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ABSTRACT

A fixed gain version of the SPSA (simultaneous perturbati
stochastic approximation) method for function minimizatio
is developed and the error process is characterized. The
procedure is applicable to optimization problems overZ

p,
the grid of points inRp with integer components. Simulation
results and a closely related application, a resource alloca
problem, is shortly described.

1 INTRODUCTION

The simultaneous perturbation stochastic approximati
(SPSA) method developed in (Spall 1992) is consi
ered to be an efficient tool for the solution of diffi
cult optimization problems. It is essentially a random
ized Kiefer-Wolfowitz method where the gradient is es
timated using only two measurements per iteration. T
method is particularly suited to problems where the co
function can be computed only by expensive simul
tions (cf. (Cassandras, Dai, Panayiotou 1998)). The
most sure convergence, the limit distribution and th
rate of convergence of higher order moments of th
estimator process have been established or reported
a series of papers (Chen, Duncan, Pasik-Duncan 199
(Gerencśer 1999), (Gerencsér 1998) (Spall 1992).

The main objective of this paper is to develop an appr
priate modification of SPSA for certain discrete optimizatio
problems and state its basic properties. In particular
consider optimization problems where the value of the co
function can be evaluated only forinteger-valued variables,
and the cost function is defined in terms of a probability
expectation. The main reference point for our discussion
a class of resource allocation problems.
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We are going to develop a stochastic search algorith
on Z

p, whereZ is the set of integers. The first initial step
is to define what we call afixed gainSPSA method onRp,
where both the size of the perturbation and the step size
the parameter update is fixed.

2 THE PROBLEM FORMULATION

Consider the following problem: given a functionL(.) =
L(θ), for θ ∈ D, where D ⊂ R

p is an open domain.
However, this function is not known explicitly, but noise
corrupted measurements are available, given in the form

M(n, θ, ω) = L(θ) + εn

where εn = ε(n, θ, ω) is a random variable over some
probability space(�, F, P). The objective is to minimize
L using only noise-corrupted measurements.

The functionL(.) is assumed to be three-times con
tinuously differentiable with inD, and that it has a unique
minimizing value inD, say θ∗. The measurement-noise
processε is a zero-mean, so-calledL-mixing, uniformly
in θ , bounded process, which is smooth with respect toθ

in an appropriate technical sense.L-mixing is an essen-
tial technical condition that apparently can not be relaxe
L-mixing can be defined as follows: first we say that a
R

m-valued stochastic process(xn) is M-boundedif for all
1 ≤ q < ∞

Mq(x) := E1/q |xn(θ)|q < ∞.

If (xn) is M-bounded we shall also writexn = OM(1).
Similarly if cn is a positive sequence we writexn = OM(cn)

if xn/cn = OM(1).
6
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Gerencs´er, H

Let (Fn), n ≥ 0, be a monotone increasing family of
σ -algebras, and(F+

n ), n ≥ 0 be a monotone decreasing
family of σ -algebras. We assume that for alln ≥ 0, Fn

andF+
n are independent. AnRm-valued stochastic process

(xn), n ≥ 0 is L-mixing with respect to(Fn, F+
n ), if it is

Fn-adapted,M-bounded, and withτ being a non-negative
integer and

γq(τ, x) = sup
n≥τ

E1/q |xn − E(xn|F+
n−τ )|q,

we have for any1 ≤ q < ∞

0q(x) =
∞∑

τ=0

γq(τ, x) < ∞.

To estimate the gradient ofL at θ we use simultaneous
random perturbations. Lettingk denote the iteration time,
at time k we take a random vector over some probabilit
space(�′, F ′, P ′)

1k(ω′) = (1k1, ..., 1kp)T ,

where1ki is a (doubly-indexed) sequence of i.i.d. Bernoull
random variables, taking values+1 or −1 with equal prob-
ability 1/2.

In fixed gain SPSA the size of the perturbation is fixed
say to somec > 0. Let D0 ⊂ D be a an appropriate
compact, convex domain specified below. For eachθ ∈ D0
we take two measurements

M+
k (θ) = L(θ + c1k) + ε(2k − 1, θ + c1k)

M−
k (θ) = L(θ − c1k) + ε(2k, θ − c1k).

Then the estimator of the gradient at timek and atθ is

H(k, θ) =
[

M+
k (θ) − M−

k (θ)

2c1k1
, . . . ,

M+
k (θ) − M−

k (θ)

2c1kp

]T

.

3 THE FIXED GAIN SPSA METHOD

Let a > 0 be a fixed step size of the updating formula
called the gain. Starting with an initial estimatêθ1, we
compute recursively a sequence of estimated paramete
θ̂ k by

θ̂ k+1 = θ̂ k − aH(k + 1, θ̂ k). (1)

The assumed boundedness of the noise and the assu
stability of the so-called associated ODE ensures the boun
edness of the sequencêθk. The pathwise behaviour of es-
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timator processes generated by fixed gain SPSA metho
can be analyzed using the result of (Gerencsér 1996):

Theorem. Under appropriate technical conditions,
among others for good initial conditions

|θ̂ k − θ∗| ≤ δk

where(δk) is an L-mixing process. In the small gain case
with a = λ, c = λ1/6 we haveδk = OM(λ1/3). Here the
notationOM(.) is meant on(� × �′, F × F ′, P × P ′).

An improved estimator can be obtained using the aver
aged estimator sequence. Define

θ̂ k = 1

k

k∑
i=1

θ̂ i .

Corollary. Under appropriate technical conditions and
with a = λ, c = λ1/6, λ small, we have with probability 1

lim sup
n→∞

|θ̂ k − θ∗| = O(λ1/3).

Another way of improving SPSA is to usehigher order
approximationof the gradient. This is particularly useful
when we work on a fixed grid. For a functionf having
2m + 1 continuous derivatives we can approximatef ′(x)

with an error of the order of

h2m+1(−1)m(m!)2f (2m+1)(ξ)

(2m + 1)!
(cf. (Fox 1957)), which can be very small for even if we
take h = 1 when f is sufficiently smooth. Higher order
SPSA methods based on classical numerical differentiatio
schemes were developed and analyzed in (Gerencsér 1999).
Another possibility of improving efficiency is to use a
second-orderor Newton-type SPSA-method as proposed in
(Spall 1997, Spall 1998).

Assume now thatθ is restricted to be integer-valued, i.e.
θ ∈ D ∩ Z

p. Assume thatL is convex in the sense that at
any point of its graph there is a supporting hyperplane suc
that graph is on one side of this plane. Assume that ther
exists an extension ofL to real-valued variablesθ ∈ D, say
Lr(.) = Lr(θ), so that the extended function is convex and
sufficiently smooth. Then apply a suitably defined fixed gain
SPSA method, with the additional caveat that we stay on th
grid all the time. For this purpose we set

H z(k, θ) = [H(k, θ)],
where [x] denotes the integer that is closest tox.

For the analysis of the resulting procedure we replace th
function [.] by the smooth approximating function. Then
the modified right hand side will be anL-mixing process,
and (Gerencśer 1996) is applicable. Omitting the technical



Optimization Over Discrete Sets Via SPSA

b

l
d
u
l

th
s

e

s

c

e

c

5
r

o

98)
e,

en
ir

l-

d

s
e
.

an-
ed

ce-
g

ed

rid

A

n

nd

a
re.
en
details, the viability of the procedure will be demonstrated
simulation results. The procedure can be extended to sim
constrained optimization problems on grids.

4 RESOURCE ALLOCATION

Our interest in SPSA on grids is motivated by multip
discrete resource allocation problems, which we shortly
scribe. The goal of discrete resource allocation is to distrib
a finite amount of resources of different types to finite
many classes of users, where the amount of resources
can be allocated to any user class is discrete. Suppose
aren types of resources, and that the number of resource
type i is Ni . Resources of the same type are identical. T
resources are allocated overM user classes: the number o
resources of typei that are allocated to user classj is denoted
by θij . The matrix consisting of theθij ’s is denoted by2.

For each allocation the cost, such as performance or r
ability is associated, which is denoted byL(2). We assume
that the total cost is weakly separable in the following sen

L(2) =
M∑

j=1

Lj (θj )

where Lj (θj ) is the individual cost incurred by classj ,
θj = (θij , ..., θij ), i.e. the classj cost depends only on the
resources that are allocated to classj . An important feature
of resource allocation problems is that often the costLj is
not given explicitly, but rather in the form of an expectatio
or in practical terms by simulation results.

Then the discrete, multiple constrained resource allo
tion problem is:

min L(2)

subject to

M∑
j=1

θij = Ni, θij ≥ 0, 1 ≤ i ≤ n. (2)

where theθij ’s are non-negative integers. We will assum
that a solution exists with strictly positive components. Th
the minimization problem is unconstrained on the linear ma
ifold defined by the balance equations.

Problem (2) includes many problems of practical inte
est including the problem of optimally distributing a sear
effort to locate a moving target whose position is unknow
and time varying (cf. (Eagle, Yee 1990)) and the problem
scheduling time slots for the transmission of messages o
nodes in a radio network (cf. (Cassandras, Julka 199
The above problem is a generalization of the single
source allocation problem withm = 1, considered in
(Cassandras, Dai, Panayiotou 1998). In their case the t
cost becomes separable.
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Cassandras et al. (Cassandras, Dai, Panayiotou 19
present a relaxation-type algorithm for the single resourc
in which at any time the allocation is rebalanced betwe
exactly two tasks. The continuous-variable version of the
algorithm is as follows: for a pair of tasks(j, k) the new
allocation vectorθ+ will differ in just two components from
the previous value, which are given by

θ+
j = θj + a(

∂

∂θk

Lk(θk) − ∂

∂θj

Lj (θj ))

θ+
k = θk + a(

∂

∂θj

Lj (θj ) − ∂

∂θk

Lk(θk)).

Herea is a suitable step size. Obviously, the above reba
ancing is feasible. The selection of the pair(j, k) is done
by a stochastic comparison method.

A stochastic version of the above algorithm is obtaine
if we replace ∂

∂θj
Lj (θj ) by their estimates obtained by si-

multaneous perturbation at timet , and denoted byHj (t, θj ).
Thus we arrive to the following recursion: at timet select
a pair(j, k) and then modify the allocation for this pair of
tasks as follows:

θj,t+1 = θj,t + a(Hk(t, θk) − Hj (t, θj ))

θk,t+1 = θk,t + a(Hj (t, θj ) − Hk(t, θk)),

wherea is a fixed gain. Obviously, the balance equation
are not violated by the new allocation. The selection of th
pair (j, k) can be done by a simple cyclic visiting schedule

To ensure the non-negativity constraints we use a st
dard resetting mechanism. A new feature of the propos
algorithm is that it isasynchronousin the sense that only two
components are updated at a time. Analysis of such pro
dures for very general, approximately Markovian visitin
schedule for the pairs(j, k) has been given in (Borkar 1998)
in the decreasing gain case (cf. condition (2.6) of the cit
work). Taking a = 1 and replacingH by [H ] we get a
stochastic approximation procedure searching over the g
of feasible allocations.

5 SIMULATION RESULTS

We present simulation results concerning fixed gain SPS
for randomly generated simple quadratic functionL(θ) in
R

20 the minimal value of which is0. In Figures 1–4 below
we plot the value of the cost function vs. the iteratio
time for different (fixed) step sizesa = 0.01 and a = 1
respectively, and the distance of the true minimum a

the improved estimator obtained by averaging, i.e.θ̂ k. In
contrast to what is predicted by theory we had to add
resetting mechanism to ensure stability of the procedu
On Figure 5 and 6 the corresponding results are given, wh
the minimization overZ20 was considered.
68
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Figure 1:  The Value ofL(θ̂k), Whena = c = 0.01
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Figure 2:  The Distances‖θ̂ k − θ‖, When a = c = 0.01
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Figure 3:  The Value ofL(θ̂k), When a = c = 1
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Figure 4:  The Distances‖θ̂ k − θ‖, Whena = c = 1
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Figure 5:  The Value of L(θ̂k), When a = c = 1, the
Minimization Was Made overZ20
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Figure 6:  The Distances‖θ̂ k − θ‖, Whena = c = 1, the
Minimization Was Made overZ20
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6 DISCUSSION

We have presented a fixed gain SPSA method and h
given its basic theoretical properties. In contrast to
now standard weak-convergence results (cf. (Kushner 19
Kushner, Yin 1997)) our result is not of asymptotic natur
In fact it is applicable when the gain is fixed say to b
equal to 1. Taking the size of the perturbation to be 1
well and truncating the estimated gradient we arrive at
SPSA-based estimator sequence that lives on a grid.
asynchronous version of this algorithm is very well suite
to the solution of multiple resource allocation problem
The viability of the basic procedure is demonstrated
simulation examples.
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