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ABSTRACT

In this paper the use of metamodels to approximate t
reverse of simulation models is explored. This purpose 
the approach is to achieve the opposite of what 
simulation model can do.  That is, given a set of desir
performance measures, the metamodels output a   desig
meet management goals. The performance of seve
neural network simulation metamodels was compared 
the performance of a stepwise regression metamodel
terms of accuracy.  It was found that in most cases, neu
network metamodels outperform the regressio
metamodel.  It was also found that a modular neur
network performed the best in terms of minimizing th
error of prediction.

1 INTRODUCTION

System design/redesign is a complex process in whi
models are used to make decisions on changes to exis
or proposed systems.  The goal of the design process is
design a system that meets or exceeds certain performa
measures without violating any constraints.  Simulatio
modeling is one of the most popular tools for the desig
and analysis of complex systems.  This popularity is due
its flexibility, its ability to model systems more accurately
and its ability to model the time dynamic behavior of th
system.  With simulation modeling, however, the
relationships between the design parameters a
performance measures are not explicitly known
Therefore, system design using simulation becomes a t
and error process in which a set of design parameters 
used in the simulation model to predict a set o
performance measures.  If the performance measures 
acceptable, a good design has been identified, otherw
the process is repeated until a satisfactory set 
performance measures is achieved.  Because of 
iterative nature of this procedure, this process can be ti
consuming and expensive.
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In order to overcome this problem, researchers hav
proposed the use of metamodels.  The main objective of
simulation metamodel is to accurately represent th
relationship between inputs and outputs over wide range
of interest, and to be more computationally efficient than
simulation (Kilmer, Smith, and Shuman 1997).  If the
simulation runs are time-consuming and expensive, th
advantages of using a metamodel are evident.  After th
metamodel has been built, there may not be a need to r
the expensive and time consuming simulations, thu
providing a quick way of answering "what if " type of
questions.

Two approaches have been used for developin
simulation metamodels: the direct simulation
metamodeling approach, and the reverse simulatio
metamodeling approach (Figure 1).  When building the
metamodel using the direct approach, the inputs of th
simulation (design parameters) are used as inputs for t
metamodel, and the outputs of the simulation (performanc
measures) are used as desired outputs for the metamod
When building a reverse simulation metamodel, the
outputs of the simulation (performance measures) are us
as inputs to the metamodel, and the inputs of the simulatio
(design parameters) are used as desired outputs of t
metamodel.  The advantage of using a reverse simulatio
metamodel as a design tool is that the process is no long
iterative.  The decision-maker inputs the required
performance measures and the reverse metamodel outp
the necessary parameters to achieve those measures.  
graphical representation of both direct and revers
metamodeling is shown in Figure 1.

The objective of this paper is to develop a
methodology for using simulation and neural networks to
build a reverse-simulation metamodel that will be used as
decision support tool when designing a new system o
redesigning an existing one.  This decision tool will
suggest the system’s design parameters when the requir
performance measures are specified.  In this paper seve
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All variables are represented as Vectors
x Í  v
y1(x) = y(x) + e2(x)
y2(x) = y1(x)+ e1(x)
\  y2(x) = y(x)+ e1(x) + e2(x)
x1=x + e3(x)
where ei(x) is the error of estimation

I n p u t  V e c t o r S y s te m O u t p u t  V e c t o r

Reverse
Simulation
Metamodel

y(x)x1

Figure 1:  Graphical and Mathematical Representation 
Direct and Reverse Simulation Metamodels

neural network topologies are investigated and compar
to a stepwise regression metamodel.  The performan
measure used is the normalized error of prediction.

2 RELATED WORK

There has been many neural networks Applications in t
Industrial Engineering area. Ramesh Sharda (199
summarized what has been done in the Operations Rese
field until 1996.  He referenced more than 140 papers us
neural networks in industrial engineering applications.  Mu
work has also been done in the area of simulation a
artificial intelligence.  Oren (1994) referenced 198 papers
the application of artificial intelligence and simulation.  Bu
most of the work done was in the knowledge-based syste
and simulation.  Within the area of simulation and neur
networks two different areas of simulation metamodels ha
surfaced in the last decade: The direct simulatio
metamodeling, and the reverse simulation metamodeling. 
this paper, we will only discuss the reverse simulatio
metamodels.  For direct simulation metamodels, the reade
referred to Kilmer, Smith, and Shuman (1997) and Badir
and Sieger (1996).

The use of neural networks as a metamodelin
technique to do the reverse of simulation modeling h
been reported in three papers (Mollaghasemi, LeCroy, a
Georgiopoulos 1998; Chyssolouris, G. Lee, M., an
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Domroese, M. 1990; Chryssolouris, G. and Domroese, 
1991).

Chyssolouris, Lee, and Domroese (1990) a
Chyssolouris and Domroese (1991) explored the use
neural networks for identifying the relative importance 
pertinent manufacturing criteria for given performanc
measures.  The simulation model used in both papers is a
shop.  The simulation was performed five times, each ti
with a different job shop configuration.  A neural networ
that used the generalized delta rule was trained using the 
simulation runs.  The performance measures were inpu
into the neural network and the network was trained 
achieve the job shop configuration associated with tho
performance measures.  Chyssolouris and Domro
compared the neural network performance to that of a f
order linear regression.  It was found that the neural netw
outperformed the first order linear regression.

Mollaghasemi, LeCroy, and Georgiopoulos (1998
applied a neural network metamodel to a real wor
application involving the test operations of a majo
semiconductor manufacturing plant. Given a set of desi
performance measures in terms of cycle time, WIP, a
utilization of three different testers, the metamodel sugges
a suitable design in terms of scheduling rules, and the num
of each type of tester to achieve these objectives.  The res
of the metamodel were validated by comparing them with 
results obtained from the simulation model. The autho
reported encouraging results.

3 EXPERIMENTAL DESIGN

In order to demonstrate the effectiveness of using a reve
metamodel as a decision support tool, a simulation o
simple re-entrant manufacturing model with five machin
cells running three different parts was created. Each p
goes through the following machine cell sequence: 1-2
4-1-2-3-4-1-2-3-4-5 before exiting the system
Exponential processing times were used to model 
processing times.  The mean processing times for each 
can be found in Table 1.

Table 1:  The Mean Processing Times (in Minutes)
for the Re-Entrant Model

Cell
1

Cell
2

Cell
3

Cell
4

Cell 5

Part A Level 1 10 8 14 12
Part A Level 2 12 9 14 11
Part A Level 3 14 10 14 10 20
Part B Level 1 9 9 14 13
Part B Level 2 11 10 14 12
Part B Level 3 13 11 14 11 20
Part C Level 1 11 7 14 13
Part C Level 2 13 8 14 12
Part C Level 3 15 9 14 11 20
8
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The following is the list of inputs and outputs of th
simulation:

INPUTS

1 Interarrival time: two levels were used (20 or
30 minutes)

2 Number of machines in cells 1, 2, 3, and 4:
three levels were used in each cell (2, 3, or 4
machines)

3 Number of machines in cell 5: two levels (1
or 2 machines)

4 Scheduling Policy: three levels were used
(First In First Out, lowest processing time, or
the part that is closest to completion)

OUTPUTS

1 Machine utilization of each of the five
machine cells (5 output variables)

2 Cycle time of each of the three parts (3 output
variables)

3 Average work in process inventory (WIP) ( 1
output variable)

Although this model is comparatively simple whe
compared with real world models, the experimental des
space of the above model consists of 972 data po
Therefore, in a real life situation the number of possi
input combinations could be much larger.  T
computational time is still magnified by the fact th
multiple replications of each simulation run are required.

3.1 Neural Network Metamodels

Several neural network topologies were investigated:

1 Backpropagation neural network with a
sigmoidal activation function using the delta
rule learning algorithm.

2 General regression neural network which is a
general purpose network paradigm used
mainly for system modeling and prediction.
Three different summation functions were
used: Eucledian, city block, and projection
summation function.

3 Modular neural network which consists of
several backpropagation networks competing
to learn different aspects of the problem.
Four different learning rules were used:
Quickprob, delta rule, delta  bar delta, and
maxprob.

4 Learning vector quantization which is a
classification network which assigns vectors
to one of several classes. It consists of a
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Kohonen layer which learns and performs the
classification.

5 Radial basis function network which is a
general purpose network paradigm used
mainly for system modeling, prediction, and
classification.  Three different summation
functions were used: Eucledian, city block,
and projection summation function

A total of 10 different topologies were examined (1
Backprobagation, 3 general regression networks, 
modular neural networks, 1 learning vector quantizatio
and 3 Radial basis function).

To build the metamodel, an orthogonal arra
experimental design consisting of 18 data points was us
For each setup 10 replication were made and the average
the 10 replications were computed.  The input-output da
set generated by the simulation was then used to train 
metamodel.  The outputs of the simulation (machin
utilization of each of the five machine cells, cycle time o
each of the three parts, and average work in proce
inventory (WIP)) were used as inputs when training th
neural network metamodels.  The inputs to the simulatio
(interarrival time, number of machines in cell 1, cell 2, ce
3, cell 4, and cell 5, and the scheduling Policy) were us
as outputs when training the neural network Metamode
(Figure 2).

After training, the performances of the metamode
were evaluated using all the 972 data points.  All the da
points were used for evaluation to give a goo
understanding of the generalization capabilities of th
metamodel.  Generalization is the ability of the metamod
to predict the output of a set of inputs that it was no
trained with.  The mean square error of prediction wa
calculated for all the responses.

Interarrival Time

Number of machines
in Cell 1

Number of machines
in Cell 2

Number of machines
in Cell 3

Number of machines
in Cell 4

Number of machines
in Cell 5

Cell 1 machine
Utilization

Cell 2 machine
Utilization

Cell 3 machine
Utilization

Cell 4 machine
Utilization

Cell 5 machine
Utilization

Part 1 Cycle Time

Part 2 Cycle Time

Part 3 Cycle Time

WIP

The Neural
Network

Scheduling Rule

Figure 2:  The Reverse Simulation Metamodel
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3.2 Regression Metamodel

The same data that was used for training the ne
network metamodels was used to generate the regre
metamodels.  A stepwise regression was used to gene
linear approximation of the each of the controllable fact
using the orthogonal array design of 18 data points.  
outputs of the simulation were used as independ
variables (xn) when fitting the regression metamodels.  T
inputs to the simulation were used as dependent varia
(f(xn)) when fitting the regression  Metamodels.  To fit t
regression metamodel a linear stepwise regression m
was used.  After fitting the regressions to the data po
the performance of the metamodels was evaluated usin
the available 972 data points.  The mean square erro
prediction was calculated for all the responses.

4 RESULTS

It was found that the neural network metamodels (excep
Linear Vector Quntization and Radial Basis Function usin
Eucledian summation function) outperformed the stepw
regression metamodel.  The modular neural network u
the delta learning rule performed the best in terms
prediction accuracy (Figure 3).  It was also found that for
modular neural network and the backpropagation ne
network, the choice of the learning rule greatly affects 
performance of the neural network (Figure 4).  For the ra
basis function, it was found that the network is not v
sensitive for the choice to the summation function.  T
general regression neural network was more sensitive t
choice of the summation function (Figure 5).

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80

Modular

Backpropagation

Figure 3:  The Normalized Prediction Error for the Neu
Network Metamodels and the Stepwise Regress
Metamodel
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Figure 4:  The Learning Rule Contribution to the
Normalized Error of Prediction
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Figure 5:  The Summation Function Contribution to the
Normalized Error of Prediction for the General Regressio
and Radial Basis Function Neural Networks

None of the metamodels were able to predict the typ
of Scheduling Policy Used.  The best correct classificatio
was 51%.  Increasing the number of training data points 
36 points improved the correct classification rate to 66%
Increasing the number of training points to 72 improve
the correct classification rate to 71% (Figure 6).  Thi
indicates that the original number of data points used (1
was not enough to accurately predict the scheduling polic
Although, 18 points were enough to train the neura
network to recognize the quantitative data (number o
machines in each cell and interarrival time), they were n
enough to recognize the qualitative data (type o
scheduling policy).  This suggests that two neural network
may be needed for developing the metamodels for th
0
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simulation model: one to predict the quantitative data, a
the second to predict the qualitative data.

Figure 6:  The Effect of Increasing the Number of Trainin
Data on the Correct Scheduling Policy Classification

CONCLUSIONS

The purpose of this research was to provide a methodol
of how to build and examine a reverse simulatio
metamodel.  Thus future research is needed to determ
the best metamodel for other types of problem
Preliminary results show that neural network metamod
can outperform their regression counterparts.

Currently, our research is directed toward developing
methodology for building a neural network metamod
based on the type of design parameter, namely qualita
or quantitative, and the level of complexity of the solutio
surface.  Our current research will provide a methodolo
for choosing the neural network training and testing da
sets.  The research will also provide a methodology 
training the neural network.
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