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ABSTRACT method, for global optimization when the objective func-
tion is deterministic. In this context, the method has been
found to be quite efficient for combinatorial optimization
(Olafsson and Shi 1998). Furthermore, as is discussed by
Shi andOlafsson (1997), this method can also be applied
to stochastic problems, where no analytical expression ex-
ists for the objective function and it must be evaluated
using simulation. In this paper we suggest a new algorithm
that builds on this earlier development in the sense that it
also falls within the broad NP method framework. This
new algorithm also builds on ideas from statistical sam-
pling techniques that have proven useful in simulation in
the past, namely ranking-and-selection methods, and hence
combines statistical sampling techniques traditionally used

We develop a new algorithm for simulation-based opti-
mization where the number of alternatives is finite but very
large. Our approach draws on recent work in adaptive
random search and from ranking-and-selection. In partic-
ular, it combines the nested partitions method for global
optimization and Rinott's two-stage ranking-and-selection
procedure. We prove asymptotic convergence of the new
algorithm under fairly mild conditions.

1 INTRODUCTION

Optimization over a large but finite feasible region is often
a very difficult task. This is true even in the determin- for comparing a few alternatives with a global optimization
istic context, and for stochastic systems the difficulty is framework aimed at large-scale optimization problems.
exacerbated by the added randomness. Oftentimes discrete  The paper is organized as follows. In Section 2 we
event simulation is the only tool available for optimizing introduce the new algorithm and explain its relation to
such systems. This area has received considerable attentiorprevious work. In Section 3 we prove that the algorithm
and comprehensive reviews of simulation-based optimiza- converges asymptotically under fairly mild conditions to a
tion may be found in Jacobson and Schruben (1989), Fu global optimum. Finally, Section 4 contains some conclud-
(1994), and Andrattir (1998). Here we will only mention ing remarks.

directly related research. When the number of alternatives
is finite and relatively small theranking-and-selectioand
multiple-comparisomethods (Goldsman and Nelson 1998)
are typically applied. These methods evaluate the perfor- In mathematical notation, we want to solve the problem
mance of each alternative and use statistical methods to
guarantee that the objective, that is the selection of the
best alternative, is accomplished with a given probability.

2 ALGORITHM DEVELOPMENT

min f (0
0c® 7@,

)

Classical methods includes for example Rinott's two-stage
procedure (Rinott 1978), and more recent work includes that
of Matejcik and Nelson (1995), Chick (1997), and Chen

et al. (1998). When the number of alternatives becomes

somewhat larger, however, then these methods become too

computationally intensive and other random search meth-
ods, that only consider a fraction of all the alternatives,
must be applied.

In a recent paper, Shi ar@lafsson (1998a) introduced
such an optimization method, theested partitiongNP)
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where ® is a finite feasible region, and : ® - R is a
performance function that is subject to noise. In other words,
for any feasible point € ®, f(9) cannot be evaluated
analytically. Oftenf(0) is an expectation of some random
estimate of the performance of a complex stochastic system
given a parametet, thatis,J (0) = E[L(0)]. HereL(9) is

a random variable which depends on the parameter®.

We assume that (9) is a discrete event simulation estimate
of the true performance, and refer to it as the sample
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performance. Also, to simplify the analysis, we assume that
there exists a unique solutidl,; to problem (1) above.

2.1 The NP Methodology

As we stated in the introduction, the development in this
paper builds on a recently proposed method for simulation-
based optimization: the NP method. Here we first introduce
the basic idea of the NP method, and then show how it may
be improved by using statistical selection methodologies.
In the k-th iteration of the NP method there is always a
regiono (k) C O that is considered the most promising, and
as nothing is assumed to be known about location of good
solutions before the search is started)) = ®. The most
promising region is then partitioned infd subregions, and
what remains of the feasible regio®,\ o (k), is aggregated
into one region called the surrounding region. Therefore, at
thek-th iterationM +1 disjoint subsets that cover the feasible

using some random sampling scheme, and the samples use
to estimate the promising index for each region. This index
is a set performance function that determines which region
becomes the most promising region in the next iteration.
If one of the subregions is found to be best, this region
becomes the most promising region. If the surrounding
region is found to be best, the method backtracks to a larger
region. The new most promising region is partitioned and
sampled in a similar fashion. This generates a sequence
of set partitions, with each partition nested within the last.
The partitioning is continued until eventually all the points
in the feasible region correspond to a singleton region. The
following definitions will be used throughout the analysis.

Definition 1 Aregion constructed using a fixed par-
titioning scheme is called &alid region given the fixed
partition. The collection of all valid regions is denoted by
3. Singleton regions are of special interest, aig C &
denotes the collection of all such valid regions.

Definition 2  The singleton regions ik, are called
regions ofmaximum depth More generally, we define the
depth d : ¥ — N, of any valid region iteratively witt®
having depth zero, subregions &f having depth one, and
so forth. Since they cannot be partitioned further, we call
the singleton regions iftg regions of maximum depth.

Ultimately only the maximum depth regions are of

region are considered. Each of these regions is sampled({)

Definition 3~ We denote the unique singleton region
that corresponds to the optimal solution ag,; = {6,p:},
and we let the estimate of this best region be

)

Gopi (k) = arg max\i (o),
oeX

the most frequently visited singleton region by th¢h
iteration.

Definition 4 If a valid regiono € X is formed
by partitioning a valid regionp € X, theno is called a
subregionof regionn, and regiony is called asuperregion
of regiono. We define theuperregion function : ¥ — X
as follows. Lets € X \ ©. Defines(c) = n € %, if and
onlyifo cnandifoc C& Cnthengé =noré&=o0. For
completeness we definéd) = ©.

The NP method shifts the focus from specific points
in the feasible regio® to a space of subsets; namely the
space of all valid regions. Consequently, a set performance
unction/ : ¥ — R is needed. This set function can then
e used to select the most promising region and is therefore
called the promising index of the region. In this paper we

I(n) =min f(@), Vne X, 3)

fen
that is, the best solution in a region represents this region.
We refer the interested reader to Shi @ldfsson (1998b) for
a comprehensive discussion and analysis of this algorithm,
and restrict our attention to the elements that are relevant
to our present development.

It is clear that the NP method samples from the entire
feasible region in an adaptive fashion, and concentrates the
sampling effort by systematically partitioning the feasible
region. Thus, in each iteration it selects a most promising
region, that is, the subregion that is considered the most
likely to contain the global optimum. This selection can be
considered a success if the region selected contains the true
global optimum, and it would clearly be of practical interest
if a minimum probability of success could be guaranteed in
each iteration. In the pure NP algorithm described above
there is no such assurance.

Also note that when applying the NP method to a
stochastic problem there are two sources of randomness
that complicate the selection of the correct subregion. First,

interest, that is, we want to find a region that contains only there is a sampling error due to a relatively small sample
one point. Therefore, in each iteration, the estimated best being used to estimate the performance of an often large
region is the maximum depth regiap,, (k) € Xo, that has set. Secondly, the performance of each sample points is
been most frequently considered the most promising region. estimated using simulation and is hence noisy. Itisimportant
Consequently, the method must keep track of the number to observe that the former of these elements implies that the

of times, N (o), a regiono € g has been visited by the
k-th iteration. Note that it suffices to keep track of this for
regions that have been visited at least once.
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variation within a subregion differs greatly from one region
to the next. As an extreme case consider a singleton region
that is being compared to the entire surrounding region. That
is, a region containing only one solution being compared to
a region containing all of the other solutions. Clearly the
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first source of randomness has been completely eliminated Step 2. Leti = 1.
in the singleton region, whereas it probably accounts for Step 3. Use uniform sampling to obtain a $gf(k) of N

almost all of the randomness in the surrounding region. sample points from regiofi = 1,2, ..., M + 1.
This implies that to make better use of the sampling effort Step 4. Use discrete event simulation of the system to obtain
the number of sample points from each region should be a sample performance(9) for every6 e D;;(k)
variable and dependent on the variation within the region. and estimate the performance of the region as
The pure NP algorithm does not provide any guidelines or
restrictions on how this may be accomplished. Xij(k) = gergir}k) L(9), (4)

i

2.2 Two-Stage Sampling =12 .. M+1

Step 5. Ifi = ngcontinueto Step 6. Otherwise et i+1
and go back to Step 3.
Step 6. Calculate the first-stage sample means and variance

The discussion at the end of the last subsection identi-
fied two shortcomings of the pure NP method: the success
probability in each iteration cannot be guaranteed, and there
may considerable waste involved in the allocation of sam- no

ple points. We address this by using statistical selection Xﬁl)(k) _ i ZXij(k)’ (5)
methods and two-stage sampling to compare the subregions J no —

as if they were alternative systems, and hecambine the

benefits of global random search and statistical selection and

particular, we use Rinott's two-stage ranking-and-selection

procedure for selecting the best subregion (Rinott 1978). 2431 [Xij (k) — )—((_l)(k)]z

Since ranking-and-selection is applied in each iteration, the S2(k) = —= / , (6)
new algorithm may be considered an iterative ranking-and- ! no—1

selection algorithm.

To state this approach rigorously, we Tt (k) be thei-
th set of points selected from the regigy(k) using a uniform
random sampling procedurex> 1, j =1,2,..., M +1in 1252k
the k-th iteration. We letV = |D;; (k)| denote the number N;(k) = max{no +1, { J —H , @)

forj=1,2,...,. M+ 1.
Step 7. Compute the total sample size

of sample points, which is assumed to be constant. We let €2
6 € D;j(k) denote a point in this set and I&t(6) be a

simulation estimate of the performance of this point. Then wheree is the indifference zone ank is a con-
in the k-th iteration, stant that is determined byy and the minimum
probability P* of correct selection (Rinott 1978).
Xjk) = eemin L(9), Step 8. ObtainN; (k) — np more simulation estimates of

i the system performance as in $t&- Step 5 above,
that is (N (k) — ng) - N more sample points.

Step 9. Let the over all sample mean be the promising
index for each region,

is an estimate of the performance (3) of the regigywhich
we can now also refer to as thigh system performance
for the j-th system,i > 1, j = 1,2,..,. M + 1. The

two-stage ranking-and-selection procedure first obtains N (k)
i i i - - i1 Xij(k)
such system estimates, and then uses that information to [ (o) = X, (k) = iz Xij @8)
determine the total numbe¥; of system estimates needed ! ! Nj(k)
from the thej-th system, that is, subregiom; (k). This .
number is selected to be sufficiently large so that the correct j=12 e M+ 1 _ _ _
subregion is selected with probability at lea3t, subject Step 10._ Sel_ect the index of the region with the best promis-
to an indifference zone of > 0. ing index.
More precisely, the procedure is as follows: . .
jeearg min I(o;). 9)
j=1...M+1

2.2.1 Algorithm NP/Rinott
If more than one region is equally promising, the

Step 1. Given the current most promising regiotk), tie can be broken arbitrarily. If this index corre-
partitiono (k) into M subregionsry (k), ..., om (), sponds to a region that is a subregiorwok), then
and aggregate the surrounding regého (k) into let this be the most promising region in the next
one regiono 41 (k). iteration. Otherwise, if the index corresponds to
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the surrounding region, backtrack to a larger re-
gion containing the current most promising region.
That is, let

if iy <M+1,
otherwise.

o; (k),

10
s (o (k)), (10)

U(k—i—l):{

Step 11. Update the countefd/; (o)},ex for the number
of times each region has been the most promis-
ing region, and if necessary the maximum depth
region 6,,,(k) that have been most frequently
the most prom-ising region. & = ok + 1),
then letNi11(0) = Ni (o) + 1, and otherwise let
Nii1(o) = Ny (o) forallo # o (k+1). Ifthere ex-
istso € g such thatVi11(0) > Nit1(Gop: (k)),
then let 6,,/(k + 1) = o, and otherwise let
6opt(k +1 = &opt (k).

Step 12. If stopping rule is not satisfied fet= k + 1 and
go back to Step 1.

We note that forng = 1, with Steps 6-8 omitted, and
[(0;(k)) = Xy; replacing equation (8), this new iterative
ranking-and-selection algorithm reduces to the pure NP
algorithm described in Shi an@lafsson (1998b). On the
other hand, by selectinyy = |®|, the algorithm reduces to
a pure Rinott’s two-stage ranking-and-selection procedure.
The following parameters must be selected for the new
algorithm: the number of sample points used for each
system estimateXN), the number of system estimates in
the first stagerp > 2), the probability of correct selection
(P* > 0.5), and the indifference zone (> 0). There is
clearly a tradeoff betweeN andng in thatN -ng is the total
first stage sample effort, and if we fiX - ng then increasing
N decreasesg and vice versa. The choice &f* deserves
special attention. In the pure Rinott procedure, as well as
in other ranking-and-selection procedures, this probability
is usually selected to be rather large, s&y = 0.90 or
P* = 0.99. Here, however, the ranking-and-selection is
done iteratively so it is not feasible in practice to expand
too much computational effort in each iteration. In the next
section we will see thaP* > 0.5 is needed to guarantee

Assumption 1 Assume thavn € £,360 € n, & €
®\ n, such thatP[L(®) < L(¢)] < 1. O

With this assumption the following proposition follows.

Theorem 1 If Assumption 1 holds then Algorithm
NP/Rinott generates an irreducible recurrent Markov chain
{o (k)}72 o on X, such that its unique stationary distribution
7 satisfies,

kILmoon (60p,(k)) >m(n), Vn € Eo\{oopt}, w.p.1l. (11)

In words, the algorithm converges to a maximum of the
stationary distribution over all singleton regions.

Proof: This theorem is proven for the pure NP algorithm
in ShiandOlafsson (1998b) in a slightly more general setting,
and since that proof also holds for Algorithm NP/Rinott we
will only sketch it here. It is clear thafo (k)}2, is a
Markov chain, and it is irreducible by Assumption 1. Since
¥ is finite, the Markov chain is then positive recurrent with
a unique stationary distributiom. Furthermore, it is well
known that

m(n),

"mAMm:
k— 00 k
which implies that, in the limit, the most frequently vis-
ited region maximizes the stationary distribution. Since
Gopi (k) = arg maxcx, Ni (o) the theorem followsD

To state the main convergence theorem we need the
usual assumption of ranking-and-selection methods, namely
that the observations are normally distributed.

Assumption 2 Assume thatX;; ~ N (u;, vjz.), is
normally distributed with meap ; and variancevjz for all
je{l,2,..,M+1},andi € {1,2,..,N;(k)}, k > 1. O

We also need to be able to distinguish between the
optimum and other solutions.

Assumption 3  Assume that the indifference zone
satisfiese < mingee\g,,, f(0) — f(Oopr). O

We now have the following main convergence theorem
for this algorithm.

Theorem 2 If Assumption 1-3 hold an@* > 0.5,
then Algorithm NP/Rinott converges with probability one to
a global optimum, that is,

convergence, but it should not be selected too large because

then too much effort is spent in each iteration. Finally,
the indifference zone depends on how the performance
function is scaled and is therefore problem dependent.

3 CONVERGENCE ANALYSIS

It is straightforward to see that Algorithm NP/Rinott gener-
ates a Markov chain and the stationary distribution of this

lim &Opt(k) = Oopt» wpl (12)
k— 00

Proof: By Theorem 1 the algorithm converges to the
singleton region that has the largest stationary probability,
so we only need to show thalo,,;) > 7 (n) forall n € Xo.
Hence, letn € X be an arbitrary singleton region. Now
let n* be the smallest region that contains bgtando,,;,

chain can be used for inference about the convergence of that is

the algorithm. To state this precisely, we need the follow-

ing technical assumption, that can be made without loss of

generality.
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n*=minfo € X :n C 0,0 Co}.
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Furthermore, leb1, n2, ..., na(y+) be the sequence of regions The last theorem shows that Algorithm NP/Rinott con-
that satisfiess,,; = n1 C n2 C ... C nagr = n*, that is verges asymptotically. Next we consider how fast it con-
this is the sequence of regions the algorithm must traverse verges. By Definition 3, for the algorithm to correctly
to get fromo,,; to n* and vice versa. Furthermore, let consider the optimuna,,; as the best solution, this state
NdmH+1 NdmH+2:-- N2dp+) b the same type of sequence must be visited at least once. Hence it is of interest to look
with nogy+) = n, thatis, the sequence needed to get frigm at the expected time until the algorithm will visit this state
to n and vice versa. Thus, the sequengeny, ..., n24¢;%) for the first time. Clearly we would like this to be as small
represent the shortest path frary,; to » and back. Now as possible, and the next theorem provides an upper bound
foranyi € {1, 2, ..., 2d(n*) — 1} it is clear that since the for this expected time.

Markov chain is clearly reversible (note the tree structure) Theorem 3 Let Assumption 1-3 hold and assume
then that P* > 0.5. Let Tp denote the first time Algorithm

NP/Rinott visits the optimal solution. Then
Pi, ni+D)7y = PMit1, 0i)7n; 445
"
and similarly E[T1] < Spr 1 (15)
POists nis2)niy = POlit2 i) - Proof: Recall that the Markov chaif ()}$2, has a
minimum success probability aP* given its current state
o (k) € X, that is, with probability at at least*, o (k + 1)
will be closer too,,; thano (k) in terms of the number
P(ni, ni+1) P(Nig2, Nit1) of transitions required to move between the regions. Now
= Tnivas imagine a Markov chain that is identical {o (k)} except
that this success probability is even and equdltdor every
statec € . Now note that since the success probability is
= TTniia- constant, the exact state is not of any consequence, but rather
P (i, niv1) - P(it1, ni+2) the number of transitions it takes to move from the current
stateo (k) to the optimum. The maximum such distance is
2d4*, and we can therefore, without losing any information,
P12, 11) + .. - PM240y%)> M2d(y*)—1) reduce the state space &= {0, 1,2, ...., 2d*}. With this
= Ty (13) representation the entire feasible regi®ncorresponds to
stated*, and we can let the global optimum correspond to
We also know that? (n; 41, 1;) is the probability of correct ~ State zero. Given a statee S the probability of moving
selection, that is, moving towards the true optimum, so by t0 x — 1 is fixed and equal taP*, and the probability of
Assumptions 2-3 and Proposition 1 in Rinott (1978) we moving tox + 1is equal tol — P*, regardless of the state.

These equations can of course be verified by setting up the
full balance equations. Thus we have

ni = Tnip1 =

P(i+1,1i) P (i1, niy2)

or
_ PMit1,mi) - P(Mi42, ni+1)

i

By induction we get

Ty, =
T P13, 12) e PM2a(r7)—1 N24(p))

have P (n;+1, ni) > P* > % This implies that Therefore, the new Markov chain is a simple random walk.
Furthermore, it is clear thak [T1] < E [T]], whereT] is
P(Mi+1, ) = P(iv1. mit2), Vi=1,2,...,2d(n") = 2, the first time the random walk visits,,, if it starts in state
d*, which corresponds t®, the starting state of Algorithm
which together with equation (13) says that NP/Rinott.
Hence, if we calculate the expected hitting time for the
- PM2agr, n2a(r)-1) (14) random walk this automatically gives us an upper bound
"= P (11, 1n2) 2 for the original Markov chain. Furthermore, since we are

only interested in the time the global optimum is found
for the first time, we can assume O is an absorbing barrier
and look at the time of absorption. Note also tBdt is a
reflective barrier. Then it is known that the expected tifhe

On the other hand, it is clear that moving frafp, ) to
n2d(*)—1 is the correct selection so

PM24a(n*), N2d(y*)—-1) = P* > % of absorption when starting in staieis (Weesakul, 1961)
and vice versa moving fromy to n2 is incorrect selection E[T] = u n (1— p*)2d*+1
S0 P(n1, n2) < % Thus equation (14) reduces to ! 2P —1 (P*)2*(2P* —1)2
pP* “
Toop = Tn1 Z Tngymy = Tns (1_ (1 _ p*) ) ) (16)

which is precisely what is needed to prove the theorem.
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Thus, foru = d*, that is, when the algorithm starts in state Table 1: Expected first hitting time of the optimum.
0(0) = O, we have

Maximum Depth §*)

d* (1-— P*)Zd*+l
Eelll = o217 (2T 2pr — 12
Success Prob. 2 5 10 20 30
pr A\ 55% 20 50 100 200 300
(1— <1_ P*) > : (17) 60% 10 25 50 100 150
65% 7 17 33 67 100
. - 70% 5 13 25 50 75
Now since Px > 0.5 then ;=5 > 1 s0 75% 4 10 20 40 60
80% 3 8 17 33 50
P\ 85% 3 7 14 29 43
1- (m) <0, 90% 3 6 13 25 38
95% 2 6 11 22 33
and hence

sis, this time for a simple random walk with two absorbing
(1— p*)2™+1 P \* barriers, to calculate this probability.
(P2 (2px —1)2 \ "~ (m) <0. Theorem 4  Let Assumption 1-3 hold and assume
that P* > 0.5. Leté denote the first maximum depth region
visited. Then

Therefore,
* syd* (=P — (P x4 1
s_ x| PO Taem— e PR # 3
E[T1] < Eg+[T] < 2P 1 p [0 = Uopz] = { (1 P%) 4% —(px) g %
| (18)
which proves the theorenm) Proof: Since the success probability is constant we

To obtain the simple bound in equation (16) we ignored 5, again consider the random walk with state spee
the second negative term in equation (17). It is therefore {0, 1, ..., 2d*) defined in the proof of Theorem 3 above.
appropriate to consider how loose this bound is, and we pyere the only question is thus if state 0 2¢* will be

obse*rve that this second term goes to zero as efther oo visited first; that is, the probability that the first maximum

or P* — 1* and indeed, unles¢* is STa”’ say less than  gepih visited contains the global optimum is equal to the

ten, andP* is close to one half, sap* < 0.55, the first probability that the random walk visits state 0 before it visits

term in equation (16) is much larger than the second term giate04*. " This probability is thus equal to the absorption

in absolute value. _ _ 3 probability at zero for a simple random walk with two
Now lets consider if an optimal selection probability  ahsorhing barriers, which can for example be found on p.

P*(ng, M) and can be found. It is clear that &8 (ng, M) 32 in Cox and Miller (1965)01

increasest[71], that is, the expected time until the global For insights into this theorem consider Table 2 which

optimum is encountered decreases. This occurs, however, shows the results of equation (18) fare {2, 5, 10, 20

at a decreasing rate. On the other hand,Pdsno, M) 30} and P* ranging from 0.50 to 0.95. From this table

increasesh(no, M, P*) also increases and this occurs at e see that unless the problem is small, s&y< 10,
an increasing rate. Therefore, an optimal probability is ihen the probability of the first maximum depth region
somewhere between the extreme valueBt, M) = 0.5 visited corresponding to the optimum is very high even for
and P*(no, M) = 1. However, since the second-stage gyccess probability as low as 55%. For problems as small
sample S|ze.depends on the sample variance from t'he first as 4* = 5 it is sufficient to have 75% success probability
stage sampling and the indifference zone, both of which are o it to be virtually certain that the first maximum depth
clearly problem dependent, so does the optimal value of region will correspond to the optimum. Thus, stopping
P*(no, M). It is therefore not possible to give anpriori when the algorithm reaches maximum depth is a reasonable
prescription for the optimal probability. _ strategy for the Algorithm NP/Rinott, and if this stopping
Another quantity of interest when applying the Algo- e is applied then equation (18) can be used to calculate

rithm NP/Rinott is the probability of the first maximum 4,4 probability of this being a correct termination.
depth region visited being the one corresponding to the

global optimum. If this probability is fairly high then a rea-
sonable stopping rule would be to stop whenever maximum
depth is reached. We can again use a random walk analy-
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Table 2: Probability of first maximum depth region being
the optimum.

Maximum Depth ¢*)

Success Prob. 2 5 10 20 30
55% 0.60 0.73 0.88 0.98 1.00
60% 069 0.88 0.98 1.00 1.00
65% 0.78 0.96 1.00 1.00 1.00
70% 084 099 1.00 1.00 1.00
75% 090 1.00 1.00 1.00 1.00
80% 094 1.00 1.00 1.00 1.00
85% 0.97 1.00 1.00 1.00 1.00
90% 099 1.00 1.00 1.00 1.00
95% 1.00 1.00 1.00 1.00 1.00

4  SUMMARY

We have introduced a new algorithm for optimizing systems
where the number of alternatives is very large and the perfor-

mance of each alternative must be evaluated using simula-
tion. The approach combines an adaptive sampling method
called the nested partitions method with traditional ranking- .
. . Shi,
and-selection procedures. We have proved the asymptotic

convergence of the algorithm but numerical testing of the
algorithm is needed and is currently underway.

Future research directions include further refining of
the algorithm, analyzing how fast it converges, and deriv-
ing efficient stopping rules. Also of interest would be to
incorporate other statistical selection procedures into the
method. This could include the optimal computing budging
allocation (OCBA) procedure (Chen et al. 1998) or a com-

bined subset selection and Rinott's procedure (Goldsman

and Nelson 1998).
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