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ABSTRACT

We describe statistical methods for sensitivity and perf
mance analysis of complex computer simulation expe
ments. Graphical methods, such as trellis plots, are s
gested for exploratory analysis of individual or aggrega
performance metrics conditional on different experime
inputs. More formal statistical methods, such as analy
of variance-based methods and regression tree analysis
used to determine variables having substantive influence
the experimental results and to investigate the structure
the underlying relationship between inputs and outputs. T
methods are discussed in relation to a supply chain mo
of the textile manufacturing process having many possi
input and output variables of interest and for a compu
model used to describe the flow of material in an ecosyste

1 INTRODUCTION

The increasing use of computer simulation methods
modeling complex, interrelated physical or manufacturi
processes has led to the need for statistical methods
can be used to understand such systems. For exam
a simulation model of a manufacturing supply chain m
contain many different process activities, such as receivi
processing, transporting, inspecting. Each of these activi
may have many different input variables whose values c
affect the resulting process performance, including the
ventory replenishment strategy, manufacturing orientatio
or capacity planning strategy. Outputs of interest may
clude, among others, measures of manufacturing cycle ti
supplier lead time, total manufacturing costs, number of lo
customers, and profits.

In general, letX ∈ Rp denote a vector of deterministic
input values chosen for the simulation model and letY ∈ Rq

denote the vector of output quantities. The relationsh
betweenX andY may be denoted by

Y = f (X), (1)
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where f represents the simulation model. If the inpu
values are stochastic, the relationship in (1) is not exac
but contains an additional random error term,i.e., Y =
f (X) + ε. Stochasticity may also come from within the
simulation itself. However, similar methods of analysis ca
be applied in either case. Koehler and Owen (1996) discu
experimental design methods for computer experiments wi
deterministic inputs that introduce randomness by takin
random input points having some particular properties.

The goals of the modeling exercise may include: findin
a region ofX values yielding improved performance on the
basis of a particular criterion forY , sensitivity analysis ofY
with respect to changes inX, finding a simple and accurate
approximation off for a particular regionA of X values.
For each of these goals, statistical visualization and analy
methods are applicable.

2 STATISTICAL METHODS FOR ANALYSIS OF
COMPUTER EXPERIMENTS

Both exploratory graphical methods and more formal sta
tistical modeling techniques are useful for examining th
output of computer experiments. In the following sections
we discuss the use of variance analysis for assessing in
variable importance, trellis plots for graphical analysis o
output with conditioning on input variables, and regressio
tree modeling for obtaining an approximation tof . Each
of these goals relates to analysis of “input uncertainty” a
opposed to uncertainty due to simulation variability.

2.1 Handling Vector Performance Measures

When there are many possible performance measures
sociated with the simulation model,i.e., Y ∈ Rq , where
q > 1, the analyst may be interested not only in evaluatin
the effect ofX on individual elements ofY , but also in
evaluating the effect on a combined measure ofY , which
may incorporate information concerning the importance o
each performance metric relative to the overall analys
6
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goal. Morrice, Butler, and Mullarkey (1998) discuss an
approach to evaluating project configurations for a simu
lation model having multiple performance measures usin
multiple attribute utility functions. In this approach, vector
performance measures are transformed into a scalar me
sure using, for example, a weighted sum of attribute utility
functions for the individual measures. Other possible meth
ods of aggregating multiple performance measures includ
calculation of a “desirability” function,D (Derringer and
Suich, 1980), which reflects the desirable ranges for eac
response,yi, i = 1, · · · , q. The desirability may range from
zero to one, with zero indicating least desirable and on
indicating most desirable. For instance, ifyi is specified to
be in some target range(ai, bi), with target valueti , then
di , the desirability corresponding toyi is defined by

di = 0, yi < ai

di = [yi − ai

ti − ai

]wi , ai ≤ yi ≤ ti

di = [yi − bi

ti − bi

]wi , ti ≤ yi ≤ bi

di = 0, yi > bi, (2)

wherewi denotes a weight that can be chosen to give mor
(wi > 1) or less (wi < 1) weight to the goal. The overall
desirability function is defined by

D = (

q∏

i=1

d
ri

i )
1∑
ri , (3)

where ri is a value between one and five reflecting the
relative importance of responseyi .

For certain statistical methods, techniques have bee
developed to handle vector response variables explicitl
However, unless otherwise stated, we assume that the r
erenced response variable in the following discussions
scalar.

2.2 Variance Analysis

McKay et al. (1992) suggests the conditional variance
of the output as a meaningful measure of importance i
identifying inputs having significant impact on the simulation
results. Analogous to analysis of variance (ANOVA), outpu
variability is decomposed into components that can each b
attributable to an input variable of interest; these quantitie
are then compared to the total variability. This method ha
been used, for example, by McKay, Morrison, and Upton
(1998) for evaluating prediction uncertainty in simulation
models.

For a particular input variable,A, denote associated
responses byyij , i = 1, . . . , l, j = 1, . . . , ki , where l

denotes the number of levels of the input of interest andki
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denotes the number of observed responses per level. As
an analysis of variance,

SST O =
∑

i

∑

j

(yij − ȳ..)
2, (4)

and

SSA =
∑

i

∑

j

(yi. − ȳ..)
2, (5)

whereȳ.. denotes the overall mean response andyi. denotes
the mean response of theki results at leveli of the input
variable A. The ratio of these two sums of squares is
R2

A, the estimated correlation coefficient for input variable
A. A measure of the relative importance of input variables
taken singly, is provided in the associatedR2 values. Those
variables having largeR2 values are deemed to be most
important in affecting the output of the model. These
variables are analogous to significant ”main effects” in an
ANOVA framework (Box and Draper, 1987). Assuming that
sufficient experimental runs of the model exist, the techniqu
is easily extended to assess the impact of two or more inp
variables simultaneously. Alternatively, the procedure ca
be used in a sequential manner,i.e., incremental correlation
ratios can be computed for a second input variable, give
the effect of each important main effect input variable. Se
McKay, Morrison, and Upton (1998). A recent paper by
McKay, Fitzgerald, and Beckman (1999) studies the effec
of the assumed number of levels for an input variable,l, and
the sample size,ki , per level on the discriminating ability of
R2 in determining important inputs. In McKay, Fitzgerald,
and Beckman (1999), “replicated” Latin hypercube sample
form the basis of the experiment design. Orthogonal array
have also been suggested for the design of experiments
computer models in Koehler and Owen (1996) and Owe
(1992).

The technique can be extended to the case ofp-variate
responses by considering a function ofSSA(SST O)−1,
whereSSA andSST O arep×p matrices, and an appropriate
function may be the determinant function. This is analogou
to test statistics used in multivariate ANOVA applications to
assess main and interaction effects (Box and Draper, 1987

2.3 Graphical Analysis

Once a subset of important inputs is selected, it is desirable
look in more detail at howY changes in response to changes
in these inputs. Trellis graphs (Becker, Cleveland, and Shy
1996), which allow the analyst to view relationships betwee
different variables under fixed conditions of other variables
are useful at this stage.

Suppose you have a data set based on multiple variabl
and you would like to see how plots of two variables chang
7
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with variations in a third "conditioning" variable. Trellis
graphics, as implemented in Splus 4.0 and higher (MathSo
1998), can be used to view the output data in a series
panels, where each panel contains a subset of the origin
data divided into intervals of the conditioning variable(s)
In this way, interaction effects between input variables ca
be assessed graphically. Trellis graphics are quite gener
in that most types of plots can be accommodated in th
conditioning framework. Factor interaction plots of the type
commonly used in ANOVA can also graphically show the
effect of one factor at different levels of a second factor, bu
are not very useful for examining higher-level interactions

2.4 Regression Trees

Tree-based modeling is an exploratory technique for un
covering structure in data, which can be used for, amon
other things, screening variables and summarizing larg
multivariate datasets. For a numeric scalar responseY , an
example of a regression rule for description or prediction
is: if xi > t and xj ∈ {1, 2}, then the predicted value of
Y is c, where t and c are real values and{1, 2} denote
levels of categorical input variablexj . A regression tree
is the collection of many such rules displayed in the form
of a binary tree. The rules are determined by a procedu
known as recursive partitioning. The model is simply a se
of partitions of the input variable space such that values o
Y are relatively constant in that partition. The predicted
value of Y for a particular region is just the sample aver-
age of the responses corresponding to values of the inp
variables which fall in that region. Tree-based models ar
adept at capturing non-additive and general interactions b
tween input variables, which is almost always the case i
complex simulation models. Breimanet al. (1984) gives
a detailed discussion of classification and regression tre
methodology.

Extensions to the regression tree methodology suc
as treed regression, which fits linear regression mode
in each region, have also been discussed in the literatu
(Alexander and Grimshaw, 1996). For treed regressions,
is conceivable that the responseY may be vector-valued,
as in the standard linear multivariate regression framewor
although, to the best of our knowledge, this has not bee
discussed in the literature.

In the following section, we apply some of the discusse
techniques to two examples.

3 APPLICATIONS

Our first example is for a compartmental model used to de
scribe the flow of material in an ecosystem. The model ca
culates concentrations in 15 subsystems, or compartmen
as functions of time. One output of particular interest is
the concentration,Y , in one of the compartments at system
48
rformance Analysis in Computer Experiments
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equilibrium. The flow between compartments is modeled
by a system of differential equations, where the inputsX to
the system are a set of84 equation “transfer coefficients”,
each assumed to have a Beta distribution with (possibly
different range. The range of each variable was divided
into fourteen intervals, and each input was identified with
fourteen discretized values as levels.

An experiment was designed to investigateR2 values
for the 84 factors individually and for all (3570) pairs of
the 84 factors. The experiment design was generated fro
a highly fractionated factorial design for 84 factors with
83 levels. Simple fractional factorial designs for two or
three level factors are described in most statistics textbook
on experiment design including Box, Hunter and Hunter
(1978). Addelman and Kempthorne (1961) describe main
effect factorial design plans and orthogonal arrays. Th
fraction used here is a Resolution III design in832 = 6889
runs which is also an orthogonal array of strength two. The
Resolution III and strength two properties indicate a balanc
such that every pair of levels associated with two factor
occurs once. By further "collapsing" the 83 levels of a
given factor to fourteen levels by a natural mapping of six
values to one with the fourteenth level being assigned from
values 79 to 83, the design is assured of having about 25
36 samples associated with each of pair of levels associat
with two factors. This process of collapsing factor levels
does not ensure that the resulting runs are distinct. Whe
duplicated runs are eliminated, the experiment design ha
6820 runs.

Figure 1 shows a plot of theR2 values for each input
variable, sorted from largest to smallest, with the ten mos
”important” input variables identified. Figure 2 shows a
similar plot ofR2 values corresponding to two-way interac-
tions between pairs of input variables. Important factors ar
identified with largerR2 values, and as the curves formed
by the plots illustrated in Figures 1 and 2 level off, the
associated factors are not considered important. Thus, f
the current study, we might restrict attention to 5-10 factors
(or pairs) for further study.

Figure 3 shows a regression tree for the environmenta
pathways model based on the top ten input variables select
in the R2 analysis. The values at each terminal node
represent the average concentration for the associated reg
of the input variables. The regression tree analysis is
feature of Splus (MathSoft  1998). The partitioning of
the range of levels of a factor is not indicated on the
display in Figure 3, but is available in the Splus output.
Following the right branch of the tree all the way down
to its terminal node, we have that when input variable 69
has level{1, 10, 11, 12, 13, 14, 2, 3, 4, 7, 8, 9}, variable 68
has level{4, 5, 6}, variable 84 has level{3, 4, 5, 12, 13},
variable 24 has level{1, 8} and variable 1 has level{12, 6},
the average concentration is 13.0. Thus a region of th
input predictor space giving “extreme” values ofY is easily
8
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identified. The first input variable that is partitioned is 69
which also had the largestR2 value for main effects.

Our second example is a simulation model of a texti
manufacturing supply chain which is currently in deve
opment at Los Alamos National Laboratory. A prototyp
simulation was developed to study the supply chain produ
tion of a nylon jacket and is reported in Chandra, Nasta
Powell and Ostic (1996). The textile manufacturing pro
cess consists of four sectors: fiber, textiles, apparel, a
retail. For a particular product, several companies may
represented in each sector, with potentially many proces
within a company, and many activities within a proces
For every activity, up to a dozen input variables may b
required which determine such things as demand forec
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Figure 3:  Regression  Tree for  Concentration as a  Functio
of  Top  Ten  Input  Variables for  Environmental  Pathways  Com
partmental  Model

algorithms, marketing strategy, cost trade-offs, inventory
replenishment strategy, manufacturing orientation, capacit
planning strategy, or scheduling techniques. It is anticipate
that, across sectors, up to sixty activities might be modele
dynamically in the simulation under development. This
suggests possibly designing experiments with hundreds
input variables and analyzing process performance on th
basis of between five and ten output variables. However, th
prototype study was limited to a few inputs, namely fore-
cast method and manufacturing orientation. In particular
available simulation output was based on only four manu
facturing orientations: “as is” push, “to be” push, “to be”
pull, and “to be” synchronous flow. Additionally, the pilot
study included only parts of three sectors: textile, appare
and retail. Output variables of interest included proces
throughput, cycle time, supplier lead time, and inventory
turnover.

Figure 4 shows trellis plots of the supplier lead times
for 432 days (in hours) for each of the four manufactur-
ing strategies and each of three receiving activities in th
supply chain. In the plot,R6 denotes the first receiving
activity (in the textile sector), whileR13 and R18 denote
receiving activities that occur in the apparel sector. Simila
plots can be constructed for activities aggregated across
sector, or for supplier lead time at different time scales
(monthly, quarterly),etc. Up to four conditioning variables
can be used to construct the trellis display. For the suppl
chain model under development, we anticipate that trelli
graphics will be useful for considering the effects of such
things as inventory replenishment strategies under differen
manufacturing orientations for different sectors of the textile
manufacturing process.
9
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4 CONCLUSIONS

We have presented several statistical techniques that can
be used to investigate sensitivity and performance analy-
sis of simulation models. Although the specific examples
discussed in this paper pertain to a deterministic computer
model and a finite-horizon supply chain simulation with
deterministic inputs, the techniques can be also be applied
to steady-statesimulationsusing themethod of batch means
to obtain approximately independent observationsof perfor-
mance measures (see, for example, Law and Kelton, 1991).
Future work wil l focus on applying these techniques in a
more thorough investigation of the manufacturing supply
chain model discussed in Section 3. In particular, we plan
to implement an appropriate experimental design and apply
the multivariate methods mentioned in Section 2 to assess
the supply chain performance across different activities and
time horizons.
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