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ABSTRACT

We describe statistical methods for sensitivity and perfor-
mance analysis of complex computer simulation experi-

ments. Graphical methods, such as trellis plots, are sug-
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where f represents the simulation model. If the input
values are stochastic, the relationship in (1) is not exact,
but contains an additional random error terie., ¥ =
f(X) + €. Stochasticity may also come from within the
simulation itself. However, similar methods of analysis can

gested for exploratory analysis of individual or aggregate be applied in either case. Koehler and Owen (1996) discuss
performance metrics conditional on different experiment experimental design methods for computer experiments with
inputs. More formal statistical methods, such as analysis deterministic inputs that introduce randomness by taking

of variance-based methods and regression tree analysis, areecandom input points having some particular properties.

used to determine variables having substantive influence on

the experimental results and to investigate the structure of
the underlying relationship between inputs and outputs. The
methods are discussed in relation to a supply chain model
of the textile manufacturing process having many possible
input and output variables of interest and for a computer
model used to describe the flow of material in an ecosystem.
1 INTRODUCTION

The increasing use of computer simulation methods for
modeling complex, interrelated physical or manufacturing

The goals of the modeling exercise may include: finding
a region ofX values yielding improved performance on the
basis of a particular criterion fdf, sensitivity analysis of
with respect to changes i, finding a simple and accurate
approximation off for a particular regiom of X values.
For each of these goals, statistical visualization and analysis
methods are applicable.
2 STATISTICAL METHODS FOR ANALYSIS OF
COMPUTER EXPERIMENTS

Both exploratory graphical methods and more formal sta-

processes has led to the need for statistical methods thattistical modeling techniques are useful for examining the

can be used to understand such systems.
a simulation model of a manufacturing supply chain may

contain many different process activities, such as receiving,
processing, transporting, inspecting. Each of these activities
may have many different input variables whose values can
affect the resulting process performance, including the in-
ventory replenishment strategy, manufacturing orientation,
or capacity planning strategy. Outputs of interest may in-

clude, among others, measures of manufacturing cycle time,
supplier lead time, total manufacturing costs, number of lost
customers, and profits.

In general, letX € R” denote a vector of deterministic
input values chosen for the simulation model and’let R?
denote the vector of output quantities. The relationship
betweenX andY may be denoted by

Y = f(X), 1)
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For example,output of computer experiments. In the following sections,

we discuss the use of variance analysis for assessing input
variable importance, trellis plots for graphical analysis of
output with conditioning on input variables, and regression
tree modeling for obtaining an approximation fo Each

of these goals relates to analysis of “input uncertainty” as
opposed to uncertainty due to simulation variability.

2.1 Handling Vector Performance Measures

When there are many possible performance measures as-
sociated with the simulation modele., Y € RY, where

g > 1, the analyst may be interested not only in evaluating
the effect of X on individual elements of’, but also in
evaluating the effect on a combined measure’ pfwvhich

may incorporate information concerning the importance of
each performance metric relative to the overall analysis
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goal. Morrice, Butler, and Mullarkey (1998) discuss an denotes the number of observed responses per level. As in
approach to evaluating project configurations for a simu- an analysis of variance,

lation model having multiple performance measures using

multiple attribute utility functions. In this approach, vector SSTO = Z Z(yif — 32 4)
performance measures are transformed into a scalar mea- P

sure using, for example, a weighted sum of attribute utility

functions for the individual measures. Other possible meth- and

ods of aggregating multiple performance measures include

=32

calculation of a “desirability” functionD (Derringer and SSA = ZZW —y.)% ®)
Suich, 1980), which reflects the desirable ranges for each Lo

responsey;,i =1, ---, g. The desirability may range from

. et ) wherey  denotes the overall mean response andenotes
zero to one, with zero indicating least desirable and one he mean response of the results at levef of the input

indicating most desirable. For instanceyifis specified to variable A. The ratio of these two sums of squares is

be in some target range;, b;), with target value;, then R2, the estimated correlation coefficient for input variable

d;, the desirability corresponding tp is defined by A. A measure of the relative importance of input variables,
taken singly, is provided in the associate@ivalues. Those

di = 0, yi<a variables having largeR? values are deemed to be most
d = 224w g<yi<g important in affecting the output of the model. These
ti —a variables are analogous to significant "main effects” in an
Yi = bi ANOVA framework (Box and Draper, 1987). Assuming that
d = [ 1", 6 < yi <bi

t; — b; - sufficient experimental runs of the model exist, the technique
d = 0,y > b;, 2 is easily extended to assess the impact of two or more input
variables simultaneously. Alternatively, the procedure can
wherew; denotes a weight that can be chosen to give more be used in a sequential mannieg,, incremental correlation
(w; > 1) or less (v; < 1) weight to the goal. The overall ratios can be computed for a second input variable, given
desirability function is defined by the effect of each important main effect input variable. See
McKay, Morrison, and Upton (1998). A recent paper by
q BN McKay, Fitzgerald, and Beckman (1999) studies the effect
D= (1_[ dHEri, ©)] of the assumed number of levels for an input variahland
i=1 the sample sizé;, per level on the discriminating ability of
. ) i R? in determining important inputs. In McKay, Fitzgerald,
wherer; is a value between one and five reflecting the 54 geckman (1999), “replicated” Latin hypercube samples
relative |mpor.tance pf_response. . form the basis of the experiment design. Orthogonal arrays
For certain statistical methods, techniques have been e 4150 been suggested for the design of experiments for

developed to handle vector response variables explicitly. computer models in Koehler and Owen (1996) and Owen
However, unless otherwise stated, we assume that the ref- 1992).

erenced response variable in the following discussions is

The technique can be extended to the casg-wériate
scalar.

responses by considering a function 8§A(SST0)™1,
whereSSA andSST O arep x p matrices, and an appropriate
function may be the determinant function. This is analogous
to test statistics used in multivariate ANOVA applications to
assess main and interaction effects (Box and Draper, 1987).

2.2 Variance Analysis

McKay et al. (1992) suggests the conditional variance
of the output as a meaningful measure of importance in
identifying inputs having significantimpact on the simulation 5 3 Graphical Analysis
results. Analogous to analysis of variance (ANOVA), output

variability is decomposed into components that can each be 5 ¢ 5 subset of important inputs is selected, itis desirable to
attributable to an input variable of interest; th_ese quantities |41 in more detail at how changes in response to changes
are then compared to the total variability. Thls method has in these inputs. Trellis graphs (Becker, Cleveland, and Shyu,
been used, for exgmple, b_y .McKay, Mo_rnsop, gnd UPIO” 1996), which allow the analyst to view relationships between
(1998) for evaluating prediction uncertainty in simulation  jitarent variables under fixed conditions of other variables,

models. _ _ _ _ are useful at this stage.
For a parUcngr Input vanapIeA, denote associated Suppose you have a data set based on multiple variables
responses by;;, i = 1,...,1,j = 1,...,k, wherel

i i and you would like to see how plots of two variables change
denotes the number of levels of the input of interest &gnd
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with variations in a third "conditioning" variable. Trellis
graphics, as implemented in Splus 4.0 and higher (MathSoft,

equilibrium. The flow between compartments is modeled
by a system of differential equations, where the inptt®

1998), can be used to view the output data in a series of the system are a set 8# equation “transfer coefficients”,
panels, where each panel contains a subset of the originaleach assumed to have a Beta distribution with (possibly)

data divided into intervals of the conditioning variable(s).
In this way, interaction effects between input variables can

be assessed graphically. Trellis graphics are quite general,

in that most types of plots can be accommodated in the
conditioning framework. Factor interaction plots of the type
commonly used in ANOVA can also graphically show the
effect of one factor at different levels of a second factor, but
are not very useful for examining higher-level interactions.

2.4 Regression Trees

Tree-based modeling is an exploratory technique for un-
covering structure in data, which can be used for, among
other things, screening variables and summarizing large
multivariate datasets. For a numeric scalar respdfsan
example of a regression rule for description or prediction
is: if x; >t andx; € {1, 2}, then the predicted value of

Y is ¢, wherer and ¢ are real values andl, 2} denote
levels of categorical input variable;. A regression tree

different range. The range of each variable was divided
into fourteen intervals, and each input was identified with
fourteen discretized values as levels.

An experiment was designed to investig#® values
for the 84 factors individually and for all (3570) pairs of
the 84 factors. The experiment design was generated from
a highly fractionated factorial design for 84 factors with
83 levels. Simple fractional factorial designs for two or
three level factors are described in most statistics textbooks
on experiment design including Box, Hunter and Hunter
(1978). Addelman and Kempthorne (1961) describe main-
effect factorial design plans and orthogonal arrays. The
fraction used here is a Resolution Ill design8®? = 6889
runs which is also an orthogonal array of strength two. The
Resolution 11l and strength two properties indicate a balance
such that every pair of levels associated with two factors
occurs once. By further "collapsing” the 83 levels of a
given factor to fourteen levels by a natural mapping of six
values to one with the fourteenth level being assigned from

is the collection of many such rules displayed in the form values 79 to 83, the design is assured of having about 25 to
of a binary tree. The rules are determined by a procedure 36 samples associated with each of pair of levels associated
known as recursive partitioning. The model is simply a set with two factors. This process of collapsing factor levels
of partitions of the input variable space such that values of does not ensure that the resulting runs are distinct. When
Y are relatively constant in that partition. The predicted duplicated runs are eliminated, the experiment design has
value of Y for a particular region is just the sample aver- 6820 runs.

age of the responses corresponding to values of the input Figure 1 shows a plot of th&? values for each input
variables which fall in that region. Tree-based models are variable, sorted from largest to smallest, with the ten most

adept at capturing non-additive and general interactions be-

tween input variables, which is almost always the case in
complex simulation models. Breimaat al. (1984) gives

"important” input variables identified. Figure 2 shows a
similar plot of R? values corresponding to two-way interac-
tions between pairs of input variables. Important factors are

a detailed discussion of classification and regression tree identified with largerrR? values, and as the curves formed

methodology.
Extensions to the regression tree methodology such

by the plots illustrated in Figures 1 and 2 level off, the
associated factors are not considered important. Thus, for

as treed regression, which fits linear regression models the current study, we might restrict attention to 5-10 factors
in each region, have also been discussed in the literature (or pairs) for further study.

(Alexander and Grimshaw, 1996). For treed regressions, it
is conceivable that the respong¥emay be vector-valued,
as in the standard linear multivariate regression framework,
although, to the best of our knowledge, this has not been
discussed in the literature.

In the following section, we apply some of the discussed feature of Splus (MathSoft 1998).

techniques to two examples.
3 APPLICATIONS

Our first example is for a compartmental model used to de-
scribe the flow of material in an ecosystem. The model cal-

Figure 3 shows a regression tree for the environmental
pathways model based on the top ten input variables selected
in the R? analysis. The values at each terminal node
represent the average concentration for the associated region
of the input variables. The regression tree analysis is a
The partitioning of
the range of levels of a factor is not indicated on the
display in Figure 3, but is available in the Splus output.
Following the right branch of the tree all the way down
to its terminal node, we have that when input variable 69
has level{1, 10,11, 12, 13,14, 2, 3,4, 7, 8, 9}, variable 68
has level{4,5, 6}, variable 84 has leve{3, 4,5, 12 13},

culates concentrations in 15 subsystems, or compartments,variable 24 has levdll, 8} and variable 1 has lev¢l2, 6},

as functions of time. One output of particular interest is
the concentrationy, in one of the compartments at system
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the average concentration is 13.0. Thus a region of the
input predictor space giving “extreme” valuesiois easily
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R? Values for Input Variable Main Effects
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Figure 1: RankedR? Values for Main Effects of Input
Variables to Environmental Pathways Compartmental Model
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Figure 2: Ranked?? Values for Two-Way Interactions Be-
tween Input Variables to Environmental Pathways Compart-
mental Model

identified. The first input variable that is partitioned is 69,
which also had the largest? value for main effects.

Our second example is a simulation model of a textile
manufacturing supply chain which is currently in devel-
opment at Los Alamos National Laboratory. A prototype
simulation was developed to study the supply chain produc-
tion of a nylon jacket and is reported in Chandra, Nastasi
Powell and Ostic (1996). The textile manufacturing pro-
cess consists of four sectors: fiber, textiles, apparel, and
retail. For a particular product, several companies may be

represented in each sector, with potentially many processes

within a company, and many activities within a process.
For every activity, up to a dozen input variables may be

required which determine such things as demand forecast
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Regression Tree for Environmental Pathways Model
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Figure 3: Regression Tree for Concentration as a Function
of Top Ten Input Variables for Environmental Pathways Com-
partmental Model

algorithms, marketing strategy, cost trade-offs, inventory
replenishment strategy, manufacturing orientation, capacity
planning strategy, or scheduling techniques. Itis anticipated
that, across sectors, up to sixty activities might be modeled
dynamically in the simulation under development. This
suggests possibly designing experiments with hundreds of
input variables and analyzing process performance on the
basis of between five and ten output variables. However, the
prototype study was limited to a few inputs, namely fore-
cast method and manufacturing orientation. In particular,
available simulation output was based on only four manu-
facturing orientations: “as is” push, “to be” push, “to be”
pull, and “to be” synchronous flow. Additionally, the pilot
study included only parts of three sectors: textile, apparel
and retail. Output variables of interest included process
throughput, cycle time, supplier lead time, and inventory
turnover.

Figure 4 shows trellis plots of the supplier lead times
for 432 days (in hours) for each of the four manufactur-
ing strategies and each of three receiving activities in the
supply chain. In the plotR6 denotes the first receiving
activity (in the textile sector), whilek13 and R18 denote
receiving activities that occur in the apparel sector. Similar
plots can be constructed for activities aggregated across a
sector, or for supplier lead time at different time scales

' (monthly, quarterly)gtc. Up to four conditioning variables

can be used to construct the trellis display. For the supply
chain model under development, we anticipate that trellis
graphics will be useful for considering the effects of such

things as inventory replenishment strategies under different

manufacturing orientations for different sectors of the textile
manufacturing process.
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Figure 4:rellis Time Series Plots of Supplier LeadTimes
for(Receaving Activities

4 CONCLUSIONS

We have presentd severd statistich technique tha can
be usal to investigaé sensiivity and performane analy-
sis of simulaticn models Although the specift examples
discussd in this pape pertan to a deterministt computer
modé and a finite-horizan suppy chain simulation with
deterministt inputs the techniqus can be als be applied
to steady-sta simulatiors using the methal of batd means
to obtan approximate} independenobsevatiors of perfar-
man® measurs (see for example Law and Kelton, 1991).
Future work will focus on applying thes techniqus in a
more thoroudh investigation of the manufacturig supply
chain modd discussd in Sectim 3. In particula, we plan
to implemert an appropria¢ experimentadesigh ard apply
the multivariaie method mentionel in Sectim 2 to assess
the suppl chan performane acros differert acivities and
time horizons.
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