four cases. underestimated and service time means were overestimated)

are quite small (< 3 %), but we have seen before that small
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Figure 2: Histogram Comparisons Among Data, ExpertFit First Choice and Arena First Choice
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Figure 3: Arena Runs for EIE2E3

differences in means can result in much larger differencesin5 CONCLUSIONS

W(q. Because of so many things to compare (two Wq values,

four means, four variances, four skewness measures andVe can definitely conclude that output performance
four kurtosis measures), it is not easy to see what really hasmeasures such as mean wait in queue are quite sensitive to
the major influence on the Wq differences. The smallest the particular input distribution family chosen. Even
percent difference for WqExpr from E4E2E3 is A1A1A1 matching the first two moments was shown not to be
(not even shown on the chart since it is so close to zero), butsufficient (directly in the previous studies and indirectly
A1A1A1 has the third largest difference in g@isindicating here) and that higher moments as reflected by the particular
that closeness in some of the other moments have an effectdistribution shape, interact in complex ways and significantly
The previous studies referenced in the introduction, where influence the output measures.

distributions with the same first two moments were This suggests that great attention be given to input
compared, already showed that other factors contributed tomodeling, for “garbage in gives garbage out” was never truer
Wq. We see this again here in that the smallest percentthan in simulation modeling. Sizable effort should be
differences in Wq are not necessarily associated with the devoted to obtain very large, accurate samples (much larger
smallest differences in the first two moments and vice versa. than those obtained for this study - ideally at least 500
Further, A1A1A1 has the smallest percent difference in both observations) of input distributions, several fitting packages
Wq-Reg and Wqg-Expr, but had the third largest difference in utilized, and significant sensitivity analyses done with the
both p values and the second largest difference in input distributions chosen from the fitting packages, as well
interarrival-time variance, although it had the smallest as using the empirical distributions themselves.

differences in both regular and express service variance and

skewness. A2A2A2 had the largest percent difference in

Wg-Reg, but was second closest in differencefBeg.
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Figure 4. Comparisons Among Arena, ExpertFit and Empirical Models
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