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ABSTRACT

In this paper, we investigate and discuss some of the ma
issues concerning the estimation of nonlinear simulatio
metamodels. We propose a methodology for identifying
tentative functional relationship, estimating the metamod
coefficients and validating the simulation metamodel. Th
approach is illustrated with a simple queueing system. F
nally, we draw some conclusions and identify topics fo
further work in this area.

1 INTRODUCTION

The use of discrete event simulation models produces s
nificant amounts of output data making it hard to interpre
that data, or to try to predict the system behavior for
slightly different experimental environment. A simulation
metamodelsimplifies the simulation model itself, exposing
more clearly the fundamental nature of the system inpu
output relationships.

To build a discrete event simulation metamodel, we us
classical statistical procedures, borrowed from regressi
analysis. The objective is to determine a (relatively simple
functional relationship between the system response a
selected decision variables. Thus, it becomes much eas
(and cheaper), not only to analyze the simulation outpu
but to predict how the real system will react to specifi
combinations of the set of controllable input variables.
is also straightforward to perform sensivity analyses of th
simulation model parameters and “what if?” questions—
all this, without having to perform additional simulation
runs. However, extra care must be taken when collectin
the simulation data, fitting the metamodel and, especial
validating it. Since we will be using mainly well known
and robust statistical procedures, this approach is mo
likely to gain confidence and acceptance from simulatio
practitioners as well.

Linear models are relatively simple to fit and manipulate
and so their use becomes rather attractive. In particul
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Kleijnen has been especially active in this area; see, fo
instance, Kleijnen (1992), Kleijnen, Burg and Ham (1979
and Kleijnen and Groenendaal (1992). Porta Nova an
Wilson (1989) discuss the estimation of a general linea
multivariate simulation metamodel, as well as its use in th
context of variance reduction, with the technique of contro
variables.

Since reality is hardly linear, linear models are accep
able approximations only in smaller or larger neighborhood
of the design points under consideration. However, Fried
man and Friedman (1985) reported a significant lack-of-fi
when queue length in the M/M/s queue was expressed,
a linear fashion, in terms of the arrival and service rate
and the number of parallel servers,s. They point out that
this is a common problem in metamodels of queueing sy
tems, since the above decision variables are known to
“... intricately related in a nonlinear fashion”. As in this
case, if a nonlinear simulation metamodel is firmly base
in theory and we extrapolate from the region where it wa
developed, it is rather unlikely that it will produce funda-
mentally wrong predictions. Unfortunately, this does no
happen with most polynomial models. Another advantag
of nonlinear models is that they usually have a much smalle
number of parameters, when compared with linear model

Simulation practitioners might raise some questions.
Is it feasible, in practical terms, to fit a meaningful nonlin-
ear metamodel to a realistic simulation model of an actua
system? Is the eventual improvement worth the addition
time and complexity of nonlinearvs. linear statistical ap-
proaches?

Consequently, in this paper, we address and discu
some of the main issues involved in the use of nonlinea
metamodels to analyze simulation output. In this context,
becomes even more important to test the metamodel vali
ity. We will use valid statistical procedures to determine th
lack-of-fit of the model, as well as its predictive capability.
We feel that our approach will only be useful if it can
be understood and applied by any simulation practitione
Thus, we will propose a methodology for graphically sum
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marizing the simulation data, selecting from a catalog
target functional relationships and estimating and validati
a specific metamodel.

This paper is organized as follows. In Section 2, w
discuss the estimation of a general nonlinear simulati
metamodel. In Section 3, we investigate the validatio
of the simulation metamodel. In Section 4, we prese
a methodology for iterative identification, estimation an
validation of simulation metamodels, and illustrate its a
plication using the M/M/s queue. Finally, in Section 5
we draw some conclusions and recommendations for fut
work in this area.

2 METAMODEL ESTIMATION

In general, we can say that simulation models try to a
proximate reality, while simulation metamodels are appro
imations of the simulation models themselves. Thinking
simulation as an input-output transformation, we are lead
the notion that simulation is basically a function, althoug
rather complicated, that cannot usually be expressed b
simple expression. But it may be possible to approxima
with a single formula (a metamodel), what the simulatio
actually does.

When building a simulation model, we should represe
the most important variables and parameters. Zeigler (19
defines a parameter as a quantity that can not be obse
in the real system, while a variable is directly observab
Client arrival times or the number of servers in a queue a
examples of variables. The arrival rate,λ, and the service
rate,µ, of a Poisson process—see Section 1.2 in Kleijnen a
Groenendaal (1992)—are examples of parameters. Whe
simulation program is executed, parameters are well kno
input values. The response of the real system is represen
by the output variableY of the simulation model.

In this paper, following Kleijnen and Groenendaa
(1992), we represent the simulation model (or program
by a mathematical function,φ:

Y = φ(Z, r ), (1)

where Y is the system response,Z = Z1, . . . , Zk are
the input variables and parameters andr represents the
set of random number streams that drive the simulation
(Z1, . . . , Zk). In a queueing system, the dependent variab
or response might be, for instance, the average queue len
or the mean system sojourn time.

The approximating function, of the above simulatio
program, is the following nonlinear metamodel:

Y = f (X, θ) + ε, (2)

where the independent or explanatory variablesX =
(X1, ..., Xd) belong to a subset ofRd , θ = (θ1, ..., θp) ∈
503
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2 ⊆ Rp is a vector of parameters to be estimated,ε repre-
sents the error andf is an unknown function. The error,ε,
includes both effects due to the inadequacy off as a repre-
sentation ofφ, as well as intrinsic effects, always present in
any stochastic simulation model—they depend onr in (1).
Sometimes,Xi , in (2), is identical to the simulation variable
or parameterZj , in (1); for instance, the arrival or service
rates in a queue. In other cases,Xi may be a transformation
of one or moreZj ’s; again, in the specific case of queueing
systems,X1 = Z1/Z2 may constitute a better explanatory
variable (if we consider the “traffic intensity”,ρ = λ/µ).
Consequently, the parameters and input variablesZ of the
simulation model (1) determine the independent variables
X of the simulation metamodel (2). The coefficientsθ

in (2) are designated metamodel parameters and must be
estimated.

2.1 Data for Analysis

In practice, the mathematical conditions associated with the
metamodel (2) may or may not be satisfied. Thus, we start
by postulating a specific form for model (2) and, then, we
test its validity. The approach is: (i) we first choose, for the
model, a function that may closely follow the output variable
Y , throughout the region to which the data belong; then,
(ii) we estimate the parameters of the “elected” model; and,
finally, (iii) we investigate if the model is, in fact, adequate
or not. That is, if it can be used to forecast the system
behavior or not.

In order to build a meaningful simulation metamodel,
we have to determine a sufficient number,m, of design
points(that is, combinations of thed explanatory or decision
variables) that will cover the relevant part of the decision
region under study,{Xil : l = 1, d}, for i = 1, m. These
design points must beunique—that is, any two combinations
of the decision variables must have, at least, one different
element.

Although the estimation of a nonlinear simulation meta-
model might be discussed in the context of other methods
for output analysis, we felt thatindependent replications
were particularly well suited for this purpose. Thus, we first
choose adequate values for parameters and suitable random
distributions for the stochastic components in the simulation
model. Then, we perform an appropriate number of model
runs,n, for each of them design points, using independent
random streams, and collect the data on the relevant sys-
tem response,{Yij : i = 1, m; j = 1, n}. Finally, we use
classical statistical procedures to compute point estimators
or confidence intervals for the response, from the above
random sample of sizen. The number of replications,n,
at each design point may now be much smaller than the
number that is generally used in a common simulation study.
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.
2.2 Least Squares Estimation

We assume that the simulation model (1) can be model
through thereplicatedsimulation metamodel

Yij = f (Xi., θ) + εij , (3)

for i = 1, m and j = 1, n, whereεij ∼ NID
(
0, σ 2

i

)
, with

σi > 0. Then, the population’s conditional expectation an
variance areE[Yij |Xi.] = f (Xi., θ) = µi andVar[Yij |Xi.] =
σ 2

i . As such, the simulation output at each design poin
{Yij : j = 1, . . . , n}, for i = 1, . . . , m, can be interpreted
asn independent observations from the normal distributio
N(µi, σ 2

i ). Thus, for estimation purposes, we can conside
instead, an equivalent LS problem, in which the individua
observations, at each design point, are replaced by th
averages:

Ȳi. = f (Xi., θ) + ε̄i., i = 1, 2, . . . , m, (4)

with Var[Ȳi.] = σ 2
i /n and ε̄i. ∼ N(0, σ 2

i /n).
To estimate the parameters,θ , in the metamodel (3), we

apply the nonlinear least squares (LS) method. In contra
to the linear case, for most nonlinear models, the syste
of normal equations cannot be solved analytically; so, w
must resort to an iterative method. We will discuss how th
Gauss-Newton method can be used to obtain approximat
the asymptotic nonlinear LS estimator,θ̂ ; see Section 2.1.3
in Seber and Wild (1989).

Proposition 1 Given appropriate regularity
conditions—see White (1980)—and for largem, the LS
estimator ofθ , θ̂ , in (3) satisfies, approximately:

θ̂ ≈ θ∗ + [FT 6−1F]−1FT 6−1[Ȳ − f ], (5)

θ̂ ∼ Np

(
0,

1

n
[FT 6−1F]−1

)
. (6)

where θ∗ is the exact value ofθ , f = f (θ∗) =
(f (X1., θ∗), . . . , f (Xm., θ∗))T , F = F(θ∗) is the jacobian
matrix of f , evaluated atθ∗, Ȳ = (Ȳ1., . . . , Ȳm.)

T and 6

is the diagonal matrix6 = diag(σ 2
1 , . . . , σ 2

m). In order to
simplify the notation, we omit thatf and F are evaluated
at θ∗.

Verification We point out that in the nonlinear meta-
models (3) and (4), the errors haveunequalvariances—the
setup for generalizedor weightedLS. Consequently, to
determine the WLS estimator,θ̂ , we minimize

[Ȳ − f (X, θ)]T
(

1

n
6

)−1

[Ȳ − f (X, θ)]
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with respect toθ ; see Section 2.1.4 in Seber and Wild (1989)
But, this is equivalent to minimizing[Ȳ −f (X, θ)]T 6−1[Ȳ −
f (X, θ)].

6 is a symmetric positive definite matrix, that accepts
the Cholesky decomposition:

6 = UT U, (7)

where U is an upper triangular matrix. Multiplying the
nonlinear model (4) throughR = (UT )−1, we obtain

W = g(X, θ) + η, (8)

where W = RȲ, g(X, θ) = Rf (X, θ) and η = Rε̄, with
ε̄ = (ε̄1., . . . , ε̄m.)

T .
Then, we observe thatE[η] = 0 and Var[η]

=RVar[ε̄]RT = (1/n)R6RT . But 6 allows the de-
composition (7) andR = (UT )−1; thus, Var[η] =

(1/n)(UT )−1UT U
[
(UT )−1

]T
= (1/n)Im, whereIm is the

identity matrix of orderm. We conclude that the problem (4)
has been transformed into anordinary LS (OLS) problem.
Thus, the OLS estimator ofθ is

θ̂ ≈ θ∗ + [GT G]−1GT [W − g], (9)

whereG = ∂g(X, θ)/∂θT is the jacobian matrix ofg and
we omit that bothg andG are evaluated atθ∗; see Theorem
2.1 in Seber and Wild (1989).

But, since g(X, θ) = Rf (X, θ), we have G(θ) =
R∂f (X, θ)/∂θT = RF(θ). Besides, W = RȲ and
RT R = 6−1, thereof (9) is equivalent to:

θ̂ ≈ θ∗ + [FT RT RF]−1(RF)T [RȲ − Rf (X, θ∗)]
= θ∗ + [FT 6−1F]−1FT RT R[Ȳ − f (X, θ∗)]
= θ∗ + [FT 6−1F]−1FT 6−1[Ȳ − f (X, θ∗)].

Thus, the approximate result (5) has been established.
Result (6) is obtained by applying Theorem 2.1 in

Seber and Wild (1989), item(i), to the problem (9):θ̂ ∼
Np

[
θ , (1/n)(GT G)−1

]
. SinceG = RF andRT R = 6−1,

we obtainθ̂ ∼ Np

[
θ , (1/n)(FT RT RF)−1

]
, and thenθ̂ ∼

Np

[
θ , (1/n)(FT 6−1F)−1

]
.

As as estimator of6, we can use

6̂ = diag(σ̂ 2
1 , . . . , σ̂ 2

m), (10)

whereσ̂ 2
i is given by

σ̂ 2
i = 1

n − 1

n∑
j=1

(Yij − Ȳi.)
2; (11)

see page 151 in Kleijnen and Groenendaal (1992).
4
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3 METAMODEL VALIDATION

The purpose of the simulation metamodel validation is
investigate whether the metamodel adequately approxim
the behavior of the input/output generated by a simulat
program. The assessment of this adequacy is necess
subjective. However, the simulation responses of inter
are generally averages, and so, central limit effects ens
normality. In the next section, we present statistical tests t
help detecting the lack of fit associated with the determinis
portion of the proposed nonlinear regression metamodel
Section 3.2, the metamodel predictive capability is test
by using the holdout sample method.

3.1 Model Adequacy

In the replicated metamodel (3), if the total number
observations,N = ∑m

i=1 n = mn, is large, we can use the
following rough F -test for lack of fit, proposed by Sebe
and Wild (1989), page 82:

F = (SSE − SSP E)/(m − p)

SSP E/(N − m)
, (12)

where SSE = ∑m
i=1

∑n
j=1 wi[Yij − f (Xi.θ̂)]2 is the

usual error sum of squares (or, residual sum of squar
SSP E = ∑m

i=1
∑n

j=1 wi[Yij − Ȳi.]2 is the pure error sum

of squares andwi = 1/σ 2
i are the weights. If there exists

a parametrization for which the model can be adequat
approximated by a linear model, thenF will be roughly
distributed as anFm−p,N−m distribution, when the model
is valid.

As an additional statistic for testing the metamod
validity, we also propose the coefficient of determinatio
R2,

R2 = SSR

SST
,

where SSR = ∑m
i=1

∑n
j=1

[
f (Xi., θ̂)/σi − Ȳ..

]2

is the regression sum of squares,SST =∑m
i=1

∑n
j=1

[
Yij /σi − Ȳ..

]2
is the total sum of squares an

Ȳ.. = 1/(mn)
∑m

i=1
∑n

j=1 Yij /σi is the grand mean of the

observations. SinceR2 always increases as we add mo
explanatory variables, we could also use anR2 adjusted
for the number of parameters,p:

R2
adj = 1 − (1 − R2)

N − 1

N − p
.

5

and Porta Nova

to
tes

on
arily
est
ure
hat
tic
In
d,

f

r

s),

ely

el
n

e

3.2 Predictive Validity

To test the predictive validity of the metamodel, we use
data splitting(or cross-validation) procedure; see Sections
12.6 and 15.4 in Neter, Wasserman and Kutner (1989). W
build a new regression model using only about two-third
of the N observations (model-buildingsample). Splits of
the data are made intuitively. The holdout observation
(validationor predictionset) are used to test the regressio
model. For example, if we haveN = 120observations, then
the model-building and the holdout groups will have72 and
48 observations, respectively. We evaluate the coefficie
of determination,R2, for both the model-building and the
holdout cases. If the two values ofR2 are very close,
then we can conclude that the model does have predict
validity.

In order to obtain more information about the predictiv
capability of the metamodel, we can compute the mea
squared prediction error, denoted byMSP R:

MSP R = 1

m∗
m∗∑
i=1

[Yi − f (Xi., θ̂)]2, (13)

wheref (Xi., θ̂) is the predicted value for theith validation
case, based on the model-building data set,Yi is the value
of the response variable in theith validation case andm∗
is the number of cases in the validation data set (holdo
sample); see Neter, Wasserman and Kutner (1989), pa
466.

In our case, problem (3), we compute theMSP R

through

MSP R = 1

m̂n

m̂∑
i=1

n∑
i=1

1

σ 2
i

[Yij − f (Xi., θ̂)]2,

wherem̂ is the number of levels (design points) ofX and
n is the number of replications in each level. Values o
MSP R close to theMSE computed for the regression
fitted to the model-building sample, are an indication tha
the MSE gives an appropriate measure of the predictiv
capability of the model. IfMSE is much smaller than
MSP R, then we should useMSP R as an indicator of the
predictive capability of the metamodel.

The regression coefficients for the holdout group ar
then estimated and we compare for consistency with t
estimated regression coefficients based in the model-buildi
group.

Another useful statistic for testing the metamode
predictive validity is theprediction sum of squares, P RESS,
05
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procedure; see Neter, Wasserman and Kutner (1989), p
450. In our case, this procedure has to be adapted and
we have the following quantity:

P RESS =
m∑

i=1

n∑
j=1

1

σ 2
i

[Yij − f (Xi., θ̂ (−i))]2, (14)

where θ̂ (−i) is the estimated parameter vector based
the set that we obtain if we delete the replications th
correspond to casei.

If P RESS andSSE are quite close, thenMSE may be
a valid indicator of the predictive capability of the selecte
model. A disadvantage is the necessity of doingm distinct
regressions. To perform each of them estimations, we have
to use an iterative procedure. This is usually time-consumi
and we may have an additional problem choosing adequ
starting values for the iterations.

4 APPLICATION

In this section we illustrate the application of our method
ology by means of an example. For this purpose, w
modeled theM/M/s queue, with a single service facil-
ity and a single waiting line. Demands were assume
to arrive according to a Poisson process with a consta
average arrival rate,λ, and service times were assume
to follow an exponential distribution with a constant av
erage service time1/µ ≡ 1. Our goal was to express
the average waiting time in the queue (the response) a
function of the queue utilization factor,ρ = λ/µ (a sin-
gle decision variable). We considered the following twelv
(m = 12) different values forρ (and λ), {ρi : i = 1, 9} =
{.1, .2, .3, .4, .5, .55, .6, .7, .75, .85, .9, .95}. We decided to
performn = 10 replications of each of them = 12 design
points; we chose, forn, a number greater than nine, in orde
to obtain an appropriate estimate forσ 2

i , i = 1, ..., m; see
Deaton, Reynolds and Myers (1983). Different replication
use the same value for the independent variableρi , but
different pseudorandom number seeds. Each of these10
replications starts in the empty state (no customers waitin
In order to account for the presence of initializing bias
each design point, we ran Welch’s procedure (Welch 198
for increasing number of observations and window width
Consequently, the deleted observations were made to c
respond to about15% of the total number of observations
in each run. For instance, forρ = .1, the number of obser-
vations in each run was 3,500, the first 500 were delet
and a window of 1,000 was enough; forρ = .95, each run
included 40,000 and 3,500 were deleted, for a window
20,000.

Taking into account the discussion in Section 2.1, th
collected simulation data for the metamodel estimation
summarized in Table 1.Xi represents the utilization factor
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corresponding to theith design point. Ȳi. is the average
across runs of the waiting time in queue for theith design
point, with utilization factorXi .

Table 1:  Simulation  Data for  Metamodel
Estimation

i Xi Ȳi. σ̂i/
√

n

1 0.10 0.110601 0.000131466
2 0.20 0.248065 0.000533648
3 0.30 0.429343 0.00145294
4 0.40 0.670248 0.00146284
5 0.50 0.987577 0.00335524
6 0.55 1.21614 0.00637383
7 0.60 1.50915 0.0154060
8 0.70 2.38149 0.0742331
9 0.75 3.09417 0.152555

10 0.85 5.72853 0.201175
11 0.90 8.95594 0.932344
12 0.95 18.8805 4.09515

Our suggested procedure, for fitting the simulation
metamodel, consists of the steps that follow.
1. Identifying a tentative nonlinear relation between the

response and the decision variable.
Ideally, we should select a curve based on phy

ical justifications. Pragmatically, we usually do tha
visually, just like we compare empirical histograms
with known density functions for selecting a random
distribution. A convenient first step is to represent th
dispersion diagram(or scatterplot) of the response and
the decision variable, plotting the corresponding pair
(Xi, Yij ), for i = 1, m and j = 1, n. In Figure 1,
we graphically display the results of our experimen
We observe that the average waiting time in queue
actually related in a nonlinear fashion with the uti
lization factor. If we had two decision variables, we
might draw contour curves or use a three dimension

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
rho

0

2

4

6
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10

12

14

16

18

20

y

Figure 1:  Dispersion  Diagram forM/M/1 Queue
6
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visualization software, instead. In order to identify th
type of nonlinear relation, we advance to the next ste

2. Selectinga curve from a catalog of typical nonlinea
functional relationships.

To facilitate the identification of tentative nonlinea
relations, we might build a catalog of different functiona
relationships, with their graphical representations. D
to space restrictions, we reproduce in Figures 2 and
only a small part of one such catalog. Comparing th
actual dispersion diagram of Figure 1 with this part o
the catalog of curves, it is likely that an hyperbole migh
fit the data. So, we chose this functional relationship f
the tentative simulation metamodel relating the avera
waiting time in theM/M/1 queue with the utilization
factor:

Ȳi. = θ1Xi/(1 + θ2Xi) + ε̄i., i = 1, . . . , 12,

with ε̄i. ∼ N
(
0, σ 2

i /10
)

and Yij ∼ N(µi, σ 2
i ). As we

mentioned in Section 2.2, this hypothesis of normali
is generally satisfied when the simulation respons
are averages, which is the case (we are analyzing
average waiting time in queue). Note that the select
function (a hyperbole) is not linearizable.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X

0

2

4

6

8

10

12

14

16

18

20

Y

Figure 2:  Monomial,y = θ1xθ2, θ1 = 25, θ2 = 5

For this particular system, we know the theoret
cal expected steady-state response. To illustrate w
might have happened, if we had chosen to fit anoth
functional relationship to the M/M/1 data (for instance
the monomial in Figure 2,Yij = θ1X

θ2
i εij ), we perform

the next two steps of the procedure for both mode
above. Since the metamodel to fit is now linearizabl
we take the decimal logarithm of both sides and o
tain logYij = logθ1 + θ2 logXi + logεij , the familiar
simple linear regression equation.
50
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Figure 3:  Hyperbole,y = θ1x
1+θ2x

, θ1 = 1, θ2 = −1

3. Estimating the nonlinear simulation metamodel.
From Figure 1, we observe that the variance of th

response increases with the utilization factor. Thus, w
must use the least squares estimator given by (5) a
satisfying (6), withn = 10 andp = 2:

[
θ̂1

θ̂2

]
∼ N2

([
θ1
θ2

]
,

1

10
[FT 6−1F]−1

)
,

whereF = F(θ∗
1 , θ∗

2 ).
In order to obtain the approximate least square

estimator ofθ1 and θ2, we used the iterative Gauss-
Newton method. The approximate solution was foun
when |(SSEk+1 − SSEk)/SSEk+1| < 10−6 for five
consecutive values ofk, whereSSEk is the residual
sum of squares in iterationk.

In Table 2, we present the main results of the
estimation of the selected simulation metamodel: th
approximate LSE ofθ1 eθ2, as well as their correspond-
ing asymptotic standard errors. We also reproduce th
corresponding values for the monomial case (Model 2

Table 2:  Estimated  Metamodel  Coefficients
Model Coeff. Estimator Standard error

1 θ1 1.0004 0.00882
θ2 −1.0000 0.00174

2 logθ1 0.7451 0.00548
θ2 2.0254 0.01351

However, the metamodel has to be validated, t
determine if it is indeed the “elected” model. This
topic is dealt with in the next step.

4. Validating the nonlinear simulation metamodel.
Table 3 reproduces the significance tests performe

on the estimated metamodel. We can observe that t
proposed model explains rather well the simulatio
model response, through the factorX = ρ: clearly, the
7
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F test for lack of fit is not significant (F10,108 ≈ 1.93).
Thus, there is no evidence to reject this model an
try another one. We should also emphasize that th
graphical analysis of the residuals also suggests that t
assumptions of regression analysis are met. Howev
some authors argue that, in the linear case, thisF test
is not very sensitive to departures from the normalit
and homogeneous variance assumptions; see Kleijn
Burg and Ham (1979). That is, it may happen that th
test may have a low probability of detecting if the fitted
model does provide a good fit. The nonlinear case
treated performing a linearization. Consequently, th
same problem may occur in the nonlinear case. Thu
the acceptance of the fitted metamodel can not depe
solely on the value of this statistic.

In the same table, we show the corresponding valu
we would have obtained, had we chosen the monom
function. It is quite obvious that there is evidence to
reject the monomial fit.

Table 3:  Testing for  Lack-of-Fit
Mod Source D f SS MS F

1 Lack 10 1.891 0.189 0.189
Error 108 108.0 1.000

2 Lack 10 3580. 358.0 358.0
Error 108 108.0 1.000

Besides testing the metamodel adequacy, we mu
also test its predictive validity. We notice, in Table 4
that the values ofP RESS = 111.005 and SSE =
109.891 are rather close. This supports the validity o
the fitted regression metamodel. It also stresses t
importance ofMSE as an indicador of the predictive
capability of this model.

Again, we also present the corresponding diagno
tics for Model 2 (the monomial function). The values
are consistent with the rejection of this model.

Table 4:  Metamodel  Diagnostics
Statistic Hyperbole Monomial

SSE 109.891 3688.38
P RESS 111.005 6603.47

MSE 0.9313 31.2575
R2 0.9444 0.883554

R2
adj 0.9491 0.893258

The main results of the metamodel validation pro
cedure, based on the regressions on the model-buildi
and validation data sets, are reproduced in Table
We present the estimated regression model coefficien
their standard deviations and some other related stat
tics. Notice that there is good agreement between t
two sets of estimated regression coefficients, and b
tween the values of statisticsMSE and R2 for both
508
,

,

,
-

Table 5:  Metamodel  Validity  Test
Hyperbole Monomial

Statistic M-bld Valid M-bld Valid
θ̂1 .9965 .9940 – –
ˆlogθ1 – – .7870 .6407

σ̂ ( ˆθ1) .0117 .0099 – –
σ̂ ( ˆlogθ1) – – .0958 .1135

θ̂2 −1.001 −.9982 1.996 1.940
σ̂ ( ˆθ2) .0021 .0033 .0028 .0057
SSE 66.99 46.48 1912. 642.9

P RESS 73.23 – 4885. –
MSE .9569 1.010 27.31 13.98

MSP R – 1.333 – 50.93
R2 .9011 .9855 .5896 .9033

R2
adj .9093 .9867 .6238 .9113

cases. The fact thatMSP R is not significantly different
from MSE implies that the mean squared error,MSE,
based on the model-building data set, is a reasonab
valid indication of the predictive capability of the fitted
regression model. These validation results support th
appropriateness of the selected simulation metamode

On the other hand, for the monomial (model 2), the
same statistics convey the opposite information. So
as before, this model would be rejected based on thi
validation procedure.

In conclusion, we can say that, although the lin-
ear(ized) model is much simpler to fit, we strongly feel
that there will be many situations in which the advan-
tages of a nonlinear model will overcome the extra time
and computation needed.

5 CONCLUSIONS

In this work, we have addressed some of the most importan
issues involved in the estimation of nonlinear simulation
metamodels. Although they are more complex and time
consuming than their linear counterparts, nonlinear meta
models account for a larger part of the variability of the
simulation output and have fewer parameters. We hav
shown that it is feasible, for an informed practitioner, to
apply our proposed procedure for metamodel estimation
The statistical procedures that we propose for validatio
also seem to be reasonably discriminating between a goo
and a bad choice for the metamodel structure.

We strongly feel that more work needs to be done in
this area. The catalog of functional relationships has to b
enlarged with more functions of one or two independen
variables. It would be useful to come up with specific
visually oriented approaches to help in the curve selection
when the metamodel includes more than two independe
variables. Finally, the construction of confidence intervals



nd Porta Nova

n

.
e

s.

u-
f

.
-

l

n

ta.

ti-

nt
ics
ics

nt
l
l

ns
dos Santos a

and hypotheses testing are two additional topics deservi
further attention.
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