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ABSTRACT

In this paper, we investigate and discuss some of the main
issues concerning the estimation of nonlinear simulation
metamodels. We propose a methodology for identifying a
tentative functional relationship, estimating the metamodel
coefficients and validating the simulation metamodel. This
approach is illustrated with a simple queueing system. Fi-
nally, we draw some conclusions and identify topics for
further work in this area.
1 INTRODUCTION
The use of discrete event simulation models produces sig-
nificant amounts of output data making it hard to interpret
that data, or to try to predict the system behavior for a
slightly different experimental environment. A simulation
metamodekimplifies the simulation model itself, exposing
more clearly the fundamental nature of the system input-
output relationships.

To build a discrete event simulation metamodel, we use
classical statistical procedures, borrowed from regression
analysis. The objective is to determine a (relatively simple)
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Kleijnen has been especially active in this area; see, for
instance, Kleijnen (1992), Kleijnen, Burg and Ham (1979)
and Kleijnen and Groenendaal (1992). Porta Nova and
Wilson (1989) discuss the estimation of a general linear
multivariate simulation metamodel, as well as its use in the
context of variance reduction, with the technique of control
variables.

Since reality is hardly linear, linear models are accept-
able approximations only in smaller or larger neighborhoods
of the design points under consideration. However, Fried-
man and Friedman (1985) reported a significant lack-of-fit,
when queue length in the M/M/s queue was expressed, in
a linear fashion, in terms of the arrival and service rates
and the number of parallel servess, They point out that
this is a common problem in metamodels of queueing sys-
tems, since the above decision variables are known to be
“... intricately related in a nonlinear fashion”. As in this
case, if a nonlinear simulation metamodel is firmly based
in theory and we extrapolate from the region where it was
developed, it is rather unlikely that it will produce funda-
mentally wrong predictions. Unfortunately, this does not
happen with most polynomial models. Another advantage
of nonlinear models is that they usually have a much smaller

functional relationship between the system response and number of parameters, when compared with linear models.

selected decision variables. Thus, it becomes much easier

(and cheaper), not only to analyze the simulation output,
but to predict how the real system will react to specific
combinations of the set of controllable input variables. It
is also straightforward to perform sensivity analyses of the
simulation model parameters and “what if?” questions—
all this, without having to perform additional simulation
runs. However, extra care must be taken when collecting
the simulation data, fitting the metamodel and, especially,
validating it. Since we will be using mainly well known
and robust statistical procedures, this approach is more
likely to gain confidence and acceptance from simulation
practitioners as well.

Linear models are relatively simple to fitand manipulate,
and so their use becomes rather attractive. In particular,
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Simulation practitioners might raise some questions...
Is it feasible, in practical terms, to fit a meaningful nonlin-
ear metamodel to a realistic simulation model of an actual
system? Is the eventual improvement worth the additional
time and complexity of nonlinears. linear statistical ap-
proaches?

Consequently, in this paper, we address and discuss
some of the main issues involved in the use of nonlinear
metamodels to analyze simulation output. In this context, it
becomes even more important to test the metamodel valid-
ity. We will use valid statistical procedures to determine the
lack-of-fit of the model, as well as its predictive capability.
We feel that our approach will only be useful if it can
be understood and applied by any simulation practitioner.
Thus, we will propose a methodology for graphically sum-
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marizing the simulation data, selecting from a catalog of
target functional relationships and estimating and validating
a specific metamodel.

This paper is organized as follows. In Section 2, we
discuss the estimation of a general nonlinear simulation
metamodel. In Section 3, we investigate the validation
of the simulation metamodel. In Section 4, we present
a methodology for iterative identification, estimation and
validation of simulation metamodels, and illustrate its ap-
plication using the M/M/s queue. Finally, in Section 5,
we draw some conclusions and recommendations for future
work in this area.

2 METAMODEL ESTIMATION

In general, we can say that simulation models try to ap-
proximate reality, while simulation metamodels are approx-
imations of the simulation models themselves. Thinking of

simulation as an input-output transformation, we are lead to
the notion that simulation is basically a function, although

® C R’ is a vector of parameters to be estimatedepre-
sents the error and is an unknown function. The errar,
includes both effects due to the inadequacy as a repre-
sentation ofp, as well as intrinsic effects, always present in
any stochastic simulation model—they dependrdn (1).
SometimesX;, in (2), is identical to the simulation variable
or parametelZ;, in (1); for instance, the arrival or service
rates in a queue. In other cas&s,may be a transformation

of one or moreZ;’s; again, in the specific case of queueing
systems, X1 = Z1/Z» may constitute a better explanatory
variable (if we consider the “traffic intensityp = A/u).
Consequently, the parameters and input varialles the
simulation model (1) determine the independent variables
X of the simulation metamodel (2). The coefficiertts

in (2) are designated metamodel parameters and must be
estimated.

2.1 Data for Analysis

In practice, the mathematical conditions associated with the

rather complicated, that cannot usually be expressed by a metamodel (2) may or may not be satisfied. Thus, we start

simple expression. But it may be possible to approximate,
with a single formula (a metamodel), what the simulation
actually does.

When building a simulation model, we should represent

by postulating a specific form for model (2) and, then, we
test its validity. The approach is: (i) we first choose, for the
model, a function that may closely follow the output variable
Y, throughout the region to which the data belong; then,

the most important variables and parameters. Zeigler (1976) (ii) we estimate the parameters of the “elected” model; and,
defines a parameter as a quantity that can not be observedfinally, (iii) we investigate if the model is, in fact, adequate
in the real system, while a variable is directly observable. or not. That is, if it can be used to forecast the system
Client arrival times or the number of servers in a queue are behavior or not.
examples of variables. The arrival rate,and the service In order to build a meaningful simulation metamodel,
rate,u, of a Poisson process—see Section 1.2 inKleijnenand we have to determine a sufficient number, of design
Groenendaal (1992)—are examples of parameters. When apoints(that is, combinations of thé explanatory or decision
simulation program is executed, parameters are well known variables) that will cover the relevant part of the decision
input values. The response of the real system is representedregion under study{X;; : [ = 1,d}, fori = 1, m. These
by the output variablg” of the simulation model. design points must benique—that is, any two combinations

In this paper, following Kleijnen and Groenendaal of the decision variables must have, at least, one different
(1992), we represent the simulation model (or program) element.
by a mathematical functior: Although the estimation of a nonlinear simulation meta-

model might be discussed in the context of other methods

Y =¢(,r), Q) for output analysis, we felt thahdependent replications
were particularly well suited for this purpose. Thus, we first
where Y is the system respons& = Zi,...,Z; are choose adequate values for parameters and suitable random

the input variables and parameters andepresents the distributions for the stochastic components in the simulation
set of random number streams that drive the simulation at model. Then, we perform an appropriate number of model
(Z1, ..., Zy). Inaqueueing system, the dependent variable runs,n, for each of then design points, using independent
or response might be, for instance, the average queue lengthrandom streams, and collect the data on the relevant sys-
or the mean system sojourn time. tem response(Y;; : i = 1,m; j = 1,n}. Finally, we use
The approximating function, of the above simulation classical statistical procedures to compute point estimators
program, is the following nonlinear metamodel: or confidence intervals for the response, from the above
random sample of size. The number of replicationss,
at each design point may now be much smaller than the
number that is generally used in a common simulation study.

Y = f(X.0) +e, 2)

where the independent or explanatory variabks=
(X1, ..., X4) belong to a subset aR?, 8 = (61, ...,0,) €
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2.2 Least Squares Estimation

with respect t@; see Section 2.1.4 in Seber and Wild (1989).
But, this is equivalent to minimizingy —f (X, )] T ~1[¥ —

We assume that the simulation model (1) can be modeled f(X, 8)].

through thereplicatedsimulation metamodel

Yij = f(Xi., 0) +€ij, 3)

for i = 1,m and j = 1,n, wheree;; ~ NID (0, 6?), with

o; > 0. Then, the population’s conditional expectation and
variance ar&[Y;;|X; ] = f(X;, 0) = u; andvar[Y;;|X; ] =

ol.z . As such, the simulation output at each design point,
{Y;j:j=1,...,n},fori=1,...,m, can be interpreted
asn independent observations from the normal distribution
N(u;, al.z). Thus, for estimation purposes, we can consider,
instead, an equivalent LS problem, in which the individual

observations, at each design point, are replaced by their

averages:

Vi = fXi,0)+&., i=12... (4)

, N,

with Var(Y; ] = 0?/n andé; ~ N(0, o2/n).
To estimate the paramete#s,in the metamodel (3), we

apply the nonlinear least squares (LS) method. In contrast
to the linear case, for most nonlinear models, the system
of normal equations cannot be solved analytically; so, we

must resort to an iterative method. We will discuss how the

¥ is a symmetric positive definite matrix, that accepts
the Cholesky decomposition:
¥ =UTu, 7

where U is an upper triangular matrix. Multiplying the
nonlinear model (4) througR = (UT)~1, we obtain

W =g(X,0) +1, (8)
whereW = RY, g(X,0) = Rf(X,0) and 5y = Ré, with
€= (€1,....ém)".

Then, we observe that[y] = 0 and Var[y]

=RVar[é]RT = (1/n)RTRT . But T allows the de-
composition (7) andR = (U")~1; thus, Var[y] =
1/myUTH~TU[UT)2]" = (/n)l,, wherel,, is the
identity matrix of ordern. We conclude that the problem (4)
has been transformed into amdinary LS (OLS) problem.
Thus, the OLS estimator df is

0~ 0%+ (GG 'GT W —qg]. )

whereG = 3g(X, 0)/367 is the jacobian matrix ofy and

Gauss-Newton method can be used to obtain approximately We Omit that bottg andG are evaluated #"; see Theorem

the asymptotic nonlinear LS estimatér, see Section 2.1.3
in Seber and Wild (1989).

Proposition 1~ Given  appropriate  regularity
conditions—see White (1980)—and for large the LS
estimator ofg, 8, in (3) satisfies, approximately:

0 ~6*+[F'E 1 IF 21y —f], (5)
0~N, <o, E[FTle]l) : (6)
n
where 0* is the exact value ofg, f = f@* =

(F(X1,0%), ..., fXp,0NT, F = F(#*) is the jacobian
matrix of f, evaluated a®#*, Y = (Y1,...,Y,)! and X
is the diagonal matrix@ = diag(o?, ... ,02). In order to
simplify the notation, we omit thdtand F are evaluated
at 6%,

Verification ~ We point out that in the nonlinear meta-
models (3) and (4), the errors hanrequalvariances—the
setup for generalizedor weighted LS. Consequently, to

determine the WLS estimat(ﬁ, we minimize

-1
[y —fX, )" (%z) [Y —f(X,0)]
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2.1 in Seber and Wild (1989).

But, sinceg(X,0) = Rf(X,0), we haveG(0) =
Rof(X,0)/007 = RF(). Besides, W = RY and
RTR = £ 71, thereof (9) is equivalent to:

0 ~ 0*+[F'RTRFIYRAT[RY — Rf(X, 6%)]
= 0"+ [F'2 1 IFTRTRLY — (X, 6M)]
0" + [FT 'R F' =1y — f(X, 6%)].
Thus, the approximate result (5) has been established.

Result (6) is obtained by applying Theorem 2.1 in
Seber and Wild (1989), itenty), to the problem (9):9 ~
N, [0, (1/n)(GTG)1]. SinceG = RF andR’R = X1,
we obtaind ~ N, [8, (1/n)(F"RTRF)~!] , and therd ~
N, [0, (1/n)(FTZ~1F)71] .

As as estimator ok, we can use

¥ =diag6Z, ..., 62), (10)
whereé? is given by
1
67 = (11)

n
1 Z(Yij - Y%
j=1

see page 151 in Kleijnen and Groenendaal (1992).
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3 METAMODEL VALIDATION 3.2 Predictive Validity

The purpose of the simulation metamodel validation is to To test the predictive validity of the metamodel, we use a
investigate whether the metamodel adequately approximatesdata splitting(or cross-validation procedure; see Sections
the behavior of the input/output generated by a simulation 12.6 and 15.4 in Neter, Wasserman and Kutner (1989). We
program. The assessment of this adequacy is necessarilybuild a new regression model using only about two-thirds
subjective. However, the simulation responses of interest of the N observationsrfodel-buildingsample). Splits of
are generally averages, and so, central limit effects ensure the data are made intuitively. The holdout observations
normality. Inthe next section, we present statistical tests that (validation or predictionset) are used to test the regression

help detecting the lack of fit associated with the deterministic
portion of the proposed nonlinear regression metamodel. In
Section 3.2, the metamodel predictive capability is tested,
by using the holdout sample method.

3.1 Model Adequacy

In the replicated metamodel (3), if the total number of
observationsN = >"/"; n = mn, is large, we can use the

following rough F-test for lack of fit, proposed by Seber

and Wild (1989), page 82:

_ (SSE —SSPE)/(m — p)
N SSPE/(N —m)

Zm1Z, 1 wilYi;

(12)

where SSE — f(X;0)]% is the

usual error sum of squares (or, residual sum of squares),

SSPE = Z;’;lz _1wilYij =Y 12 is the pure error sum
of squares anav; = l/al. are the weights. If there exists
a parametrization for which the model can be adequately
approximated by a linear model, then will be roughly
distributed as arf,,—, y—n distribution, when the model
is valid.

As an additional statistic for testing the metamodel
validity, we also propose the coefficient of determination
R?,

oSSR
T SST

)

. _ 12
where  SSR Yt i [f(xi., 0)/o; — Y..]
is the regression sum of squares,SST
Yt Y [Yij/oi — Y”]2 is the total sum of squares and

Y. =1/(mn) Y[, i1 Yij/oi is the grand mean of the
observations. Sinc&? always increases as we add more
explanatory variables, we could also use &f adjusted

for the number of parameters;

N — 1

RZ, =1-(1- RZ)
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model. For example, if we havé = 1200bservations, then
the model-building and the holdout groups will haizand
48 observations, respectively. We evaluate the coefficient
of determination,R?, for both the model-building and the
holdout cases. If the two values &2 are very close,
then we can conclude that the model does have predictive
validity.

In order to obtain more information about the predictive
capability of the metamodel, we can compute the mean
squared prediction error, denoted bf/S P R:

MSPR = i* > 1Y = f(Xi, )1, (13)
n i=1

where f (X, é) is the predicted value for thi¢gh validation
case, based on the model-building data ¥gis the value
of the response variable in thiéh validation case angh*
is the number of cases in the validation data set (holdout
sample); see Neter, Wasserman and Kutner (1989), page
466.

In our case, problem (3), we compute th&SPR
through

3>

n 1

MSPR = —2 — X, 12,

i=1i

wherem is the number of levels (design points) Xfand

n is the number of replications in each level. Values of
MSPR close to theMSE computed for the regression
fitted to the model-building sample, are an indication that
the MSE gives an appropriate measure of the predictive
capability of the model. IfMSE is much smaller than
MSPR, then we should us#/SPR as an indicator of the
predictive capability of the metamodel.

The regression coefficients for the holdout group are
then estimated and we compare for consistency with the
estimated regression coefficients based in the model-building
group.

Another useful statistic for testing the metamodel
predictive validity is therediction sum of square® RE S S,
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procedure; see Neter, Wasserman and Kutner (1989), pagecorresponding to théth design point. Y; is the average
450. In our case, this procedure has to be adapted and soacross runs of the waiting time in queue for fttle design

we have the following quantity:

m n
1 R
PRESS =) % SV — fXi0-)lP (14)
i=1j=1"1

where 9(,,-) is the estimated parameter vector based on
the set that we obtain if we delete the replications that
correspond to case

If PRESS andSSE are quite close, thew SE may be
a valid indicator of the predictive capability of the selected
model. A disadvantage is the necessity of dainglistinct
regressions. To perform each of theestimations, we have
to use aniterative procedure. Thisis usually time-consuming
and we may have an additional problem choosing adequate
starting values for the iterations.

4 APPLICATION

In this section we illustrate the application of our method-
ology by means of an example. For this purpose, we ;
modeled theM /M /s queue, with a single service facil-
ity and a single waiting line. Demands were assumed
to arrive according to a Poisson process with a constant
average arrival rate}, and service times were assumed
to follow an exponential distribution with a constant av-
erage service timéd/u = 1. Our goal was to express
the average waiting time in the queue (the response) as a
function of the queue utilization factopg = A/u (a sin-
gle decision variable). We considered the following twelve
(m = 12) different values forp (and i), {p; :i = 1,9} =
{.1,.2,.3,.4,.5 .55 .6, .7,.75, .85, .9, .95. We decided to
performn = 10 replications of each of the: = 12 design
points; we chose, for, a number greater than nine, in order
to obtain an appropriate estimate f@f,i =1,..,m; see
Deaton, Reynolds and Myers (1983). Different replications
use the same value for the independent varighlebut
different pseudorandom number seeds. Each of tiése
replications starts in the empty state (no customers waiting).
In order to account for the presence of initializing bias at
each design point, we ran Welch’s procedure (Welch 1983),
for increasing number of observations and window widths.
Consequently, the deleted observations were made to cor-
respond to about5% of the total number of observations
in each run. For instance, far= .1, the number of obser-
vations in each run was 3,500, the first 500 were deleted
and a window of 1,000 was enough; for= .95, each run
included 40,000 and 3,500 were deleted, for a window of
20,000.

Taking into account the discussion in Section 2.1, the
collected simulation data for the metamodel estimation is
summarized in Table 1X; represents the utilization factor
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point, with utilization factorX;.

Table 1: Simulation Data for Metamodel
Estimation

i | X; Y;. Gi//n

1 | 0.10 | 0.110601| 0.000131466
2 | 0.20 | 0.248065| 0.000533648
3 | 0.30 | 0.429343| 0.00145294
4 | 0.40 | 0.670248| 0.00146284
5 | 0.50 | 0.987577| 0.00335524
6 | 0.55| 1.21614 | 0.00637383
7 | 0.60| 150915 0.0154060
8 | 0.70 | 2.38149 0.0742331
9 | 0.75 | 3.09417 0.152555
10 | 0.85 | 5.72853 0.201175
11| 0.90 | 8.95594 0.932344
12 | 0.95 | 18.8805 4.09515

Our suggested procedure, for fitting the simulation

metamode| consists of the steps that follow.

Identifying a tentative nonlinear relation between the
response and the decision variable.

Ideally, we should select a curve based on phys-
ical justifications. Pragmatically, we usually do that
visually, just like we compare empirical histograms
with known density functions for selecting a random
distribution. A convenient first step is to represent the
dispersion diagranfor scatterplot) of the response and
the decision variable, plotting the corresponding pairs
(X;,Y;5), fori = 1L, m and j = 1,n. In Figure 1,
we graphically display the results of our experiment.
We observe that the average waiting time in queue is
actually related in a nonlinear fashion with the uti-
lization factor. If we had two decision variables, we
might draw contour curves or use a three dimensional

20

184

167

14

124

o
(]

Figure 1: Dispersion Diagram fa /M /1 Queue
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visualization software, instead. In order to identify the
type of nonlinear relation, we advance to the next step.
Selectinga curve from a catalog of typical nonlinear
functional relationships.

To facilitate the identification of tentative nonlinear
relations, we might build a catalog of different functional
relationships, with their graphical representations. Due
to space restrictions, we reproduce in Figures 2 and 3,
only a small part of one such catalog. Comparing the
actual dispersion diagram of Figure 1 with this part of
the catalog of curves, itis likely that an hyperbole might
fitthe data. So, we chose this functional relationship for
the tentative simulation metamodel relating the average

waiting time in theM /M /1 queue with the utilization

20

184

164

14

124

factor:

Yi =01Xi/(L+6:X) +é&,i=1,...,12,

with & ~ N (0,02/10) and ¥;; ~ N(u;, 0?). As we
mentioned in Section 2.2, this hypothesis of normality
is generally satisfied when the simulation responses
are averages, which is the case (we are analyzing the
average waiting time in queue). Note that the selected
function (a hyperbole) is not linearizable.

20

187

16+

14

124

Figure 2: Monomialy = 61x%2, 6, = 25,6, = 5

For this particular system, we know the theoreti-
cal expected steady-state response. To illustrate what
might have happened, if we had chosen to fit another
functional relationship to the M/M/1 data (for instance,
the monomial in Figure 2;; = lefzeij), we perform
the next two steps of the procedure for both models
above. Since the metamodel to fit is now linearizable,
we take the decimal logarithm of both sides and ob- 4,
tain logY;; = log6; + 62log X; + loge;;, the familiar
simple linear regression equation.
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61x

+92X’91 = 15 92 = _1

Figure 3: Hyperboley =
Estimating the nonlinear simulation metamodel.

From Figure 1, we observe that the variance of the
response increases with the utilization factor. Thus, we
must use the least squares estimator given by (5) and
satisfying (6), withn = 10and p = 2:

01 61 1 re—ip-1
< Y ~[FTs1F
[92} z<[92]10[ ).

whereF = F(67, 65).

In order to obtain the approximate least squares
estimator off; and 62, we used the iterative Gauss-
Newton method. The approximate solution was found
when [(SSE¥TT — SSEK)/SSEFL| < 1076 for five
consecutive values of, where SSEX is the residual
sum of squares in iteratiok.

In Table 2, we present the main results of the
estimation of the selected simulation metamodel: the
approximate LSE of; e 6, as well as their correspond-
ing asymptotic standard errors. We also reproduce the
corresponding values for the monomial case (Model 2).

Table 2: Estimated Metamodel Coefficients

Model | Coeff. | Estimator| Standard errof
1 01 1.0004 0.00882
0> —1.0000 0.00174
2 log6s 0.7451 0.00548
0 2.0254 0.01351

However, the metamodel has to be validated, to
determine if it is indeed the “elected” model. This
topic is dealt with in the next step.

Validating the nonlinear simulation metamodel.

Table 3 reproduces the significance tests performed
on the estimated metamodel. We can observe that the
proposed model explains rather well the simulation
model response, through the factor= p: clearly, the
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F test for lack of fit is not significantA10,108 =~ 1.93).
Thus, there is no evidence to reject this model and
try another one. We should also emphasize that the
graphical analysis of the residuals also suggests that the
assumptions of regression analysis are met. However,
some authors argue that, in the linear case, khiest

is not very sensitive to departures from the normality
and homogeneous variance assumptions; see Kleijnen,
Burg and Ham (1979). That is, it may happen that the
test may have a low probability of detecting if the fitted
model does provide a good fit. The nonlinear case is
treated performing a linearization. Consequently, the
same problem may occur in the nonlinear case. Thus,
the acceptance of the fitted metamodel can not depend
solely on the value of this statistic.

Inthe same table, we show the corresponding values
we would have obtained, had we chosen the monomial
function. It is quite obvious that there is evidence to
reject the monomial fit.

Table 3: Testing for Lack-of-Fit

Mod | Source| D f SS MS F
1 Lack | 10 | 1.891| 0.189 | 0.189
Error | 108 | 1080 | 1.000
2 Lack | 10 | 3580 | 3580 | 3580
Error | 108 | 1080 | 1.000

Besides testing the metamodel adequacy, we must
also test its predictive validity. We notice, in Table 4,
that the values ofPRESS = 111005 and SSE =
109891 are rather close. This supports the validity of
the fitted regression metamodel. It also stresses the
importance ofM SE as an indicador of the predictive
capability of this model.

Again, we also present the corresponding diagnos-
tics for Model 2 (the monomial function). The values
are consistent with the rejection of this model.

Table 4: Metamodel Diagnostics

Statistic | Hyperbole| Monomial
SSE 109891 368838
PRESS 111005 660347
MSE 0.9313 312575

R? 0.9444 | 0.883554

Rgdj 0.9491 0.893258

The main results of the metamodel validation pro-

5

Table 5: Metamodel Validity Test

Hyperbole Monomial

Statistic || M-bild | Valid || M-bld | Valid
61 .9965 | .9940 - -

log 61 - - 7870 | .6407
5(67) 0117 | .0099 - -
5 (log61) - - .0958 | .1135
6, —1.001 | —.9982 | 1.996 | 1.940

5 (62) .0021 | .0033 || .0028 | .0057
SSE 66.99 | 4648 || 1912 | 6429

PRESS | 7323 - 4885 | -
MSE 9569 | 1.010 || 27.31 | 1398
MSPR - 1.333 - | 5093
R? 9011 | .9855 | .5896 | .9033

RZ, 9093 | .9867 || .6238 | .9113

cases. The factthat S P R is not significantly different
from M SE implies that the mean squared errtfSE,
based on the model-building data set, is a reasonably
valid indication of the predictive capability of the fitted
regression model. These validation results support the
appropriateness of the selected simulation metamodel.

On the other hand, for the monomial (model 2), the
same statistics convey the opposite information. So,
as before, this model would be rejected based on this
validation procedure.

In conclusion, we can say that, although the lin-
ear(ized) model is much simpler to fit, we strongly feel
that there will be many situations in which the advan-
tages of a nonlinear model will overcome the extra time
and computation needed.

CONCLUSIONS

In this work, we have addressed some of the most important
issues involved in the estimation of nonlinear simulation
metamodels. Although they are more complex and time-
consuming than their linear counterparts, nonlinear meta-
models account for a larger part of the variability of the
simulation output and have fewer parameters. We have
shown that it is feasible, for an informed practitioner, to
apply our proposed procedure for metamodel estimation.
The statistical procedures that we propose for validation
also seem to be reasonably discriminating between a good
and a bad choice for the metamodel structure.

We strongly feel that more work needs to be done in

cedure, based on the regressions on the mode|-bui|ding this area. The Catalog of functional relationships has to be
and validation data sets, are reproduced in Table 5. enlarged with more functions of one or two independent
We present the estimated regression model coefficients, variables. It would be useful to come up with specific

their standard deviations and some other related statis- Visually oriented approaches to help in the curve selection,
tics. Notice that there is good agreement between the When the metamodel includes more than two independent

two sets of estimated regression coefficients, and be- variables. Finally, the construction of confidence intervals

tween the values of statistic!l SE and R? for both

508



dos Santos and Porta Nova

and hypotheses testing are two additional topics deserving engineering from IST. He received a Ph.D. in operations
further attention. research from the University of Texas at Austin.
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